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Regulation of foetal development in sheep depends on interactions between the intrinsic capacity of the foetus for growth and
the maternal environment. Lambs born in multi-foetus litters have relatively small placentae with fewer cotelydons, and lower
birth weights. Litter-size-dependent intrauterine growth restriction (IUGR) is evident at mid gestation when metabolic needs of the
conceptus are moderate, and overnutrition of ewes with multiple foetuses does not promote growth of their foetuses to the size
of singletons. Those observations suggest that placental and conceptus growth in multi-foetus pregnancies is reprogrammed at
mid gestation by an as yet undefined mechanism to attenuate foetal growth. This may protect the foetus from severe nutritional
insult during late gestation, when its daily growth rate is at a maximum. In that way, lambs born in large litters with relatively
lower birth weights may not experience the long-term physiological insults that can be observed in small lambs born to
undernourished ewes.
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Introduction

Foetal growth rate and subsequent birth weight (BWT) of
lambs are determined by the genetic background of the
foetus which governs its drive for growth, by its paternal
genotype which determines placental size, morphology and
efficiency of nutrient transfer to the growing foetus, by
external environmental conditions such as nutritional sta-
tus, which affect maternal physiology, and by specific uter-
ine environment-related conditions such as the number of
foetuses in the litter (Dickinson et al., 1962; Anthony et al.,
2003; Redmer et al., 2004; Safari et al., 2005; Reynolds
et al., 2006). Intrauterine growth restriction (IUGR), which
leads to the birth of smaller lambs with reduced survival
ability, occurs in sheep naturally and can be induced by
several means.

Naturally occurring IUGR
IUGR occurs in ewes carrying multiple foetuses. Increas-
ing prolificacy by genetic and managerial means is
associated with an increase in the number of ewes pro-
ducing large litters. Prolificacy is an important trait in
semi-intensive and intensive sheep-production systems.
Nevertheless, the economic advantages of high prolifi-
cacy are often not fully exploited because pregnancies

with multiple foetuses are associated with IUGR of
those foetuses, and lower BWTs and pre- and postnatal
survival rates of the lambs (Figure 1) (Hinch et al.,
1985; Gama et al., 1991; Fogarty et al., 2000; Holst
et al., 2002; Vallet et al., 2002; Christley et al., 2003;
Kleemann and Walker, 2005).

Lamb BWT is also affected naturally by maternal age,
with lambs born to relatively young ewes (first and
second parities), and to relatively old ewes (ninth and
above parities), being smaller than lambs born to ewes
in their third to the eighth parities (Al-Shorepy, 2001;
Gootwine et al., 2006b). Seasonality also affects lambs’
BWT, those born in the summer and autumn being
smaller than those born in the winter and spring
(McCoard et al., 1996; Al-Shorepy and Notter, 1998;
Gootwine and Rozov, 2006). The seasonal effect on
BWT is due to both a direct seasonal effect on foetal
growth, possibly mediated through variations in melato-
nin secretion, and an indirect seasonal effect on ges-
tation length (Gootwine and Rozov, 2006).

Altitude is another natural factor that affects BWT of
lambs, with those born to ewes at high altitude and
subjected to hypobaric hypoxia being lighter than those
born to ewes at low altitude (Parraguez et al., 2005).
Thus, foetal growth is affected by a number of intrinsic
and extrinsic factors that can negatively impact on lamb
BWT.†E-mail: gootwine@agri.gov.il
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Experimental IUGR
IUGR can be induced in ewes by various means, including
manipulation of maternal nutrition, administration of gluco-
corticoids, artificial restriction of placental size, creation of
uteroplacental embolisms, and exposure of pregnant ewes
to extreme environmental conditions, such as high tem-
perature and low oxygen pressure (McMillen et al., 2001;
Regnault et al., 2002; Redmer et al., 2004; Fowden et al.,
2006c; Wallace et al., 2006). Interestingly, such simple
practices as shearing ewes during mid or late pregnancy
can increase lamb BWTs (Symonds et al., 1992; Revell
et al., 2000; Kenyon et al., 2002). In most cases, changes
in foetal weight due to either natural or induced IUGR are
associated with a reduction in placental size and poten-
tially, functionality.

The enigma of litter-size-dependent IUGR
The literature clearly indicates that foetal growth is regu-
lated by the placental transport of nutrients, oxygen and
water to the foetus from the maternal compartment
through the uteroplacental complex (Regnault et al., 2005;
Fowden et al., 2006c). Therefore, litter-size-dependent
IUGR may result from failure of the uteroplacental complex
fully to support growth of the multiple foetuses within the
same uterus. Indeed, available evidence from studies of
both sheep (Edwards and McMillen, 2002; Gardner et al.,
2004; MacLaughlin et al., 2005) and humans (De Boo and
Harding, 2006) suggests that reduced BWTs of individual
lambs born in litters with more than one lamb have fea-
tures in common with IUGR in lambs resulting from under-
nutrition, such as reduction in uterine blood flow per
foetus and lower metabolite concentration in the maternal
and foetal circulations. However, as ewes can clearly main-
tain a litter to term for which total weight approaches
three times that of a normal single lamb (Dickinson et al.,
1962), it is unclear why the individual BWTs of lambs born
as twins or triplets are lower than those of lambs born as
singletons. This observation suggests that sheep foetuses
that gestate in multi-foetal pregnancies have unique

features that make their growth trajectory different from
that of singletons.

Foetal growth and development have been investigated
mainly in ewes pregnant with singleton lambs. Information
on foetal development in pregnancies with multiple foe-
tuses is therefore relatively limited. The present review
focuses on foetal growth in ewes with multiple foetuses
during pregnancy, aiming to better understand the nature
of litter-size-dependent IUGR, a biological phenomenon
that has major economic implications in sheep-production
systems, as well as in other livestock-producing enterprises
such as pig production (Wu et al., 2006).

General description of foetal and placental growth
during pregnancy in sheep

Uterine anatomy
In sheep, the uterine endometrium has two distinct areas:
aglandular caruncular and glandular intercaruncular. The
intercaruncular area contains large numbers of endometrial
glands that synthesise and secrete a complex array of pro-
teins termed histotroph, which include enzymes, growth
factors, cytokines, lymphokines, hormones, transport pro-
teins and other substances (Wimsatt, 1950; Roberts and
Bazer, 1988). During pregnancy, histotroph is transported
via placental areolae from the uterine glands into the foe-
tal circulation and then much is cleared via the kidney and
urachus into the allantoic fluids which serves as a nutrient
reservoir to nourish the growing conceptus (the foetus and
its extraembryonic membranes) (Renegar et al., 1982). His-
totroph is particularly important during the early stages of
pregnancy (Spencer and Bazer, 2004), before hemato-
trophic nutrition is established. Hematotrophic nutrition
relies on the exchange of nutrients and gases between
vasculature of the maternal uterus and placenta of the con-
ceptus (Gray et al., 2001). The relative contribution of his-
totrophic and hematotrophic nutrition to conceptus
development during the late stages of pregnancy is not
established. However, it can be assumed that while placen-
tal transport of O2, amino acids, glucose and micronutri-
ents is mostly hematotrophic, delivery of key regulatory
molecules such as vitamins, hormones and growth factors
is mediated by uptake of histotroph from uterine glands
via the placental areolae.

The aglandular areas of the endometrium are termed
caruncles. On average, the sheep uterus has about 100 car-
uncles, with numbers ranging from 50 to 150 per uterus
(Alexander, 1964b). Caruncles are features of the neonatal
uterus of lambs (Wiley et al., 1987) and their number in
primiparous ewes is related to uterine size (Figure 2). Little
information is available on what initiates placentome for-
mation and how it develops during gestation.

Placental formation
Sheep have a non-invasive, synepitheliochorial-type
placenta (Björkman, 1970). Following implantation, the

Figure 1 Birth weights and perinatal survival rates for lambs (n ¼ 4 781)
born to Afec-Assaf ewes (Volcani Center, Israel), according to litter size
(after Gootwine and Rozov (2006)).

Gootwine, Spencer and Bazer

548

https://doi.org/10.1017/S1751731107691897 Published online by Cambridge University Press

https://doi.org/10.1017/S1751731107691897


chorioallantoic membranes of the conceptus elongate and
through an unknown mechanism, form cotyledons that
interdigitate with the caruncles to form placentomes (Wim-
satt, 1950), where the placenta becomes syndesmochorial
in nature. Placentomes are structures containing the utero-
placental complexes responsible for exchange of gases and
micronutrients. The placenta is an autocrine, paracrine and
endocrine organ that synthesises and secretes a broad
range of steroid and peptide hormones which regulate foe-
tal development, and directs maternal physiology to sup-
port this process (Anthony et al., 1998; Gootwine, 2004;
Murphy et al., 2006).

Placenta of a single foetus appears to be programmed
to involve only about 70% of the total available caruncles
in placentome formation. Variation among ewes in the
numbers of caruncles on the endometrial surface may
account for the variation in placentome numbers (Alexan-
der, 1964a). On average, placentae of singleton concep-
tuses have 70 placentomes that vary in size and
morphological appearance (Ward et al., 2006).

Foetal and placental growth
Average gestation length in sheep is 147 days. Throughout
gestation, growth patterns for the placenta and foetus dif-
fer, as main placental growth takes place before the period
of rapid foetal growth (Figure 3). Foetal growth in sheep is
best described by the Gompertz equation (Robinson et al.,
1977). During the first half of gestation, foetal growth is
slow: by the end of that period the foetus has achieved
only about 10% of its BWT. During the second half of preg-
nancy, foetal growth is exponential and near the time of
parturition, daily foetal weight gain ranges from 70 to
150 g/day, which is reflected directly in the BWT of the foe-
tus (Figures 3 and 4).

In contrast to the pattern of foetal growth, placental
development, in terms of weight, length and surface area,
increases progressively from the peri-implantation period
(16 to 30 days of gestation) to its maximum size at 75 to
80 days of pregnancy. Then, indices of placental size either
stabilise or decline slightly near the end of the pregnancy
(Figure 3). Placental weight and foetal weight are poorly

correlated during early gestation; however, they are highly
correlated late in gestation and at parturition (Naaktgebo-
ren and Stegeman, 1969; Greenwood et al., 2000).

Placentome restructuring during pregnancy
During the last two-thirds of gestation, both the maternal
(caruncular) and foetal (cotyledonary) portions of the pla-
centome undergo structural changes which include vascular
development and angiogenesis. Angiogenesis and vasodila-
tion within placentomes are mediated by various angio-
genic factors, including vascular endothelial growth factor
(VEGF) and nitric oxide (NO). While the cotyledonary capil-
lary beds grow primarily by branching (angiogenesis) to
provide a very high density of small capillaries, the carun-
cular capillary beds grow mainly by increasing the size of
the capillaries (vasodilation), with smaller increases in
capillary density (Reynolds and Redmer, 2001; Reynolds
et al., 2005a and 2005b).

Placental weight may decrease slightly during the
second half of gestation; however, the amount of DNA in
the placentomes changes little during that period,
suggesting that the reduction in placental weight is due

Figure 4 Association between foetal weight at about 140 days of ges-
tation and its daily growth rate in different experiments (FW Bazer, TE
Spencer, WW Thatcher and DC Barron, unpublished results form study on
Florida Native ewes; Rattray et al., 1974; Robinson et al., 1977; Sinclair
et al., 1998; Corner et al., 2006; Gootwine and Rozov, 2006).

Figure 2 Association between number of caruncles and uterine weight
in primiparous crossbred ewes (n ¼ 22, Texas A&M University, Texas,
USA).

Figure 3 Growth of the foetus and placenta during pregnancy in Florida
Native ewes (n ¼ 4 per age group; FW Bazer, TE Spencer, WW Thatcher
and DC Barron, unpublished results).
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mainly to structural modifications and/or the tissues’ state
of hydration, rather than changes in cell number (Ott et al.,
1997; Reynolds et al., 2005a).

Uterine blood flow
Increases in vascularisation of the placentomes during ges-
tation are followed by increases in uterine blood flow to
accommodate the requirements for nutrients and gases
that support rapid foetal growth (Reynolds et al., 2006).
Thus, while the rate of total uterine blood flow is about
0.4 l/min at 71 days of pregnancy, it increases some three-
fold by day 130 of gestation, to about 1.2 l/min. Similarly,
total umbilical blood flow increases throughout gestation
(Reynolds et al., 2006). It is estimated that by the end of
gestation, 20% of the maternal cardiac output is targeted
to the uterus to provide nutrients and oxygen to support
the growing conceptus, primarily the foetus.

Placental oxygen and glucose consumption
The placenta has high metabolic demands for its own
growth and for the endocrine and transport functions that
support the growing foetus. The placenta consumes
approximately two-thirds of the oxygen and one-half of
the glucose transferred from the uterine circulation to the
conceptus (Harding and Johnston, 1995). Part of the pla-
cental glucose is converted to fructose in the placenta,
which is an important form of stored energy for the foetus
(Moores et al., 1993).

In general, the size of the placenta is correlated with its
glucose and amino acid transfer capacity, which is deter-
mined by transporter abundance (reviewed by Regnault et al.
(2005) and Fowden et al. (2006c)). Interruptions in the nor-
mal placental growth trajectory caused by carunclectomy
(Owens, et al., 1987), heat stress (Thureen et al., 1992),
nutrition manipulation (Wallace et al., 2002), or prolonged
hypoglycemia (Carver and Hay, 1995) may either increase or
decrease glucose and amino acid transporter abundance and
hence, the efficiency of placental nutrient-transfer capacity.

Roles of the conceptus and ewe in foetal growth

The understanding that both the foetus and ewe determine
the foetal growth trajectory comes from crossbreeding
trials and embryo-transfer experiments between large and
small breeds, as well as from within-breed genetic analyses
of source BWT variations.

Between-breed analyses
Lambs of large breeds have higher BWTs than those of
small breeds (Donald and Russell, 1970), reflecting genetic
differences in foetal growth, maternal uterine functions,
uteroplacental development, and likely a combination of all
of these factors. Results of embryo-transfer experiments
demonstrated that Welsh Mountain (small breed) lambs
gestated in Lincoln (large breed) surrogate ewes are hea-
vier at birth than Welsh Mountain lambs born to Welsh
Mountain ewes. In addition, Lincoln lambs born to Welsh

Mountain ewes had lower BWTs than Lincoln lambs born
to Lincoln ewes (Dickinson et al., 1962). Thus, there is an
interaction between foetal and maternal factors which
determines the extent of foetal growth, and the maternal
environment does not, in and of itself, determine or sup-
port maximal foetal growth.

Similar conclusions were reached following experiments
in which Romanov embryos (small breed with average
ewes’ body weight of 45 kg) were transferred into Colum-
bia ewes (large breed with average ewe weight of 104 kg)
(Scheaffer et al., 2004). At 130 days of gestation, Romanov
foetuses gestated in Columbia ewes were 22% heavier
than control Romanov foetuses gestated in Romanov ewes.
The remarkable plasticity of foetal and placental growth
and the ability of the foetus to respond to permissive or
restrictive aspects of the maternal environment have also
been observed following embryo-transfer experiments
involving small and large breeds of horses (Allen et al.,
2002), pigs (Wilson et al., 1998) and cattle (Ferrell, 1991).

Maternal genetic effects on foetal growth were also
demonstrated in crossbreeding experiments between large
and small breeds. For example, crossbreeding between
Assaf (large) and Booroola Merino (small) breeds (Goot-
wine et al., 1993) increased BWTs of lambs in response to
contributions of the large breed to the foetal genome, and
to contributions of the maternal genome. A difference in
BWT of about 0.5 kg resulted when lambs of similar gen-
etic backgrounds were gestated in ewes with different
genetic backgrounds in terms of body size.

Within-breed genetic analysis
BWT can be considered both a foetal-related trait (direct
effect) and a maternal-related trait (maternal effect).
Within-breed genetic variation in BWT has been estimated
for several breeds of sheep (see reviews by Fogarty (1995)
and Safari et al. (2005)). Both direct and maternal effects
have been found to have moderate heritability values and in
most cases, the genetic correlation between direct and
maternal effects was negative (Table 1). These findings
suggest that some genetic and physiological factors that
enhance foetal growth also have negative effects later in
life on the maternal ability to support foetal growth. Antag-
onistic or negative genetic correlations between direct and
maternal effects on BWT have also been reported for beef
cattle and pigs (Robinson, 1981; Meyer, 1992).

Genetic imprinting and foetal and placental growth
An antagonistic relationship between the expression of
genes supporting foetal growth and those supporting pla-
cental development and function is observed in imprinted
genes. Genomic imprinting (Tilghman, 1999) is an epige-
netic phenomenon in which the expression of certain genes
is dependent on whether they are inherited from the mother
or father. A substantial proportion of known imprinted
genes are involved in the control of foetal growth and pla-
cental development (Reik and Walter, 2001). In general,
paternally expressed genes enhance placental growth, while
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maternally expressed genes reduce placental size and its
nutrient-transport ability (Isles and Holland, 2005; Angiolini
et al., 2006; Cattanach et al., 2006; Fowden et al., 2006b).

Most of the research on genomic imprinting has been
conducted with mice. Imprinting of genes controlling foetal
and placental growth has been suggested to occur in
sheep as well following the observation that parthenoge-
netic development of embryos is associated with retar-
dation of foetal growth (Feil et al., 1998; Hagemann et al.,
1998). A detailed study on the genomic imprinting status
of the IGF2 gene in sheep (McLaren and Montgomery,
1999) revealed that ovine IGF2 is imprinted in the foetal
kidney, liver, and spleen but not in the brain. As in
humans, but not in mice, ovine IGF2 imprinting in the liver
is switched off postnatally and in the adult sheep liver
IGF2 has a bi-alleleic mode of expression.

As the interaction between paternally and maternally
expressed genes is still under investigation, it is not yet clear
how the expression of imprinted genes in the control of foetal
growth-drive and placental structure and function is associ-
ated with the genetic response to selection for BWT. Never-
theless, in multi-foetal pregnancies, polymorphism in genetic
imprinted genes can contribute to within-litter-size variations

in BWT (Gootwine et al., 2006c), even when all foetuses
have a similar genetic make-up.

Major genes affecting BWT
Foetal growth rate and BWT of lambs are quantitative traits
that are controlled by many loci with small effects of each
locus on variations in the trait. Recently, the FecB gene which
controls ovulation rate in ewes (Piper et al., 1985) was found
to have a major effect on BWT of lambs (Gootwine et al.,
2006b). When the Booroola mutation was carried by either
the lamb or the ewe, it negatively affected the lambs’ BWT.
Differences in foetal growth rates between carriers and non-
carriers of the Booroola mutation were detected as early as
day 40 of gestation (Smith et al., 1993 and 1996).

Foetal and placental growth in pregnancies with
multiple conceptuses

BWT and body composition
Individual foetuses in pregnancies with multiple concep-
tuses have lower BWTs than a lamb gestated as a
singleton. On average, BWTs for lambs born as twins,
triplets and quadruplets are 0.83, 0.70 and 0.63 that of

Table 1 Estimates of direct heritability (h2
a), maternal heritability (h2

m) and coefficients of correlation between direct and maternal genetic effects
(ram) for birth weight of lambs born to ewes with different genotypes

Breed of ewe/age† h 2
a h 2

m ram Reference

Afrino sheep 0.22 0.09 Snyman et al., 1995
Arab local sheep 0.42 0.33 20.6 Al-Shorepy, 2001
Baluchi 0.17 0.10 0.17 Yazdi et al., 1997
Columbia 0.27 0.25 20.05 Hanford et al., 2002
Columbia 0.18 0.24 20.20 Bromley et al., 2000
Columbia/1y 0.08 0.00 20.99 Okut et al., 1999
Columbia/2-3y 0.25 0.27 20.07 Okut et al., 1999
Columbia/.3y 0.23 0.26 20.39 Okut et al., 1999
Crossbreeds 0.09 0.17 0.01 Mousa et al., 1999
Mixed population 0.19 to 0.34 0.3 to 0.65 20.74 to 20.18 Burfening and Kress, 1993
Hampshire 0.39 0.22 20.56 Tosh and Kemp, 1994
Polled Dorset 0.12 0.31 20.35 Tosh and Kemp, 1994
Polypay 0.16 0.21 0.12 Bromley et al., 2000
Polypay/1y 0.46 0.25 20.29 Okut et al., 1999
Polypay/2–3y 0.14 0.22 20.17 Okut et al., 1999
Polypay/.3y 0.14 0.22 0.33 Okut et al., 1999
Rambouillet 0.19 0.18 20.09 Bromley et al., 2000
Rambouillet/1y 0.39 0.29 20.12 Okut et al., 1999
Rambouillet/2–3y 0.18 0.23 0.08 Okut et al., 1999
Rambouillet/.3y 0.22 0.17 0.16 Okut et al., 1999
Romanov 0.04 0.22 20.99 Maria et al., 1993
Romanov 0.07 0.13 20.13 Tosh and Kemp, 1994
Swedish Finewool 0.07 0.30 0.11 Nasholm and Danell, 1996
Scottish Blackface 0.14 0.28 20.51 Bishop and Mackenzie, 2001
Soay 0.11 0.16 20.41 Wilson et al., 2005
Targee/1y 0.29 0.02 0.99 Okut et al., 1999
Targee/2–3y 0.35 0.18 0.19 Okut et al., 1999
Targee/3y 0.35 0.22 20.07 Okut et al., 1999
Targee 0.22 0.19 0.08 Bromley et al., 2000
Targee 0.25 0.20 0.09 Hanford et al., 2003

† Age of ewes, where known (y ¼ year).
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singleton lambs, respectively (Gootwine, 2005). Further-
more, in a study in which average BWTs of singletons,
twins, triplets and quadruplets were 5.4, 4.4, 3.6 and
3.1 kg, respectively, gestation lengths for ewes carrying
twins, triplets and quadruplets were reduced by an average
of 0.5, 1.0 and 1.5 days, respectively, compared with that
for ewes carrying a single foetus (Gootwine and Rozov,
2006). Thus, only a minor part of the reduction in BWT of
foetuses born in litters can be attributed to reduced ges-
tation length, as foetal growth rate during the last part of
the gestation is estimated to be 101 g/day for twins com-
pared with 199 g/day for singletons (Rattray et al., 1974).

The average increase in total litter weight for twins in
sheep is about 1.6 times that for a single lamb (Freetly and
Leymaster, 2004). As illustrated in Figure 5, divergence in
foetal weight gain as the number of foetuses increases can
be detected before day 100 of gestation (Winters and Feuf-
fel, 1936; Naaktgeboren and Stegeman, 1969; Rattray et al.,
1974), when placental size is almost maximal but overall
foetal mass is less than one-half that of a singleton foetus.

The degree of litter-size-dependent IUGR—the rate at
which BWT declines as litter size increases, was found to
be highly variable among sheep populations (Gootwine,
2005). The significance of that variability, which may result
from both genetic and environmental factors, can be
demonstrated by calculating the expected BWT of triplets
in a population of ewes in which the average BWT of sin-
gleton lambs is 4.5 kg. Using the extreme values for litter-
size-dependent IUGR, BWT of individual lambs born as
triplets can vary between 1.7 and 3.6 kg, that is 0.38 to
0.80 of the BWT of lambs born as singletons, respectively.

The reduction in BWT of individual lambs as litter size
increases is closely associated with a reduction in total
energy and total protein content in the lamb’s body (Rat-
tray et al., 1974). Lower foetal weights in pregnancies with
twin lambs is associated with reduced weights of muscle
and, for some muscles, differences were found between
singleton and twin lambs in fiber number and cross-
sectional area (McCoard et al., 1997 and 2000).

Within-litter variation in BWT
Sibling foetuses may differ in their BWTs. Within-litter
variability in BWT increases with litter size (Gootwine et al.,
2006c) (Table 2). The degree of within-litter variability in
lamb BWT may be defined by the maternal uterine environ-
ment or by segregation of genes among sibling foetuses
that affect placental development and function, as well as
foetal growth. Interestingly, a low but significant estimate
of heritability was found for within-litter variation in BWT
in pigs, suggesting that this trait can be improved in those
animals by genetic selection (Damgaard et al., 2003). In
contrast, within-litter variation in lamb BWT has a very low
heritability value, suggesting that most of that variation is
non-genetic in nature (Gootwine et al., 2006c).

Placentome number and size
Increasing the number of foetuses in a litter leads to higher
occupancy of uterine caruncles and greater aggregate pla-
cental weight. However, there is an overall reduction in
placental size and fewer placentomes per conceptus. Pla-
centome number per conceptus decreases from about 70
for singletons to about 40 in twins, and 28 and 22 in tri-
plets and quadruplets, respectively (Alexander, 1964b;
Rhind et al., 1980; Greenwood et al., 2000; Kaulfuss et al.,
2000; Pant et al., 2003; Dwyer et al., 2005; Grazul-Bilska
et al., 2006). In studies in which total placentome numbers
were relatively high, maximum occupancy of caruncles was
observed in pregnancies with twins, while for litters in
which total placentome numbers were relatively low, maxi-
mal occupancy of caruncles was found to be highest in
ewes with triplets (Figure 6).

The decrease in placentome number per foetus with
increases in litter size is associated with an increase in the
average size of the placentomes (Figure 7), followed by an
increase in the vascular density of cotyledons (Virrenga
et al., 2004). However, despite the increase in placentome
size, placentae of twins and triplets do not achieve the
total placentome mass of single conceptuses.

Manifestations of compensatory growth of the placenta
when the number of placentomes is reduced have been
demonstrated using three experimental models.

Model 1: uterine ligation
The ligation of one uterine horn and removal of the ipsilat-
eral ovary restricts conceptus development throughout
pregnancy by reducing the endometrial surface available
for placental development (Bazer et al., 1979). The average
number of caruncles occupied by the placenta of a single
foetus was reduced by 47% in ewes with ligated uterine
horns, to a level characteristic of placentome numbers for
each conceptus in a litter of quadruplets (Caton et al.,
1984) or by 22%, to the level characteristic of a pregnancy
with twins (Ott et al., 1997). However, average foetal and
placental weights in ewes with singletons did not differ at
140 days of gestation between control ewes and those
with a ligated uterine horn.

Figure 5 Foetal and placental growth in ewes with single, twin and tri-
plet lambs (after Rattray et al. (1974)).
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Model 2: carunclectomy
The surgical removal of caruncles from the uteri of non-
pregnant ewes results in fewer placentomes during preg-
nancy (Alexander, 1964a). This experimental model has
been used to study the foetus’ physiological adaptation to
placental restriction (Robinson et al., 1979; Butler et al.,
2002; Danielson et al., 2005). However, the reduction in
placentome numbers by carunclectomy did not affect pla-
cental or foetal size, even when 67 caruncles were
removed. These results again demonstrate the amazing
capacity for compensatory development of the placentomes
to support conceptus development in ewes.

Model 3: foetectomy
Unlike the situation in rabbits, rats and monkeys (Taylor
et al., 1983; Albrecht and Pope, 1985), removal of the
foetus from the pregnant uterus of ewes results in

degeneration or expulsion of the placenta. This is attribu-
ted to a lack of adequate circulation in which the foetal
heart is the pump required to sustain perfusion of the
entire conceptus with blood. In an experiment where one
of two foetuses in the pregnant uterus was removed surgi-
cally at day 50 of pregnancy, the remaining foetus and pla-
centa grew to the size characteristic of a singleton
conceptus (Vatnick et al., 1991). The number of placen-
tomes of the remaining conceptus was similar to the aver-
age number of placentomes for twins, but significantly
lower than the average number of placentomes for preg-
nancies with a singleton conceptus.

Angiogenic factors
The increase in the vascular density of cotyledons in preg-
nancies with twin compared with singleton conceptuses
has been associated with increased expression of VEGF

Table 2 Least-squares means ^ s.e. for birth weight (BWT) of Afec-Assaf lambs, within-litter coefficient of variation (CV) of BWT, and within-lit-
ter range of BWTs according to litter size (Gootwine et al., 2006c)

BTW (mean ^ s.e.) of the heaviest
and lightest lambs as proportion of

total weight of the litter

Litter size No. of litters BTW (kg) CV Heavy Light

2 1292 4.5a ^ 0.02 0.100 ^ 0.004 0.54 ^ 0.03 0.46 ^ 0.03
3 555 3.7b ^ 0.03 0.160 ^ 0.006 0.38 ^ 0.03 0.28 ^ 0.03
4 140 3.0c ^ 0.02 0.180 ^ 0.099 0.30 ^ 0.03 0.20 ^ 0.03

a,b,c Within a column, means with different letters differ significantly (P , 0.05).

Figure 6 Association between litter size and number of placentomes per foetus according to different studies.
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and VEGF receptors at 140 days of gestation (Johnson
et al., 2005). However, a further increase in VEGF and its
receptors was not detected in cotyledons of ewes carrying
triplet compared with twin conceptuses. Thus, twins and
triplets appear to differ in their ability to induce mechan-
isms involved in stimulating angiogenesis in placentomes.
Measurements of NOx, defined as total plasma NO2 and
NO3 in pregnant ewes (Magness et al., 2001), revealed
that ewes pregnant with twins and triplets had more NOx
than ewes carrying a single foetus.

Cardiovascular and uterine blood flow
Alterations in the cardiovascular system during pregnancy
in sheep include decreases in arterial blood pressure, sys-
temic vascular resistance and uterine vascular resistance,
but increases in heart rate, cardiac output and blood
volume. In sheep, the decrease in systemic vascular resist-
ance, and the increase in cardiac output and expansion of
blood volume are greater for ewes with multiple foetuses
than singleton foetuses (Magness, 1998). Uterine arterial
blood flow in ewes carrying twins at 120 to 130 days of
gestation is 1.30- to 1.53-fold higher than in ewes carrying
single foetuses (Christenson and Prior, 1978). However,
when blood flow per kg foetus per min was considered,
blood flow in twin conceptuses was on average only 0.87
of that of singleton conceptuses. Similarly, total uterine
blood flow in ewes carrying triplets was 1.46-fold higher
than for ewes carrying twins at 105 days of gestation, but
uterine blood flow per kg foetus per min was similar for
ewes with twin and triplet foetuses. An approx. 1.2-fold
increase in total uterine blood flow was found in ewes car-
rying twin conceptuses compared with a singleton concep-
tus at 120 to 140 days of gestation (Caton et al., 1979).

Experimental reduction of uterine blood flow in ewes
has been achieved by arterial occlusion and by the induc-
tion of embolisms using microspheres (Gagnon, 2003).
Daily injection of microspheres for 21 days into the foetal
abdominal aorta during the last trimester of pregnancy
decreased foetal arterial oxygen content, which was fol-
lowed by a 28% reduction in foetal weight (Murotsuki
et al., 1996). Extreme (45%) or moderate (30%) reductions

in uterine blood flow following arterial occlusion from day
113 to day 138 of gestation decreased foetal weights by
33 and 15%, and placental weights by 34 and 27%,
respectively (Lang et al., 2000). Interestingly, the degree of
reduction in foetal and placental weights in the extreme
and moderately restricted blood-flow groups resembled the
decrease in BWTs and placental weights in twins and tri-
plets, respectively, compared with BWTs and placental
weights for singleton conceptuses (Figure 5). A reduction
in uterine blood flow is associated with an increase in the
efficiency of nutrient transport from maternal to foetal
blood (Owens et al., 1987), but with a significant decrease
in oxygen delivery and foetal arterial oxygen content
(Boyle et al., 1996).

Nutrient levels
Glucose is the main source of energy for the growing foe-
tus. During the last trimester of pregnancy, concentrations
of glucose are stable in both the maternal and foetal circu-
lations. Increases in total foetal body mass in pregnancies
with multiple foetuses raise the demand for glucose.
Accordingly, plasma concentrations of glucose in the foetus
and ewe in the case of twin pregnancies are 20% and
30% less, respectively, than for singleton pregnancies
during late gestation (Edwards and McMillen, 2002; Von-
nahme et al., 2003). The decline in plasma glucose concen-
tration may be associated with changes in glucose-
transporter abundance or activity; however, this has never
been investigated in multiple pregnancies. Concentrations
of free fatty acids and urea in the maternal plasma are
similar for ewes with single and twin foetuses (Budge
et al., 2003). Although recent reports indicate significant
changes in amino acid metabolism in the sheep conceptus
during gestation, these changes have been studied in non-
prolific ewes (Wu et al., 2006).

Function of the hypothalamic-pituitary-adrenal (HPA) axis
It is well established that the foetal HPA axis is activated
during the pre-partum period and that the increase in cir-
culating levels of cortisol in the foetus is important for
both organ development and normal timing of parturition
(Liggins, 1994). However, HPA-axis function appears to be
suppressed in twin compared with single foetuses based
on lower concentrations of ACTH and cortisol in the
plasma and delayed onset of the pre-partum cortisol surge
that determines time of parturition (Edwards and McMillen,
2002; Gardner et al., 2004). Interestingly, activation of the
foetal HPA axis, as indicated by the initial increase in corti-
sol over basal levels, does not occur simultaneously in
twins, even when they have similar BWTs (Schwartz and
Rose, 1998).

Plasma levels of prolactin (PRL), placental lactogen (PL)
and growth hormone (GH)
Concentrations of both PRL and PL in maternal blood
during late gestation are directly related to litter size (But-
ler et al., 1981; Leibovich et al., 2000). Both PRL and PL

Figure 7 Association between litter size and average weight of cotyle-
dons according to different studies.
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bind to PRL receptors (PRLRs), which are more abundant in
adipose tissues of twin than singleton foetuses. Interest-
ingly, PRLR abundance in livers was not found to be
related to litter size (Budge et al., 2003).

GH is expressed in the sheep placenta mainly during the
early stages of pregnancy and it is involved in regulating
endometrial gland proliferation and function (Spencer et al.,
1999). Interestingly, Valinsky et al. (1990), showing the
occurrence of gene duplication in the ovine GH locus,
found two alleles: the GH1 allele with a single GH copy,
and the GH2 allele with two gene copies designated GH2-
N and GH2-Z. The GH2 allele is found in wild sheep and is
the more frequent allele in most of the domesticated
sheep breeds studied (E. Gootwine, unpublished results).

The duplicated copy of the GH2 allele is expressed in
the placenta but not in the pituitary and differs from the
original gene copy by two non-synonymous substitutions in
the open reading frame (Ofir and Gootwine, 1997). The
recombinant product of the duplicated copy of the ovine
GH gene manifests ca. 10-fold higher binding affinity for
the GH receptor than the product of the original GH gene
copy (Gootwine et al., 2006a). Interestingly, not all sheep
carry the gene duplication. Thus, in pregnancies with mul-
tiple foetuses, conceptuses carrying the duplicated gene
copy may have a selective advantage in a competition with
sibling foetuses.

Plasma levels of progesterone and oestrogen
In sheep, plasma concentrations of progesterone increase
continually throughout most of gestation. By 90 days of
gestation, one-half of the estimated circulating levels of
progesterone are derived from the corpus luteum and
the other half from the placenta. Sulphated oestrogens
are the primary oestrogens present in both maternal
blood and foetal fluids throughout gestation. There are
two periods of high oestrogen production by the pla-
centa: the first is between days 31 and 46 and the
second is after mid gestation. By day 90 of pregnancy, it
is estimated that 90% or more of the circulating oestra-
diol-17b has been secreted by the placenta. Interestingly,
circulating levels of progesterone and oestrogens are
higher in twin than singleton pregnancies (reviewed by
Magness (1998)).

Plasma levels of pregnancy-associated glycoproteins
Pregnancy-associated glycoproteins (PAGs) belong to a
multigene protein family (Hughes et al., 2000) which is
related to aspartic proteinases. The PAG I group is
expressed throughout pregnancy by the binucleated cells
of the trophectoderm, while the PAG II group is expressed
throughout the trophectoderm. In sheep, PAGs are secreted
in a relatively constant manner during pregnancy and can
be detected in the maternal serum at as early as day 20 of
pregnancy.

Maternal plasma PAG level increases with an increase in
foetal number, and this foetal-number effect is evident at
as early as 25 days of gestation (Willard et al., 1995;

Ranilla et al., 1997; Vandaele et al., 2005). Use of PAG
serum levels to predict litter size based on PAG concen-
tration in early gestation was found to not be useful (Van-
daele et al., 2005).

Foetal kidney development
The abundance of mRNAs for genes that regulate foetal
kidney development, i.e., IGF1, IGF1 receptor, IGF2, IGF2
receptor, GH receptor and glucocorticoid receptor, is lower
in kidneys of twin versus singleton foetuses and
inadequate maternal nutrition enhances these differences
(Brennan et al., 2005).

Foetal and placental growth in other natural IUGR
models

Altitude effects
The BWTs of lambs born to ewes at high altitude and
exposed to hypobaric hypoxia were 24% lower than those
of lambs born to ewes at or near sea level (Parraguez
et al., 2005). However, placental weights were about 30%
higher for lambs born at high altitude compared with
those for lambs born at low altitude (Parraguez et al.,
2006). The effect of oxygen pressure on BWT was demon-
strated experimentally by exposing ewes to hypobaric con-
centrations of oxygen, which resulted in reduced BWTs,
without any change in placental weight (Jacobs et al.,
1988).

Age effect
IUGR is evident in both primiparous and multiparous ewes.
In Polypay ewes, lamb BWTs increased from 76% of maxi-
mum for ewes (lambing at 11 months of age to maximum
for ewes lambing at 76 months of age, and then declined
to 97% of maximum for ewes lambing at 105 months of
age (Notter et al., 2005). Similar results were obtained
with Assaf ewes (Figure 8; Gootwine and Rozov, 2006),
which produced the heaviest lambs at their third parity.
Increasing lamb BWTs up to the third parity were associ-
ated with increases in placental weight (Dwyer et al.,
2005).

Primiparous ewes have usually not reached their
mature body weight and therefore, foetal nutritional
demands may be in conflict with maternal nutritional
needs. Indeed, it was found (E. Gootwine, unpublished
data) that age at first lambing does not affect BWTs of
singleton lambs born to primiparous Assaf ewes lambing
at 11 to 20 months of age (Figure 9). Only at 21
months of age were BWTs of lambs born to primiparous
ewes found to be similar to BWTs of lambs born to
mature multiparous ewes.

Age-dependent IUGR in primiparous ewes has been
associated with reduced expression of a number of angio-
genic factors at 135 days of pregnancy, including
expression in placentomes of VEGF, angiopoietin (ANG1),
the ANG receptor Tie-2, endothelial NO synthase (eNOS)
and soluble guanylate cyclase (sGC). Interestingly, these

Litter size intrauterine growth restriction in sheep

555

https://doi.org/10.1017/S1751731107691897 Published online by Cambridge University Press

https://doi.org/10.1017/S1751731107691897


reductions in gene expression occurred in the cotyledonary,
but not caruncular components of the placentomes (Boro-
wicz et al., 2005).

Breeding out of season
One environmental factor that has a significant effect on
lamb BWT is season. Lambs born in the autumn (short
days) are, on average, 0.7 kg lighter than those born in
spring (long days), regardless of litter size (Gootwine and
Rozov, 2006). The reduction in foetal growth rate due to
seasonal effects is first manifested at mid gestation, and
gradually progresses as pregnancy advances, with
reductions in the weights of cotyledons, but not caruncles,
within placentomes (McCoard et al., 1996).

Litter-size-dependent IUGR and nutritional insult

Maternal undernutrition
Maternal undernutrition may lead to lower BWTs of foe-
tuses and their placentae at term, depending on the
severity and timing of the nutritional insult, either before
or during pregnancy, and on the ewes’ body condition
during pregnancy. Moderate or severe undernutrition
during mid or late gestation reduces lamb BWT (Heas-
man et al., 1999; Anthony et al., 2003; Redmer et al.,

2004; Luther et al., 2005). Interestingly, undernutrition
can also cause relative increases in the weights of
specific foetal organs, such as the heart and lungs (Hard-
ing and Johnston, 1995).

Complete fasting in ewes carrying singeltons results in
lower concentrations of glucose and amino acids in the
maternal blood, a marked reduction in uterine blood flow,
and decreases in uterine uptake of glucose and amino
acids (Morriss et al., 1980). Undernutrition to 70% of nutri-
ent requirements (National Research Council (NRC), 1985)
throughout gestation also reduced maternal and foetal
concentrations of blood glucose in singeltons’ pregnancies
(Edwards and McMillen, 2002). Similarly, restriction to
50% of nutrient requirements (NRC, 1985) for pregnant
ewes carrying singeltons between days 28 and 78 of ges-
tation significantly reduced foetal and placental weights,
as well as concentrations of total amino acids and polya-
mines in both the maternal and foetal plasma (Vonnahme
et al., 2003; Kwon et al., 2004).

Litter-size-dependent IUGR is similar to IUGR resulting
from maternal undernutrition. Both cases are associated
with an inadequate supply of nutrients to the growing foe-
tus, due to reduction in uterine blood flow and lower con-
centrations of metabolites in the maternal and foetal
circulations. It can therefore be anticipated that undernutri-
tion of twin-bearing ewes will enhance physiological symp-
toms that are already observed in singleton foetuses
gestated in undernourished mothers. Surprisingly, several
studies (Table 3) indicate that twin foetuses respond differ-
ently from singleton foetuses to maternal undernutrition
(Table 3).

Maternal overnutrition
Re-alimentation of ewes following a period of undernutri-
tion restores normal foetal growth (Kwon et al., 2004). On
the other hand, overfeeding ewes carrying multiple foe-
tuses does not promote foetal growth to individual BWTs
that are similar to those for singleton lambs. In an exper-
iment in which gestating Afec-Assaf ewes were offered a
diet calculated to meet the nutritional requirements of
ewes carrying triplets (NRC, 1985), ewes that conceived
naturally following oestrus synchronisation and carried tri-
plets did not experience a loss in body weight during ges-
tation and their pre-mating and post-partum body weights
were similar (E. Gootwine, unpublished results; Figure 10).
However, feeding the same diet to ewes with twins
increased post-partum body weight of the ewes, but not
the BWTs of the lambs. Ewes carrying four, five or six foe-
tuses lost weight during pregnancy when fed the same
diet.

Overnourishing adolescent ewes throughout gestation
results in significant restriction in placental and foetal
growth (Wallace et al., 2006). Similar to litter-size-depen-
dent IUGR, maternal overnutrition does not increase BWT
of foetuses gestated in adolescent ewes that manifest age-
dependent IUGR (Wallace et al., 2005).

Figure 9 Least-squares means for birth weights of lambs born as single-
tons to primiparous Afec-Assaf ewes, according to age of ewe at lamb-
ing (n ¼ 361, at least 15 ewes per age group).

Figure 8 Least-squares means for birth weights of lambs relative to par-
ity of ewes (after Gootwine and Rozov (2006)).

Gootwine, Spencer and Bazer

556

https://doi.org/10.1017/S1751731107691897 Published online by Cambridge University Press

https://doi.org/10.1017/S1751731107691897


Short- and long-term effects of large litter size on
lamb health and performance

Short-term effects
Lower BWT for individual lambs born in large litters affects
prenatal and neonatal survival (Fogarty et al., 2000; Klee-
mann and Walker, 2005). The survival rate of lambs
(n ¼ 31) whose BWT was 1.5 or less was as low as 0.42,
although all were raised artificially (E. Gootwine, unpub-
lished results). The lowest BWT for a lamb from that group
that survived until 5 months of age was 1.0 kg. The BWT
of lambs also affects health (Ross et al., 2005), behaviour
(Dwyer et al., 2005) and postnatal body composition.

Lower BWT is associated with reduced postnatal growth
rate (Greenwood and Bell, 2003; Gootwine et al., 2006b).
Even after BWT is included in a statistical model analysing
lamb growth rate up to 5 months of age (Table 4), growth
rate of lambs born as triplets and quadruplets is signifi-
cantly lower than that of lambs born as singletons,
suggesting that litter-size-dependent factors besides BWT
are responsible for the relatively low postnatal growth abil-
ity of those lambs.

Long-term effects
IUGR and low BWT of human infants have received special
attention because of their long-term effects on adult onset
of various diseases (Gluckman and Pinal, 2003; Schwartz
and Morrison, 2005; Bloomfield et al., 2006b; De Boo and
Harding, 2006; Fowden et al., 2006a; Murphy et al., 2006).
Similarly, low BWT was found to have long-term effects in
sheep on glucose tolerance and blood pressure at 5
months but not at 30 months of age, and long-term effects
at 30 months but not at 5 months of age on insulin toler-
ance and circulating levels of IGF1 (Oliver et al., 2002).
BWT also affects HPA-axis function as studied in

10-month-old ewes (Bloomfield et al., 2006a) and this
effect was similar for both singleton- and twin-born ewes.

Information on possible long-term effects of litter-size-
dependent IUGR on sheep health, longevity, and reproduc-
tion and production performance is almost unavailable in
the literature. The common practice of selecting only a
portion of ewe lambs and only a few ram lambs as repla-
cements, interferes with analyses of field records for long-
term effects of litter size on performance as adults. Taking
this into consideration, it was reported (Gootwine et al.,
2006b) that mature BWs of Assaf ewes are not affected by
litter size and, therefore, by their BWTs.

Undernutrition of ewes during gestation may have long-
term effects on the health of their progeny. Indeed, under-
nutrition effects on ewes were observed for up to 3 years
after birth as their offspring had higher resting blood press-
ures and heart rates than control progeny, and decreased
heart rates in response to norepinephrine-induced increases
in blood pressure (Gopalakrishnan et al., 2004). Undernu-
trition to 50% of requirements (NRC, 1985) during early to
mid gestation impaired renal nephrogenesis, increased
arterial blood pressure and increased expression of angio-
tensin-converting enzyme (ACE) in the renal cortex and
expression of angiotensin II receptor (AT2) in the renal
medulla of 9-month-old lambs, independent of effects on
BWT (Gilbert et al., 2005). In addition, the consequences
of undernutrition of ewes with single and twin foetuses
were tested using the intravenous glucose tolerance test in
their progeny at 1 year of age. It was found that glucose-
insulin homeostasis is indeed affected by undernutrition of
the dams, but is independent of foetus number, despite the
fact that BWTs of lambs born as singletons and twins dif-
fered (Gardner et al., 2005).

Undernutrition during the prenatal period has also been
shown to reduce reproductive capacity throughout the
adult life of female offspring: ewes from mothers that
experienced undernutrition to 50% of estimated metabolis-
able energy requirements for pregnancy, from mating until
day 95 of gestation, had reduced ovulation rates at 20
months of age (Rae et al., 2002). On the other hand, the
reproductive function of male offspring in the same study
was unaffected by prenatal undernutrition.

New paradigm for litter-size-dependent IUGR

Reduced numbers of placentomes leading to smaller pla-
centa has been associated with relatively low BWTs of
individual lambs born in large litters. However, results of
several studies indicate that the placenta can manifest
compensatory growth under conditions of reduced numbers
of placentomes and limited uterine space, such that foetal
development and BWTs are normal for single lambs (Alex-
ander, 1964a; Caton et al., 1984). Such compensatory
growth of the conceptus does not normally occur in preg-
nancies with multiple foetuses. In contrast, compensatory
growth of the conceptus did occur when one of two twin

Figure 10 Birth weights of lambs and deviation of maternal body weight
post partum from pre-mating in an experiment where Afec-Assaf ewes
(Volcani Center, Israel) were fed to meet the nutritional requirements of
ewes carrying triplets (n ¼ 7, 25, 77, 37,11 and 3 for litter sizes of 1, 2,
3, 4, 5 and 6, respectively).
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Table 3 Response of sheep singleton and twin foetuses to various maternal-undernutrition treatments. Ewes’ diet is expressed as percentage of normal requirements (National Research Council,
1985)

Treatment Trait under investigation Singletons Twins Reference

Maternal undernutrition (70%)
from day 8 to day 147 of gestation.

Birth weight Not affected Reduced Edwards and McMillen, 2002;
Edwards et al., 2005.

Maternal undernutrition (50%)
from day 28 to day 78 of gestation.

Caruncle vascularity Not affected Enhanced Vonnahme et al., 2003.

Maternal undernutrition during
mid-gestation which was associated
with lower BTW.

Uterine blood flow Reduced Not affected Newnham et al., 1991.

Maternal undernutrition from 60 days
before until 7 days after mating.

ACTH blood levels Not affected Increased Edwards and McMillen, 2002.

Maternal undernutrition during the
first 110 days of gestation.

Kidney fat deposition Increased Not affected Brennan et al., 2005.

Maternal undernutrition during the
first 110 days of gestation.

Abundance of mRNA in the kidney Increased Not affected Brennan et al., 2005.

Maternal undernutrition (60%)
through gestation.

Abundance of cytochrome c and voltage-dependent
anion channel in adipose tissue

Not affected Increased Budge et al., 2003.

Maternal undernutrition (70%)
periconceptional or through gestation.

Relationship between maternal and fetal leptin
plasma concentrations

No association Significant association Edwards et al., 2005.

Maternal under nutrition (30%)
periconceptional or through gestation.

Association between ewes’ live weight at mating
and concentration of plasma leptin at late gestation

Not related Positive association Edwards et al., 2005.
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foetuses was removed at day 50 of gestation, to allow for
enhanced growth of the remaining conceptus to that
characteristic of a singleton (Vatnick et al., 1991). These
results clearly suggest that in multi-foetal pregnancies,
reduced placentome number does not account for foetal
IUGR.

Possible explanations for litter-size-dependent IUGR
might be the inability of the maternal system fully to meet
nutrient demands of multiple conceptuses, mutual growth
interference among sibling foetuses, and maternal inhi-
bition of placental and foetal growth in the case of mul-
tiple conceptuses by downregulation genes controlling
placental growth and nutrient transport, as was noted in
the case of maternal genomic imprinting (Isles and Hol-
land, 2005; Angiolini et al., 2006; Cattanach et al., 2006;
Fowden et al., 2006b).

Litter-size-dependent IUGR and nutrition insult
The observations that blood flow per foetus in twin preg-
nancies is less than that in singleton pregnancies (Christen-
son and Prior, 1978), and that concentrations of glucose in
the maternal and foetal circulations are lower in twin than
in singleton pregnancies (Vonnahme et al., 2003), support
the notion that litter-size-dependent IUGR results from the
maternal system’s inability fully to support growth of mul-
tiple conceptuses. However, three lines of evidence suggest
that nutrient supply from the dam to the conceptus may
not be the sole rate-limiting factor for foetal growth in
pregnancies with multiple foetuses, or at least for twin
pregnancies.

. Litter-size-dependent IUGR is evident at about day 100
of pregnancy (Winters and Feuffel, 1936; Naaktgeboren
and Stegeman, 1969; Rattray et al., 1974), when foetal
size and growth rate are minimal, but placental size is
maximal (Figure 5). Interestingly, the conclusion that
the foetal growth trajectory in twins is determined
early in gestation can also be drawn from studies of
women with multiple conceptuses (Alexander et al.,
1995), in which foetal number was reduced early in
pregnancy. In those studies, foetal size and gestation
length were related to the initial number of foetuses
and not to the number of foetuses present at delivery.

. Total weight of foetuses in a litter increases as litter
size increases (Freetly and Leymaster, 2004). Thus, total

weight of triplets and quadruplets at birth is more than
twice that of the BWT of single lambs, indicating that
the ewe could support growth of each twin to the size
of a singleton lamb.

. Overnutrition of ewes with twin conceptuses increases
maternal body weight rather than enhancing intrauter-
ine growth of the twin foetuses (Figure 10).

Litter-size-dependent IUGR and mutual foetal growth
inhibition
Mutual growth interference among sibling foetuses can be
mediated by direct interactions between placentae of con-
ceptuses in the same uterus. However, to date, there is no
experimental evidence in sheep to support this hypothesis.

Litter-size-dependent IUGR and placental reprogramming
An alternative explanation for litter-size-dependent IUGR is
that the patterns of placental and foetal growth are repro-
grammed in pregnancies with multiple foetuses such that
they do not follow their normal course of intrauterine
development as determined by their genetic potential. This
reprogramming event may take place at mid gestation,
after day 50 of pregnancy, as it was shown that concep-
tuses at that stage retain their full growth potential (Vat-
nick et al., 1991).

Regulation of foetal growth involves multidirectional
interactions between the mother, the placenta and the foe-
tus (Murphy et al., 2006). Reprogramming patterns of con-
ceptus growth by attenuating placental growth and
function, i.e. nutrient transport and hormone production
(Spencer et al., 2004), may limit foetal growth to term, as
foetal size is clearly correlated with size of the placenta
(Greenwood et al., 2000). The reduction in size and func-
tion of individual placenta in pregnancies with multiple
conceptuses may result from both reduced placental cell
proliferation and, possibly, increases in apoptosis early in
gestation, as observed in a well-fed adolescent IUGR
experimental model (Lea et al., 2005).

The mechanism(s) that induces the proposed litter-size-
dependent IUGR is not yet clear. However, it may involve
endocrine signals from the maternal compartment. Indeed,
a mechanism whereby maternal hormones affect conceptus
growth has been proposed for season-dependent IUGR
(Gootwine and Rozov, 2006), where seasonal variation in

Table 4 Least-squares mean values for birth weight (BWT) and growth rate (GR) up to 5 months of age of Afec-Assaf lambs (following Gootwine
et al., 2006b). Main effects included in the statistical model for BWT and GR (model 1) were: sire, lambing group (crop), parity number, sex of
lamb and litter size. BWT of the lambs was included in model 2

Litter size No. of litters BWT (kg)
Growth rate (g/day) up to 5 months

of age (model 1)
Growth rate (g/day) up to 5 months

of age (model 2)

1 1371 5.4a ^ 0.03 291a ^ 2 276a ^ 2
2 1540 4.4b ^ 0.03 274b ^ 2 272ab ^ 2
3 777 3.6c ^ 0.03 264c ^ 2 272b ^ 2
4 248 3.0d ^ 0.04 250d ^ 2 267c ^ 2

a,b,c,d Within a column, means with different letters differ significantly (P , 0.05).
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BWT was proposed to be related to the pattern of maternal
melatonin secretion.

Adaptation of placental and foetal growth to a multi-
foetal pregnancy situation can be mediated through altera-
tions in the expression of placental and foetal imprinted
genes, shown to be involved in the control of foetal
growth and nutrient-transport efficiency through the pla-
centa (Angiolini et al., 2006). As maternal imprinted genes
are more involved in restraining placental and foetal
growth, their down-regulation in multi-foetal pregnancies
can be suggested as a mechanism underlying litter-size-
dependent IUGR.

Reprogramming foetal growth during litter-size-depen-
dent IUGR relies on the recognition of pregnancies invol-
ving multiple conceptuses. The signal for the presence of
more than one foetus can be circulating levels of PAGs
(Hughes et al., 2000) or circulating levels of hormones pro-
duced by the placenta during mid gestation, i.e. progester-
one and oestrogens (Magness, 1998), and members of the
GH-PRL family (Anthony et al., 1995). The plasma concen-
trations of all of these factors are positively correlated with
numbers of conceptuses.

Litter-size-dependent IUGR as a foetal protective
mechanism
The relatively low BWTs of individual lambs born in large
litters may negatively affect their neonatal and postnatal
survival rates (Kleemann and Walker, 2005). However, the
adaptive mechanisms in pregnancies with multiple concep-
tuses that delay placental and foetal growth at mid-ges-
tation may have the advantage of protecting foetuses from
nutritional insults during advanced stages of gestation,
when their daily weight gains are maximal. Indeed, Hard-
ing and Johnston (1995) reported that foetuses growing
slowly before the onset of undernutrition of their dams do
not further reduce their growth rates. In addition, restricted
foetal growth rates reduce the risk of pregnancy toxemia
which, in sheep, may result in death of both the mother
and its foetuses.

Further studies are needed to understand the mechan-
isms that regulate foetal growth in multi-foetal pregnancies
and how those mechanisms may differ from mechanisms
that control growth and development of singleton foetuses.
The same signals that may restrict foetal growth in multi-
foetus pregnancies may, under pathological conditions,
induce IUGR in singleton pregnancies.
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