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ABSTRACT. Magnetic fields contribute to the splitting of the 
degeneracy of modes of like order and degree. The splitting is 
estimated for some simple hypothetical toroidal magnetic field 
configurations in the sun, and the results are compared with previous 
asymptotic estimates. Splitting by a field confined to a thin layer 
at the base of the convection zone is found not to agree with recent 
measurements. 

1. INTRODUCTION 

Our calculations are based on the formalism of Gough and Taylor 
(1984), except that whereas they obtained estimates from asymptotic 
theory we compute the perturbations from numerical eigenfunctions. 
With respect to spherical polar co-ordinates (r>9><|>) a H the field 
configurations we consider are of the form 

Β = ( 0 , 0 , B(r) d P k / d θ ) (D 

where P k(cos9) is a Legendre polynomial. If rotation is ignored, the 
resulting frequency ^ n ^ m of a mode of order n, degree 1 and azimuthal 
order m would be 

ω . = J ° ] + Î* K ^ ' ^ Q - , m + 0(B 4) (2) 
nlm nl s=0 2s 2s ,1,m 

where ω ? is the unperturbed frequency of the nonmagnetic stellar 
modelj n X 

Q 2 s,i,m - /]p2s(y){̂ (y)}2dy//]î (u)}2dy ( 3 ) 
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where is the associated Legendre function of the first kind. The 
quantities Ki^' 1' are functionals of the magnetic field, the 
equilibrium structure of the stellar model and the oscillation 
eigenfunctions. They are each composed of two parts: a contribution 
[which is of Dziembowski and Goode (1985) and I 3 2 s of Gough and 
Taylor (1984)] from the magnetic distortion to the equilibrium 
structure of the star, and a contribution, related to I 4 of Gough and 
Taylor (1984), from the perturbed Lorentz force. 

When rotation is also taken into account the frequency perturbation 
is quite complicated when the axis of field symmetry is inclined from 
the rotation axis by a nonzero angle 3 (e.g. Dicke, 1982; Gough and 
Taylor, 1984; Dziembowski and Goode, 1984, 1985). However, when the 
magnetic perturbation is much smaller than the effect of advection, it 
simply adds to the rotational frequency splitting a contribution which 
is approximately 

]ς 

j ^ s , ! , ! * - Q 2 s , l , 0 ) K 2 s ' 1 ) p 2 s < c o s ^ - ( 4 ) 

2 
This formula is exact, to 0(B ), when 3= 0. 

2. CORE FIELDS 

We consider first field amplitudes of the form 

(1+a) (1+cf1)aI5 (r/r ) 2 (1-(r/r ) 2 ) a r < r 
B(r) = ο c c c ( 5 ) 

0 r > r c 

whose influence was discussed by Gough and Taylor (1984). Here α is 
chosen to be 1 + 10rc/R, where R is the radius of the star. The 
maximum value of B(r) is B 0 . In Figure 1 the magnetic frequency pertur-
bation to oscillations of Christensen-Dalsgaard1s (1982) solar model 1 
for the case rc = 0.7R, where R is the radius of the sun, is plotted 
against 1 for oscillations with cyclic frequency ν = ω/2π nearest to 
3.5 mHz. For each value of 1 the perturbations were obtained by linear 
interpolation between the two modes with frequencies closest to 
3.5 mHz. Modes with 1 < 10 penetrate into the region where the 
magnetic field is strong (for these modes r t < 0.3R, where r t is 
asymptotic lower turning point which satisfies c(r t)/r t = ω/1 where c 
is the sound speed), and for them the contribution from the perturbed 
Lorentz force dominates. As 1 increases, less of the mode experiences 
the direct effect of the field, and when 1 increases beyond about 20 
(rt >0.44R) only the distortion of the star's hydrostatic structure 
outside the region where the field is large has a significant influence 
on the frequency. 
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Figure 1· The thick solid curve is the frequency difference Δν = v n n 
" v n l o ^ n m ^ z ) produced by the hypothetical toroidal magnetic field in 
the sun given by Equations (1) and (5) with r c = 0.7R for modes with 
frequencies 3.5 mHz. It was computed by linear interpolation between 
the modes with frequencies closest to 3.5 mHz. The thin solid curve is 
the contribution to Av from the perturbed Lorentz force. The 
nonuniform I axis has been chosen in such a way that Ej-(l) varies 
uniformly from 0 to R from left to right. The dashed curve is Β^/β^Ρ, 
plotted against r^(l)/R, where ρ is the gas pressure of the equilibrium 
state (k=2 and B Q=10

7G). 

Table I shows that for the deeply penetrating quadrupole modes the 
asymptotic estimates of Gough and Taylor (1984) are in good agreement with 
the numerical results. 

3. CONFINED F I E L D S 

When the field is confined to a range in r that is comparable with 
or less than the characteristic vertical wavelength of the mode, the 
integrals are sensitive to the phase of the spatial oscillations in the 
eigenfunction. In that case the magnetic splitting oscillates as 
frequency varies. This is exhibited by Vorontsov (these proceedings) and 
is also illustrated in Figure 2, where perturbation coefficients K2^

n>^^ 
resulting from the magnetic field (1) with 

B ( r ) = 
B 0 ( 1 - ( r - r o ) 2 / d 2 ) 2 | r - r Q | < d 

| r - r j > d 

(6) 
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representing a field concentrated at the base of the convection zone, are 
plotted for several values of 1 . 

r = 0.3 r = 0.5 r = 0.7 
c 

0.3 
c 

= 0.5 
c 

η vnl δ 2 δ4 δ 2 δ4 

16 2.47 1.94 0.88 5.09 - 2.98 8.16 - 13.0 
18 2.74 1.43 0.22 5.15 - 3.58 8.02 - 13.7 
20 3.01 1.20 - 0.42 5.13 - 4.02 7.88 - 14.2 
22 3.29 1.39 - 0.87 5.08 - 4.36 7.73 - 14.7 
24 3.56 1.85 - 1.13 5.02 - 4.64 7.58 - 15.1 
GT 2.50 - 2.54 4.53 - 5.80 7.25 - 16.3 

Table 1. Coefficients &2s = 10 K2g' / ωη1 f° r t n e relative magnetic 
frequency splitting of quadrupole (1 = 2) modes due to magnetic fields 
given by equations (1) and (5) with B 0 = 10

7G and k = 2. All splitting 
coefficients are proportional to B^. In the bottom line are the 
asymptotic values computed from Table 2 of Gough and Taylor (1984), taking 
due account of an erroneous factor of 2 in their coefficient I . jhe 
geometrical factors Οχ ι m and S 2 χ m tabulated by Gough and Taylor are 
also a factor 2 too large, and the distortion factors , are 
misprinted). 

Figure 2. Frequency perturbation coefficients Κ ̂ '"^ for the confined 
magnetic field given by Equations (1) and (6) with r = 0.7R, d = 0.05R 
and Β = 10 7G. Open circles represent 1 = 2 , filled°circles are for 1 = 
10, triangles for 1 = 20 and squares for 1 = 30. The symbols are connected 
by straight lines to aid the eye; had ν been engineered to vary 
continuously, the results would have been smooth oscillatory functions 
for modes that penetrate beneath the magnetic layer. 
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In the case considered the width of Β (r) at half maximum is 
0.04R, and a half wavelength of a vertically propagating 3mHz sound 
wave is about 0.05R. Thus any low-degree five-minute mode, which 
penetrates well beneath the base of the convection zone, exhibits the 
oscillatory behaviour. As frequency increases, the wavelength of the 
mode decreases, and therefore the amplitude of the oscillatory 
variation of K^g , 1^( v) diminishes. As 1 decreases at fixed V the spatial 
phase difference between the base of the convection zone and the upper 
turning point increases (cf Deubner and Gough, 1984). Consequently the 
phase of the oscillation of Κ ^ ' with respect to ν advances. 

Acoustic modes are particularly sensitive to conditions in the 
vicinity of r = r̂ ., for there the constituent waves travel almost 
horizontally and therefore remain near that level for a comparatively 
long time. Consequently when r, is within the region of strong magnetic 
field, as is the case when \ = 30 and ν = 2.5 mHz, the frequency 
perturbation is large. As 1 increases beyond that value the waves no 
longer reach the field, and the frequency perturbation declines. 

4. ANALYSING FREQUENCY DATA 

It is evident that the amplitude and phase of Κ ̂ n,^"\v) depend 
on the width d of the field concentration and the radius T s about which 
it is located. Therefore in principle these properties oP a field, if 
it exists, could be determined from data such as those that Duvall et al̂  
(1986) have obtained from the sun (cf. Gough and Thompson, these 
proceedings). The odd-m component of the frequency splitting can be 
used to infer the angular velocity, and thence the rotational 
contribution to the even-m component can be calculated and substracted 
from the data. The l and m dependence of the remaining splitting 
provides the information about the radial and latitudinal dependence of 
a magnetic field, or any other cause of symmetry-breaking. It is 
important to appreciate that the oscillation in K( n/D(v) is poorly 
sampled, and superficially resembles random scatter; sunder no account 
should data from different modes be indiscriminately averaged merely to 
improve the apparent quality of the results. Nevertheless, averaged 
data do contain useful information. It is instructive to compare the 
even-m component of the averaged splitting data of Duvall ejt al̂  (1986) 
with comparable averages produced by the field defined by Equations (1) 
and (6). Duvall et jil represent their frequencies essentially by the 
formula 

vnlm- vnl0 = ^ " l ( 7 ) 

2 
where L = 1(1+1), and average the coefficients a. over different 
ranges of 1 and all observed n. It can be shown that tor the relatively 
large values of 1 considered these coefficients can be related 
approximately to ours according to 
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L a 2 i = M ) 1 ( 2 i ) i K 2 i f l ) ( 8 ) 

2 2 i (il)2 

if the symmetry axis of the field coincides with the rotation axis. In 
Table II we compare our computations with the observations. The 
contribution from rotation is small. The observed coefficients do not 
decline rapidly with 1 once 1 is high enough for r^ to be above the 
perturbation, and we conclude, in particular, that the even-m component 
of the observed splitting could not have been produced solely by a 
perturbation confined near the base of the convection zone. 

Confined field Duvall et al 

____ 

1 L a 2 L a4 L a 2 L a4 

20 - 1.3 - 0.2 
0.46 0.01 

30 - 12.9 3.8 
0.16 0.31 

40 - 13.9 5.1 
0.37 0.15 

50 6.8 1.0 
0.45 0.15 

60 7.0 - 1.2 
0.56 0.26 

70 - 0.07 0.04 
0.33 0.26 

80 - 0.09 0.06 
0.34 0.25 

90 - 0.08 0.05 
0.61 -0.28 

100 - 0.04 0.05 

Table II Theoretical mean splitting coefficients (in μΗζ), averaged 
over frequency between 2 and 4 mHz, computed from the confined field 
used for Figure 2, and corresponding observed frequencies which in 
addition are averaged over degree 1 between the values for which the 
theoretical coefficients are tabulated. 
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