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PART I: FORMULATION OF PROBLEM

1. Introduction

This paper is devoted to a complete investigation into a problem
initiated by Davenport [4], and further studied by Kanagasabapathy [6],
[7], from whom I borrow the title. The question is a hybrid of the two
classical results of Hurwitz and Minkowski on indefinite binary quadratic
forms.

Suppose (xxJ
rjly) and (yx-\-Sy) are two linear forms that do not

represent zero for integers x, y not both zero. If A = |o«5—/fy| is the deter-
minant of the two forms, and r] is any non-zero real number, we may ask
the question: for what values of k' are there integral solutions x, y not
both zero, for the following inequality?

(1.1) \{ax+Py){yx+*y+ri)\^k'A.

The best published result to date is due to Kanagasabapathy [7],
who proved that the best possible constant k for this problem, satisfies the
inequalities

4.2847 ~ 4.25777

The major results of this paper may be summarised by the following
theorem.

THEOREM 1.1. Suppose that we have two linear forms

X = «x+py
Y = yx+dy,

which have determinant A, and which do not non-trivially represent zero in
integers. If v\ is a non-zero constant, then:
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A. inf \X(Y+r])\ ^ kA,
(x,v) # (0,0)

where the infimum is taken over all integer pairs (x, y), not the origin, and
where k is given by

(3/49) (366458018 (? —7320551)
k =

(8238730 0+392361)<p— (164581 0 + 7838)

= 0 • 234254343 • • •,
with

147 + V21651 104250+2A/10
w = , d = .

6 9005

B. Equality holds in A for forms equivalent by an integral unimodular
transformation to the form

X = ax+y
Y = x + dy,

with
2A/l0-5195

a =

(5 =

2997
91018391 (p—1818229

8238730 <p—164581

18014063 <p—359856 \/ 18014063^—359856 \
and ri = — i I w -\ I •

' 2 \ 49(8238730^—164581/

C. For every k', such that 0 ^ k' < k, there exist uncountably many pairs
of linear forms X, Y, to each of which there corresponds at least one real non-zero
constant r\, with

inf \X(Y+rj)\ = k'A.
(x,v) * (0,0)

In part I of this paper, we will determine a systematic arithmetic
formulation for the problem in terms of divided cells of lattices, and semi-
regular continued fractions. This will then allow, in Part II, an exact
calculation of the numerical value of k. In Part III we will then determine
further information about the distribution of minimum values taken by
such products of linear forms.

This paper forms part of my thesis to be submitted for the degree
of Doctor of Philosophy at the University of Adelaide. I am indebted to
Dr. J. W. S. Cassels, Trinity College, Cambridge for suggesting this topic
of research to me. I am also very grateful for the helpful discussions and
encouragement given by my supervisors Professor E. S. Barnes and Dr.
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E. J. Pitman. I would like to acknowledge the support of the Common-
wealth Postgraduate Scholarship. The calculations were carried out on a
University of Adelaide Marchant machine.

2. The divided cell method

We will give a brief account of the divided cell method, the details of
which are described in [1], [2], [3], [8] and [9]. Let

_ A(6x+y)(x+(py)

be an indefinite binary quadratic form, which does not represent zero for
integers x, y, not both zero (which implies that the ratios a//? and djy are
irrational). If P is the two dimensional point (x0, y0), then we may define
the following functions.

M(f;P) =ini\f(x+xo,y+yo)\
(2.2) x'v

= inf \(aa:+py+£0)(yx+dy+ri0)\,
x,y

where f0 = caco+f}yo, rj0 = yx0+dy0 and x, y are integral.

(2.3) M(f) = sup M{f; P),
p

where the supremum need only be taken over a complete set of points,
incongruent mod 1. M(f) is known as the inhomogeneous minimum of the
form /.

If we change the variables of / by the integral unimodular trans-
formation , ,

x-^px+qy
y -> rx+sy,

where p, q, r, s are integers, and ps—qr = ± 1 . then the new form obtained
is said to be equivalent to /; it is clear that equivalent forms have the same
inhomogeneous minimum.

The divided cell method enables M(f) to be explicitly calculated in
terms of the determinant of the form /. The basic result on inhomogeneous
minima was discovered by Minkowski at the turn of the century.

THEOREM 2.1. (Minkowski)

where inequality holds for all forms which do not represent zero.
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The set of points ££, in the g-rj plane, given by

(2.4) J? : f

for integral x, ?/, form a two dimensional inhomogeneous lattice or grid.
A cell of the grid is any parallelogram of area A, whose vertices are lattice
points. A divided cell has vertices lying strictly in different quadrants.

Let us suppose that there are no lattice points on the axes, then we may
invoke a result by Delauney [5], which guarantees the existence of a divided
cell for such grids. From this cell it is possible, by a simple algorithm,
to define a doubly infinite chain of divided cells, say {Sn}, for — oo < n < oo
(see [2]).

Denote the vertices of the divided cell Sn by An, Bn, Cn and Dn,
labelled in a clockwise direction. Then at the next step of the algorithm,
we define a new divided cell, 5B+1, and a unique pair of integers hn, kn,
by the following rules:

Cn+1 = Cn+(kn+l)Vn

Dn+i = Cn-\-knVn,

where Vn = An—Dn = Bn—Cn.
For reference, we take A0 to be in the first quadrant. The vertices of

the new divided cell are simply the end points of the two lattice steps (on
the infinite lines AnDn and CnBn) which straddle the £-axis. It is therefore
clear from (2.4) that An is either in the first or third quadrants and that
hn and kn both have the sign of the slope of the line segment \AnDn\.

It is shown in [3], for example, that the integer pairs hn, kn satisfy the
conditions:

(i) M . > 0
(ii) neither hn nor kn can be constantly equal to —1 for all large

positive (or negative) n.
(iij) it is impossible that hn+2r = kn+2r+1 = 1, for some n, and all

r ^ 0, (or all r ^ 0).

In fact, any contravention of (ii) or (iii) implies that there is a grid point
on an axis, contradicting our original assumption. We change to a more
convenient notation by putting

https://doi.org/10.1017/S1446788700006157 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700006157


[5] On the product of two linear forms 461

(2.6)

We may therefore transform the conditions (i), (ii) and (iii) above into:

(i) \an\ ^ 2, and an is not constantly equal to 2 (or —2) for
large n of either sign.

(ii) \en\ s; |aB+1| — 2, and en has the same parity as an+1.
(iii) neither an+1+en nor an+1—en is constantly equal to —2,

for large n of either sign,
(iv) for some n, the relation

n _|_P /» „ 9
n4-2?'+l ' n+2r n+2r+2 n+2r+l —

does not hold for all r ^ 0 (or r j£ 0).
"We now briefty introduce the notion oi a semi-regu\ar continued

fraction. In contrast to ordinary continued fractions, we usually allow at
each step of the development, a choice of taking either the integer below
or the integer above of the appropriate complete quotient. In fact, each
irrational number has uncountably many expansions in semi-regular con-
tinued fractions.

If {an} is a sequence of integers, n S; 1, for which the condition (i) of
(2.6) holds, then we may define the sequence of convergents pnjqn by:

q1=l,

and for n ^ 1

(2.7)

Then if

Pn+l = «»H

a = [a1 ; a2 , a3, • •

1 1

a 2 - ag-

on = l im [a1 ( a2, • •, an\

Now for the doubly infinite sequence pair {an+1, en}, — oo < n < co,
arising from the grid „§?, we may define the following variables:

(2.8)

<Pn = L«n+1

/"» = «« + - " " fn
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We have the following result:

THEOREM 2.2. For all n,

[6]

K+il-2+2
r=_

l«J-2+2

a,, — 2

r=l \<Pn+l<Pn+2 ' ' ' <Pn+r\

equality holds if and only if all the relevant an have constant sign.

COROLLARY: For all n,

(2.9) i
<

The proofs of these results may be found in [1].
Returning to the definition (2.2), it is clear that

M(f; P) = inf II,,|.

One of the fundamental results in this theory is that it is, in fact, unnecessary
to extend this infimum over all grid points of J£, but only over those which
are vertices of divided cells. By means of the sequence pair {a,l+1, e,,},
we may explicitly evaluate the products of the coordinates at the vertices.
We eventually obtain the following theorem [2].

then

where

and

THEOREM 2.3. / / {an_1, sn} is the sequence pair associated with f and P,

M(f;P) =miMn(f;P)=miM,,,

Mn = min {M)p),
1 S i S4

(2.10)

A

4|0nV»-l!
/I

— 1

4|i9n?,n_lj

i (0M + 1 — AH) (^n + 1 —/«„) |

\{6n-l-?.n)(<pn-l+p,,)\

!(0n_i+;.B) (^-1-^)1

;-. j(on+!+;.„)(,,„- ~Mn.
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Thus given any form / and point P, we may obtain (theoretically) the
associated sequence of integer pairs {an+1, sn} satisfying (2.6), and hence
use Theorem 2.3 to evaluate M(f; P). Conversely, any sequence of integer
pairs satisfying the conditions (2.6), can be shown to correspond to the
chain of divided cells of a grid (see [1], [8]).

The following result will be useful in seeking bounds for Mn.

THEOREM 2.4. Under the hypothesis of Theorem 2.3,

Mwgg- A min{|(fl , l - l)(yB-l) | , \(On+l)(<pn+l)\,

\0»(<Pn±/*n)\, \(0n±K)<P,,\}-

PROOF:

M n ^ m i l i

7

From (2.9), and using the inequality between geometric and arithmetic
means twice we obtain

* " - i\Bn<pn-\\

The other results follow analogously by considering different pairings
of A/<f>.

3. Modification of the method

For simplicity we will assume, without loss of generality, that the form
has unit determinant. We may rearrange the problem described in § 1 as
follows. Suppose 6 and cp are irrational, and a is real and non-zero; put

(3.1) A / ( / ; a ) = inf
(x,v) #(0,0) I tty>—1

where

(3.2) /(*, y) = (-

Let us say at the outset that we may suppose x-\-q>y-\-a. 7̂  0, for integers
x, y, or else trivially M (/; a) = 0. We now quote a result from [4].

THEOREM 3.1 [Davenport). If X and Y are homogeneous linear forms of
unit determinant, and which do not represent zero for integral values of the
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variables and c is any real non-zero constant then there exists an integral,
unimodular transformation into new variables, which transforms (X-\-c)Y,
into

(z+6y—aL)(x—<py)
± 0+9

where 0 > 1, 0 < <p < 1, and 1 ^ a < 8.
Rewriting this in the notation of (3.2), we need only consider such

forms for which

(3.3) <p > 1, 0 < — 1, - < p < a ^ - l .

We may suppose that a < 1, else M(f; a) = 0.
Now for any /3 > 0, y > 0 such that fiy = l/(|0(p| + l), consider the

grid JC defined by:

(3.4) * :
T) = y(x+tpy+cL).

We will call such an inhomogeneous lattice a ^>-grid; it has one, and only
one, point on the axes. We will say that a cell of a p-grid is pseudo-divided
or p-divided, if three of its vertices are in different quadrants, and the
fourth is on an axis.

The following four points form a cell, So, of the p-grid JSf.

(3 5)

The conditions (3.3) imply that So is a/>-divided cell of JOC. It has been shown,
although this is not necessary for the following argument, that any ^>-grid
has at least one ^-divided cell.

Now we may apply the algorithm (2.4) to the ^-divided cell 50, and it
follows that we obtain a sequence of genuine divided cells {5n}, n > 0,
together with a sequence pair {an+1, £„}, n 2: 0, satisfying (2.6). In addition,
ax < 0, since the conditions (3.3) imply that the lattice line segment
|J0Z)0| has negative slope.

The algorithm also works in the reverse direction, in that there exists
a cell S_i, such that So is obtained from it by the formulae (2.4). However
the sequence of cells {5_n}, n ^ 0, are all ^-divided, since the point Bo

is a vertex of each one.
Consideration of the geometry of the j!>-grid, and the rules (2.4),

indicates that, for negative n, An is in the first quadrant when n is even,
and the third quadrant when n is odd. It easily follows in fact that, for all
n ^ 0,

(3-6) *,„_! = k2n_2 = 1.
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Hence, for n :£ 0,

(3.7) an > 0.

Now by methods analogous to those of Barnes [3], it follows that
hin = &27i-i = 1 cannot constantly hold for all small negative n; this
implies that an 5: 2, with strict inequality for infinitely many negative n.

Consequently, there corresponds to the ^>-grid, a doubly infinite
sequence of integer pairs {an+1, en}, — oo < n < oo, such that the conditions
(2.6) hold for positive n, together with

( (i) an ^ 2, for n ^ 0, with strict inequality holding infinitely
often,

(ii) sn = ( - l ) > n + 1 - 2 ) , for all n < 0.

It may also be shown, in a similar way to [1], [8], that to every sequence
pair of integers satisfying all these conditions, there corresponds a p-grid,
which is unique except for a constant multiple of each coordinate.

For convenience, we will display a particular chain pair in the following
tableau notation:

£—3 > £—2 >

We will call the central line the centre of the chain. Note also that, for n < 0,
the value of en is automatically fixed from (3.8) by the value of an+l.

Now applying Theorem 2.2, we obtain from (3.8), for n ^ 0,

{

since the appropriate ar have constant sign. In a similar sort of way we
would expect

L«-B|~9>_»—1, as w-> co.

The following stronger result is in fact true.

THEOREM 3.2 For n < — 1,
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PROOF: By (2.8), (3.8)

n,a—2

^ + +

[10]

a ,—2

<Pn+l 9>»+l9>n+2 " * * 9-2

9Wl9>n+2 " ' V-l

Now since 99,. = ar+1—(l/9>r+i)> then for all r,

Hence
9V+1

<pn-\ - « B + 1 -
«_,»—2 a ,—2

9?n+l9'n+2 * " • ^ -2

,

and so the result follows by (3.10).
Now it is clear that

M{f;x)= inf

Since the arithmetic formulation of the vertices of the sequence of cells is
identical with § 2, we may use (3.8) and (3.9) to simplify the formulae
(2.10), giving the following result.

THEOREM 3.3. Suppose {an+1, en} is the chain pair of integers of the
p-grid associated with f and a; then

where

M{f;<x) = i n f M n ,
n

Mn = min (Mf),

and for n > 0, M^ are given by (2.10),

(3.11)
0 2(\eo<p0\+i)

M'4» = oo,
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and for n < 0,

467

(3.12)

2(dn<Pn-l)

ikfi4) = oo.

NOTE: We have already commented that ax < 0, and hence

This theorem gives a completely general method for evaluating M(f; a).

PART II: CALCULATION OF THE CONSTANT

4. Application of the method

We will apply the method described in Part I of this paper to evaluate
the best possible constant k, referred to in the introduction. Clearly

(4.1) sup M(f; a) = k,

where the supremum is taken over all binary quadratic forms that do not
represent zero, and all real non-zero a.

To each non-trivial case, we can associate a chain pair of integers
{an+i>en}, which satisfy (2.6) for positive n, and (3.8) for negative n.
By Theorem 3.3,

M{f; a) = M({an+1, en}),
and so

sup M({«„+!,«„}) = *,

where the supremum extends over all sequences of integer pairs satis-
fying the required conditions. If there exists a chain pair for which
M({an+l, en}) = k, then it is called a critical chain, and the corresponding
/ and a, a critical form. If we put 0 = — d0, q> = — (p0 and a = ((po~l—/j,o)l2,
where 60, (p0 and fi0 are the values taken for the critical chain, then the
corresponding critical form will be
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* ' ' Bq>-\

If we change the variables in (4.2) by an integral unimodular transformation,
then clearly the equivalent form obtained has the same infimum.

In this part of the paper we will prove that k has the value

(3/49) (366458018 <p—7320551)

~~ (8238730 0+392361)9>— (164581 0 + 7838)

= 0.234254343 • • •,

147 + V21651 104250+2 VTo
where q> = , 6 = .r 6 9005

5. Introductory lemmas

We will seek chain pairs for which M(f; a) ^ k, and so we will assume
at the outset that

^ k

for all n, and all relevant i. By moving in a stepwise process from the centre
of the chain, the values of each member of the chain pair will be isolated
by the above conditions, eventually leading us to a unique chain pair for
which M(f; a) = k. For convenience, M(f; a) will be abbreviated to M,
provided that there is no ambiguity.

We will make constant use, often without specific reference, of the fact
that the linear fractional form

ax-\-b

is a monotonic function in any interval of x which does not contain the
point x = —d/c. y(x) is increasing if ad—be > 0, and decreasing if
ad—be < 0.

We will use the following notation.

(6-2) rn = —, on = —.

LEMMA 5.1. For n 5: 1,

(i) */ dn9n > 0, then \6n\ > j l ^ , |9?J > ^ - ^ > 15.87,

|TB| < 0.0668 and \an\ < 0.0668.

(ii) */ 6n<pn < 0, then <pn > 2, |TJ < 1-4* < 0.063, \an\ < l-4ft;
furthermore if \dn\ > 30, then \<pn\ > 10.
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PROOF, (i) Theorem 2.4 holds for n S: 1; thus if

l - 4 £

...pj —1) 4|0B

Hence

By symmetry the same result holds for \<pn\, and so we may assume that

\0n<pn\> (15.87)2 > 250.

Now if |TJ ^ 0.0668, Theorem 2.4 implies

250) (0.9332
< — < k.

4(249)

By symmetry the same result holds for \an\.
(ii) When 0n<pn < 0, let us suppose for definiteness that an+1 > 0;

then

<Pn ^ 2 - — > 2
<Pn+l

whenever q>n+l < 0. If <pn+1 > 0, then by (i) 0n+1 > 15, and the first
result follows. When |0J > 30, |9PB| < 10, then again by Theorem 2.4,
and the remark (5.1),

(31)(9)
4(301) < '

When |TJ ^ 1—4*. as in (i),

Similarly for \an .

6. Chains with e0 ^ 0

In this paragraph we will show that if a chain is to be critical, then we
must have e0 < 0.
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Suppose then that e0 ̂  0, then by (2.8) and (2.9), /io> — 1; thus
whenever d0 > 2.14, (3.11) implies,

\<Po\ <
 1

 < k

Consequently d0 < 2.14, and thus a0 = 2 or 3.
When a0 = 3,

e 1 1 73—0O

and from (3.8), £_t = — 1, implying that — 2 < / ^ < 0. Now y_x > 3,
and so by (3.12),

( Q i - i ) ( y i + i ) (Q17)W
? ._ 1 - l ) < 2(2.51)

a0 = 2, then by (3.8) e_x = 0, and by the argument of Lemma
5.1 (ii), we have \q>0\ > 2. Now if fiQ > 0,

if, however, [iQ < 0, then the hypothesis that e0 ̂  0 implies e0 = 0, and
Lemma 5.1 implies

r r 0.07
li"-il = — < -z- < 0.04.

<Po 2

Thus in both cases ia_1 > —0.04, and since 2 < <p_x < 3, when 6_1 < 2.2,

(1.2) (2.04) ^

— 1) 2(5.6)

and when 6_1 > 4,

+ 1.04 3.04

Whenever 2.2 < 0_x < 4, then 1.54 < 0O < 1.75, and since |TX| < 0.07,
when |9?0| < 5, then

1^1-0.98 4.07
2(8.7) < * '

and when |9>0| > 5 then

(0.75)(6.07)
. 2(9.75)
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This completes the exclusion of all cases when £0 S; 0. We have therefore
shown that e0 < 0, and so fi0 < 0. Now by (3.8), en = (— l)"|eB|, for n < 0,
and it is easily checked that, in fact, /xn = (—l)"|,aM|, since fi0 < 0. This
enables us to rewrite the formulae (3.11) and (3.12), with the sign
associated with \pn\ determined;

'o —
I ZIPnKPnl + l l

(6.1)
0 2(6o\Vo\ + l)

and for n < 0,

(6.2)

Mi3' =

7. Evaluation of M for a certain chain

Designate by (c) the following chain pair.

(7.1)

>, 5, 2, 5, 5, 2\ 3, 4, 4, 2
\, —3, 0, —3, 3, 0/ 1, —2, 2, 0

— 11, 21, 461, - 1 7 , 50, / 49, —42, 49, —42\

- 1 , - 1 , -29 , - 1 , - 2 , ( - 3 , 0, 3, o)j

where the recurring segments in each direction are enclosed by the brackets.
This section will be devoted to a proof that, for the corresponding / and a,
M{f; a) = k. The rest of Part II will show that (c) is in fact the critical
chain for this problem.

Now 0_4 = [2, 5, 5] satisfies the equation 8a;2—16#4-3 = o, implying
that _

4_|_ VlO
(7.2) 0_4 = — = 1.790569 • • •,

4
and

0O = [2, 4, 4, 3, 0_4] = ]l e-*~*6

41 0 . —15
(7.3) .—

5195—2V10
~ 2997
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Similarly <pb = [49, — 42] satisfies the equation 42 x2—2058 a;—49 = 0,
implying

(7.4)
147+V21651

The following general lemma will also be useful in a later paragraph.

LEMMA 7.1. / / we have a half-chain of the following form:

a, —a2, a, —ait a, • • •

£, 0, — e, 0 , e, • • •

where ain+x = a, e2n = (—l)n£, e^n+i = 0 for a^ n = 0, and e, a, a2n are
all positive, and of the correct parity and size, then

r0 = aje.

PROOF. It is clear that

<P2n\

l/"2«l =

|T2B| — eja = ——

since

Thus

and since a\cp2n+1\ + l > 5, for all n 2̂  0, then

1
|fo-e/a| < - -

for all r, which implies the result.

COROLLARY. For the chain (c), |TS| = 3/49.
Now from (3.9), Xo = l — 60; using also (7.2), (7.3) and (7.4), we may

compute the following table of truncated values for (c).

TABLE 1

n

0
1
2
3
4
5
6

|fl.l

1.7312
11.5776
21.0863

460.9525
17.0021
50.0588
48.9800

Kl
0.4223
0.0498
0.0497
0.0628
0.0551
0.0410
0.0604

M
11.0476
20.9978

461.0587
17.0200
49.9796
49.0237
42.0203

In

0.0864
0.0446
0.0630
0.0564
0.0387
0.0612
0.0014
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We will show that Mn > k, n =£ 1, for this chain (c). Formulae (2.10),
(6.1) and (6.2) enable the calculation of Af£\ and hence the verification of
this statement. By direct calculation one can show that Mn > k for
n = — 1, 0, 2, 3, 4, 5. To demonstrate the method we will show that M2 > k.
The other cases follow in a similar way.

Clearly M'1' > | . N o w
M«3)

whenever

and

Reference to Table 1 shows that both these inequalities hold for the chain
(c). Hence it follows that

M2 = 2 —

(21.0364) (433.002)

38884.1
> * .

There remain the following cases.

(i) Proof that M2m > A, m ^ 3. For the purpose of an observation in
Part III of this paper, we will show that (i) is also true for a2m+1 = —44.
From the sign pattern of the chain, it follows that the four alternatives
at each step M2m, m ^ 3, are, in some order, say,

(7.5)

M(2) —
m2m —

M(4)

m2m

From (7.1), Lemma (7.1) and Table 1,

3.007
2.9589 < |A6| =g |A2m| < 3 + ^ < 3-0015,

lw,J = lT,mJ.,| = A = 0.0612 • • •,

48.98 < 02m < 49.024 and 42.02 < \<p2m\ < 44.03.
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Clearly Af £» > i and

(53.9)(40.9)

[18]

W
4[(50)(42) + l] '

3) (92m-4.0015)(|y2J+0.938) (44.9785) (44.968)

4 ( 0 2 > 2 J + 1) >4[(48.98)(44.03) + l ] > '

4) ( 0 2 m - 2 . O O 2 ) ( | p 2 J - 0 . 9 3 9 ) (46.978) (41.081)

4 ( 0 J J + 1) >4[(4898) (4202) + 1]4[(48.98) (42.02) + 1]

Thus, even when a2m+1 = —44, M2m > k for m 2; 3.

(ii) Proo/ £Aatf M2m+1 > k,m ^3. Allowing again a2m+1 to take the
additional value —44, we obtain the result analogously. Let r = 2m+l,
then

(7.6)

M<2) =

We easily obtain the following bounds;

0.0604

3.001 < \fir\ = 3 +

0.0613,

< 3.0015,

42.02 < I dr\ < 44.03 and 49.02 < <pr < 49.024.

Clearly A/"J2) > 1, and

(|e,|-0.94)(yr-2.002) (41.08) (47.018)
(1)

4[(42.02) (49.02)+ 1]

, (|er|+0-938)(9Pr-4.002) (44.968) (45.018)
r > 4( | f l> r+l) 4[(44.03) (49.02) + 1] '

(|Or|-1.062)(ff>r+4) (40.958) (53.03)
r > 4 ( | 0 > + l ) >4[(42.02)(49.03) + l ] > "
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The result follows.

We treat the left hand chain in a slightly different way.

(iii) Proof thai M™ > k, m ^ —2. Using (7.2),

2(4+Vl0)[5, 5, 2] = - ^ = 4.77485 • • •

7 + 2A/10
[5, 2, 5] = —! = 4.44151 • • •

Whenever am+1 = 2, 3, 4, we have <pm < 4, hence from (2.9), (6.2),

If, however, am+1 = 5, then either <pm < [5, 2, 5] < 4.45 and dm < 4.45 or
<Pm < [5. 5 . 2] < 4 - 7 8 and dm < 1.8. In both cases M™ > k.

(iv) Proof that M%] > k, m g —2. By Theorem 3.2, for m ^ —2,
li"ml = 9'™— 1—««. where

The sequence {am} is monotone decreasing a sw-> — 00,

<P-!—l 1.1
a_, < — < — < 0.6,

21i

and for m :£ — 4,

am ^ a_4 < -1-1 = - p < 0.04.

Now when m = — 2, — 3, then 0m > 2, 9?m > 3; thus

When m ^ —4, dm > [2, 5, 5] > 1.79, <pm > [2, 3, 3] > 1.62 and hence

(flm-l)(ym-l,02) (0.79) (0.6)

- > ( O l ) > 19 > *'

/Voo/ //i^ i/X3; >k,m< -2. When m = -2, -3, then

\pj > 2, 6m < 4, and 9>m < [4, 4] = 3.75;
thus
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When ffj ^ —4, we have <xm < 0.04 and

When am = 5, am+1 = 5, then <pm < 5, 6m = [5, 2, 5] < 4.45, and

4.98

21.25

When am = 5, am+1 = 2, then <pm < [2, 5, 5] < 1.792, 0m = [5, 5, 2] < 4.775
and

1.772

When am = 2, then dm < 2 and

> -J- > k.

(vi) Proo/ tta^ M1 = k. It is clear that Mf> > k, and

Mi4) > Mi1' > Mf >
whenever

and

i e i i ^ i >

Table 1 implies that these conditions are satisfied. Now since |AJ = 1/0O>
then

(7.7)

We have
8238730®. —164581

ffi, = [21, 461, —17, 50, q>*\ = ^ri L ' r s J 392361y5-7838
and

24727^-494+1^1
392361 9>5—7838

Thus from (7.2), (7.4), (7.7) and Lemma 7.1,

^(366458018 y5-7320551)
( ) =
1 (82387301 ̂ l + 392361 )<p5— (164581 |0X| +7838)

The result now follows.
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8. Isolation of the value of a0

We now continue to restrict the possible values that can occur in a
chain {an+l, en} for which M 5? k. Now by Lemma 5.1, and (5.1), since

and K|—•|£ol + 1 > °> w e n a v e

0.0668 > j = i | " ' ' >

Hence

(8.1) \fio\ < 0.0668|y0| + 1.14

whenever 0O > 2.3, (6.1) implies

1.0668|<p0|+0.14 1.0668

2 ( 2 % | + 1)

Thus 0O < 2.3, and if a0 = 3, then

00_, < 1.43.

Now as e0 ^ —1, we have by Lemma 5.1,

l?ol ^ 3+ - > 2.9.

Consequently by (8.1),

= 1 +
1.14

< 1.0668 -\ < 1.5

Since cp_x > 3, we have from (6.2)

(Q-i-l)(y-i+0-5) ^ (0-43)(3.5)

? _ 1 - l ) < 6.58 < f t '

Hence we may enunciate the following result.

THEOREM 8.1 Any critical chain has a0 = 2.

9. Isolation of the value of a,

In this section we will use the following temporary notation:
a = Ifljl, s = |£0|, c = a—B. By (2.6) and (3.8) it follows that c is even,
and furthermore c 2> 2. The following series of lemmas provide bounds on
the value of c.
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LEMMA 9.1. ^±^1 ^ 4k (\n\ + j) •

LEMMA 9.2. c < \<po\ — \fio\+O.O6S.

LEMMA 9.3. If v = 4k (\q>0\ + — ) ,

\ V
then c ^ xv,

where x is the positive root of vx2— (v—2)x— 1 = 0 i.e.

(9.1)

NOTE. Since rfa;/^v > 0, x is an increasing function of v, and hence
we may replace v in (9.1) by some lower bound of

PROOF OF LEMMA 9.1. Using the basic recurrence relations between
the variables at consecutive values of their index, we obtain:

Now from (2.9), and since we are supposing M^ ^ k, Mf' ^ ^, then,
by addition,

60c 60(c+2) ~

and the result follows.

PROOF OF LEMMA 9.2. From the basic relations it follows that

c = \9>o\ — l/"oH

When <px > 0, the result follows from Lemma 5.1. li <px < 0, and fix > 0,
the result again follows from Lemma 5.1, since O^cp^ > 0.

In the final case when w-, < 0 and u, < 0, then the result holds if

^ 1 — 4k < 0.063.

If, however

then
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(1) ( | i i ) ( l 9 i i L i l )

4 ( | 0 ? | l )

PROOF OF LEMMA 9.3. Lemma 9.1 implies that

c > • v,
~c+2

which inequality holds if and only if

c2+{v—2)c—v ^ 0.

Since c > 0, then we have

The following three lemmas enable us to restrict the range of values
taken by a.

LEMMA 9.4. 0O < 1.7382 whenever \cpo\ > 20.

LEMMA 9.5. a ^ 22.

LEMMA 9.6. a is odd, and satisfies l l 5 S # f S 2 1 ; furthermore if

<px < 0, then 17 ^ a £ 21.

PROOF OF LEMMA 9.4. Using 0O < 2, we find that v > 19.2, and by
Lemma 9.3, and the subsequent note,

c> (0.95)*>> (O.

Together with Lemma 9.2, this implies that

I/K-II = W < o.n.

Thus whenever 6_x > 3.8191, since <p_x > 2, (6.2) implies

< < A

2(fl_1y_1-l) 13.2764 '
whence

0_! < 3.8191, or 0O < 1.7382.
PROOF OF LEMMA 9.5. When a ^ 23, Lemmas 5.1, 9.4 imply

v > 4^(22.937+0.5753) > 22.0314, and so using Lemma 9.3,

c > (0.8964) (|<po| + -1J .

Together with Lemma 9.2 this gives

(9.2) 1̂ 1 < 0.1036|<p0|-0.45.
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When 0_x > 3.8123, since <p^ > 2, (6.2) implies

V_i+1.1036 3.1036
2(0_1?>_1—1) 13.2492

and when 0_i < 3.8123, then 0O < 1.7377, and by (6.1)

(0.7377) (1.1036|y0l + 0.55)
2(1.73771^1 + 1)

(0.7377) (1.1036)
< 3.4754

PROOF OF LEMMA 9.6. From Lemma 9.1 we have

where f/ is some convenient upper bound. Tabulating these results for
c = 2, 4, • • •, 20, we obtain

c

U 2

2

.35

4

4.63

6

6.82

8

8.99

TABLE

10

11.15

2

12

13.30

14

15.44

16

17.59

18

19.73

20

21.87

If a is even, from § 6 we k n o w t h a t e ^ 2, a n d s o « ^ c + 2 . Hence

\<po\ > a—0.063, a n d

c+1.937 < \<po\ < U.

Inserting the values from Table 2, we obtain a contradiction in each case,
thus excluding the possibility of a being even.

Similarly when a is odd a ^ c+1 , and so

c+0.937 < \<po\ < U,

which provides a contradiction from Table 2, for all c 5S 6. Hence a is odd,
and 9 ^ a ^ 21. If <px > 0, then Table 2 implies that a ^ 11. If <px < 0,
then 6X < 0, and Lemma 5.1 implies that | dx\ > 15.8, and it is easily checked
that if a = 15, then M^ < k. This completes the proof.

LEMMA 9.7.

M <
2{7|9;0|

2+(31/^1 +7) 1^1+2^1 +2}

the right hand side increases with \fio\, and decreases with \q>Q\.
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PROOF. The method is similar to that of Lemma 9.1. Using the basic
formulae of Part 1, we see that

Now since M®[ decreases, and M^ increases as a function of 60, then
their minimum cannot exceed their common value, which occurs at

The result follows by substitution. The function clearly increases in \/io\.
Since |£0| S: 1, the derivative with respect to \q>Q\ is seen to be negative,
whereby the function decreases in \<po\.

THEOREM 9.1. Any critical chain has

a± = —11, s0 = — 1 and a2 > 0.

PROOF. From Table 2, it is clear that for all a that remain, e = 1,
else a contradiction is obtained as in Lemma 9.6.

Hence by (3.8)

(9.3) |AX| = 1+ ~~

Suppose that 13 j£ a :£ 21. If either ex = 0 or /ijcpi < 0, then by
Lemma 5.1,

\l*o\ — !4 < 1-04-

Now \q>0\ > 13, (since if a = 13, we may suppose by Lemma 9.6 that
<px > 0), and so substituting these bounds in Lemma 9.7,

(41.04) (15.04)
2637

If, however fij^ > 0 and ex ^ 0, then we may consider the three cases:

(i) <px < 0; then (9.3) implies

( H f o l k i l ) _ _
4 ( | 0 | l ) 4(a+0.5) 21.5

(ii) 0 < 9?x < 10: then by Lemma 5.1,

1̂ 1 < 0.071^1 < 0.7,
contradicting 1̂1 ^ 1.
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(iii) q>x > 10: since ex ^ 0,

(20) (10.07)
<

Thus we conclude that a = 11, s = 1, and hence <px > 0.

10. Isolation of the value of a2

LEMMA 10.1.

1.7165 < 0O < 1.73251, whence 0.5771 < 1/0O < 0.5826; also ex < 0.

PROOF. NOW since by Theorem 9.1, 11 < \<po\ < 12, then <p_t > 2.0833,
and

1.0668
\/*-i\ < —j-j— < 0-097.

Thus if 0_! > 3.7384,
_ „ . 2.0833+1.097
Af(3i < < k.

-1 2(6.7882)

Hence we have 0O < 1.73251, and 1/0O > 0.5771.
We have c = 10 and Lemma 9.1 implies

l̂ ol < 11.6424—0.5771 = 11.0653.

Consequently cp1 > 15, and if st 22 0, by (9.3),

10(^+1.0668) 160.668
4{(15)(11.577) + 1}

Thus ex < 0, and hence \/io\ — l+pjcpi < 1.
If 0O < 1.7165, since \<po\ > 11,

(gpl)(lyol + 2) (0-7165)(13)
2(00^1 + 1) 2(19.8815)

The complete lemma now follows.

LEMMA 10.2. In any critical chain

PROOF. Suppose aa ^ —2, then l/^l > 1.933, and
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This is an increasing function of 1/0O, and so by Lemma 10.1, when (pt < 36,

(H.ieeUffii-O.gSS) (11.166)(35.067)
1 4(11.5826^+1) 1671.8

and when ^ > 36, by Theorem 2.4,

( | g i l l ) ( y i + l ) (10.59)(37)
^ d O l + l ) 4{(11.59)(36) + 1 } < •

The result now follows from the previous lemma.

THEOREM 10.1. Any critical chain has

a2 = 21, 1̂ 1 < 1, as > 0 and e2 < 0.

PROOF. Consider the following two cases.
(i) |i«1| > 1. Since Lemma 5.1 implies that 1/jJ < 1.0668, Lemma 10.1

and (9.3) give when <px > 23.5,

10(<»1 + 2.0668) 255.668
Mi1' < —— < < k,1 4(11.577^+1) 1092.2

and when q>± < 21.5,
12(^ -2 ) 58.9

1 4(11.577^+1) 249.9

Since 1̂ 1 = 1, then a2 — 23. Now (/̂ -LI > 1 implies ^2/^2 > 0, and since
|A2| > 1, when <p2 > 0,

-i-l^l)(y>-i) (^2) 2u
< 492

 <92.4< '

and when q>2 < 0, s2 ^ 0, then \<p2\ > 2 implies

, - , , . . , . , • --- , (21.1)(2.067)

If, however, <p2 < 0, e2 = 0, then 9̂  > 23 and 1,̂ 1 < 1 + |T3/992| < 1.04;
hence

10(yi+2.04)_ < 250,4
1 4(11.577^+1) 1069

It follows that for critical chains we must have the case:

(ii) fa] ̂  1. Since Lemma 5.1 implies that I/i^ > 0.933 when px > 22.6,

J46_
10505 '

1 4(11.577^+1) 1050.5
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and when <pr < 20.5,

12^-1.933) < g 2 2 j
1 4(11.577 ̂ +1) 953.3

Thus we conclude that a2 = 21, and if a3 < 0, then (i2 S: 0. Now

\X\ = l-^ \ > 1.049,
2 11 0O+1

and 02 < 21.1; thus when |,M2| + 1 ^ 0.06%2|,

MW (02—0.049) (0.939) |9>2|

(21.051) (0.939)
< — — < k,

84.4
and when |/*2| + 1 < 0.061|(p2|,

12/19 +

3(19.061)
< 244.11 < f t >

Thus we have that a3 > 0 and ^ ^ 0. If e2 = 0, then \/jt2lq>2\ < 0.04,
and since q>t < 21,

3(^-1 .96) < 3(19,04)
1 I Q l ^ + l 244

11. The maximal chain for 60

We will now examine possible a-chains as n -> — 00.

LEMMA 11.1. 0O < 1.73134.

PROOF: We have

<Pi— \t*i\ 21 — 0.9332
= ri mi 0.086495,

ll<Pi + l 232
and

q>, 20.9
, = 2-| — > 2-\ > 2.090515,
x H+1 230.9

since 20.9 < <px < 21.
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If 0O > 1.73134, then Q_x > 3.72217, and so

3.17701
2{(2.090515) (3.72217) — 1}

The following two lemmas will enable us to determine the chain which
gives the maximal allowable value for 0O.

LEMMA 11.2. 0O ^ [2, 4, 4, 3, 2, 0_5].

LEMMA 11.3. an sg 5 for n g —1.

PROOF OF LEMMA 11.2. This results from the fact that a semi-regular
expansion to the integer above is an increasing function of an, if alt- • -, an_1

remain fixed, and an+1, an+i, • • • take arbitrary positive integral values [3].
We note that

1.73134 = [2, 4, 4, 3, 2, 19, • • •],

and so the result follows from Lemma 11.1.

PROOF OF LEMMA 11.3. If, for some n 5S — 1, l/0n > 0.766, then by
(2.9),

Thus we have, by symmetry, that both 1/0M and l/<pn are less than
0.766.

Now, if for any n fS> — 2, we have an ^ 6, then

<
6nVn~l 1 1 1\ 4.468

k.

THEOREM 11.1. TAe maximal chain for 60 is

[2 ,4 ,4 ,3 ,2 ,5 ,5] = |0O|,,

where the subscript c refers to the value of the variable for the chain (c).

PROOF. The previous lemma snows that a_5 a.nd «_6 cannof exceed 5,
and by the argument of Lemma 11.2, we make 0O largest by taking each
partial quotient as large as possible. Put a_5 = a_6 = 5.

Now 99_6 > [5, 2, 3, 3] = f|, and if 0_6 > 4.5,

HA
48 7

But if 0_6 < 4.5, then whenever a_6 = 5, we have 0_7 < 2.
The result follows by a simple inductive process.
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The importance of this result will become evident later, when we show
that the minimum of the critical chain is taken at M\2) which is an increasing
function of d0.

5195—2-v/lO
LEMMA 11.4. 60 ^ = 1.7312897

which implies 1/0O > 0.57760405 • • •.
This is a corollary of Theorem 11.1, and follows as in (7.3).

12. Isolation of the value of a3

LEMMA 12.1. M2
2) and Af2

4) decrease and increase, respectively, when
0o increases.

PROOF. We may write M2
2) and Mf1 as functions of 60 by using the

basic relations and sign pattern of the chain already known, together with
|Aj| = 1/0O. For example

11 0O+1

and the result follows by the comment (5.1). Similarly for M2
4>.

LEMMA 12.2. 436 < <p2 < 470.

LEMMA 12.3. 0.063 < |ju2/y>2| < 0.06316.

PROOF OF LEMMA 12.2. If <p2 > 470, then q>x = 2—l/<p2 > 20.99787.
When IjKgl —1 ^ 0.06088 y2, we have by Lemma 11.4,

3(19.06088)
< (11.57760405) (20.99787) + l <

and when \/i2\ — 1 > 0.06088 <p2, then Lemmas 11.4 and 12.1 imply

(21.036484) (0.93912) (470)
4{(21.08637)(470) —]

If q>2 < 436, then q>x < 20.99771. Thus when \[i2\ ^ 0.06303 q>2,

3(19.06074)
(11.57760405)(20.99771) + l

and when |^2| > 0.06303 <p2, Lemmas 10.1 and 12.1 imply
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(21.1367) (0.98697 y , - l )
2 4(21.08633(p2-l)

Hence
436 < <p2 < 470.

PROOF OF LEMMA 12.3. Since we now have 9^ < 20.997873, the in-
equalities \/x2l<pz\ ^ 0.063 and \/i2l(p2\ ^ 0.06316 imply that A/j2) and Af2

4)>
respectively, do not exceed k, by the method of the previous lemma.

LEMMA 12.4. For any critical chain e2 = — 29.

PROOF. If |e2| ^ 27, then

and if \e»\ ^ 30, then

27.0668
< < 0.063,

436

29.93
> > 0.06316,

470

and both these cases contradict Lemma 12.3. There remains only to exclude
the possibility e2 = —28.

In this case, if a3 5; 446, then

and if a3 ^ 442, we obtain

28.0668
< < 0.063,

445.93

27.93
> > 0.06316,

442.1

which are again contradictions of Lemma 12.3. Thus we have a3 = 444,
whenever £2 = —28, (since e2 and a3 have the same parity).

Now <p2 < 444.1, and so <px < 20.9977483. We have \fi2lq>2\ < 0.06307,
for if not, as in the previous lemmas,

(21.1367) (0.93693 y , - l )
2 4(2108633 1}

(21.1367) (0.93693 y , -

4(21.08633 <p2—1}

When I0J > 11.57763,
... 3(19.0608183)

M 2) < < k,1 (11.57763)(20.9977483) + l

and when |0J < 11.57763, then 0O > 1.73121; now if \p2l<p2\ ^ 0.06305,
by Lemma 12.1,

(21.13627) (0.93695 y8—
4(21.08637^—1)

( 2 ) ^i.i^a^^.awwyj-i)
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Thus we have, in this case,

(12.1) < 0.06305.

As in the proof of Lemma 5.1, since 03 > 440, we have |9?3| > 12. Thus
<p2 < 444.09, and whenever \/i2\ 2g 28, we have

28
> > 0.06305,

444.09
contrary to (12.1).

Hence we have |^2| < 28, which implies fi3/q>3 < 0. We have two cases.

(i) <p3 < 0, (ju3 > 0). Now by (9.3), let

Then a < 0.003. When \fi3\ + l ^ 0.003|^3j,

(417+a) (0.997) (417.003) (0.997)
3 = 403 4(443.95)

and when l^l + l < 0.003|<p3|;

27.997^1 + 1 27.997
> Iy3' > > 0.06305,

444|9-3| + 1 444

contradicting (12.1).

(ii) 9?3 > 0, (fi3 < 0). If l/̂ gl <, 1.03, since we may suppose by Lemma
5.1 that q>3 > 15, by the above method,

(415.003) (15.03)
3 < 4{ (443 .95) (15) -1} <

Thus if |£3| = 1, we have 1.03 < l̂ gl < 1.07. Consequently when <p3 < 31,

< T | « ^ < 0.063,1 3 7 6 3444 q>3—

and when 953 > 31,
(415.003) (31.07)

< A -4{(443.95)(31)-1}

Suppose that |e3| ^ 2, then 1̂ 1 > 1.9332. Thus when q>3 < 380,

(*»-00S) (9V-0-93)
4(443.95 y-3-l) < *'
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and when q>3 > 380, we have the following two subcases:

(a) If l/Mal-1 ^0.0039.3, then

(417.003) (0.997)^3 (415.752) (380)

489

<k.
4(443.959)3-1) 4{(443.95)(380) —1}

(b) If Ivw3| — 1 < 0.0039)3, t n e n l/'s/^sl < 0.003+1/9)3 < 0.0057, and so

27.9943
444

> 0.06305,

contradicting (12.1). The result is now complete, since e2 cannot have the
value —28.

THEOREM 12.1. Any critical chain has

e2 = —29, a3 = 461, a4 < 0, and JU3 < 0.

PROOF. If a3 ^ 463, then

29.07
~~ 462.9

and if a3 ^ 459 and |/*2| ^ 29, then

9?2

29
459.1

< 0.063,

> 0.06316;

both cases contradict Lemma 12.3. Whenever \fi2\ < 29, then we have
<p3 < 0. If a3 ^ 457, then

28.93
457.1

> 0.06316,

again a contradiction.
Further, when a3 = 459, (\fi2\ < 29), if \/u2l<p2\ ^ 0.063043, then we

have, after Lemma 12.1,

(4) (21.036484){(458.93) (0.936957)+ 1}
2 < - 4{(21.0863736) (458.93) — 1} < '

If, however

(12.2) < 0.063043,

then we may consider the two cases.

(i) 9)3 < 0, (̂ 3 > 0). When \fi3/<p3\ ^ 0.005, then since |A3| > 28.93,
and 03 < 460,

https://doi.org/10.1017/S1446788700006157 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700006157


490 P. E. Blanksby [34]

(432.07) (0.995)(Q,+ ll^|)(0.995|y, |- l)
3 4(0^1 + 1) <4(03l9>3l + l) 4(460)

when \/i3l<p3\ < 0.005, then

28.995
> > 0.0631,

459.1

contrary to (12.2).

(ii) <pz > 0, (fi3 < 0). As in Lemma 5.1, we have since 83 > 458,
that 993 > 15, and hence 63<p3 > 6870. Thus, whenever \ii3j(p3\ > 0.06315,
we have from Theorem 2.4,

1639)3! (0.93685) (6870) (0.93685)

4(|039>3|-1) "^ 4(6869)

If, however, \/u3l<p3\ ^ 0.06315, then

28.93685
> > 0.063043,

459

contradicting (12.2).
We therefore conclude that a3 = 461. If \fi^ ^ 29, then

29
< < 0.063,

460.93

a contradiction. When \/i2\ > 29, then ^3/^3 > 0, and if <p3 > 0,

403 4(460.95)

The complete theorem now follows.

13. Isolation of the value of a4

We can immediately show the following result.

THEOREM 13.1. Any critical chain has

a 4 = — 1 7 , e3=— 1, a5 > 0, and ^ < 0.

PROOF. Suppose that \JU3\ 5: 1, then if again a =

431.003, = (431+a)(|y,| + l - | ^ l ) 431.003
3 4(e[97| + l) 4(460.95)

Now if £3 = 0, by Lemma 5.1, we have
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and hence

0.07
< _ = 0.007,

27.007
< — — < 0.063,

461

contradicting Lemma 12.3. Thus

(13.1) e3 = — 1, and fij^ < 0.

As in Lemma 5.1, if \q>a\ < 15.34, Theorem 2.4 implies

(g,+ l ) d P , | l ) (461)(14.34)

4 ( 0 l l + l) 4{(460) (15.34)+ 1} '

It easily follows that a4 ^ —15, since [9>4| > 3. Hence |«4| ^ 17.
Now since <p2 < 461.07, then 9^ < 20.9978312, andif l^ /^ l ^ 0.0630211,

then as usual,
3(19.0608523)

1 (11.57760405) (20.9978312)+ 1

When \/ial<pa\ > 0.0630211, then

+ > (0.0630211)
\

if \tpa\ > 17.1, then it follows that \/xa\ > 0.964, and so

(3) (431.003) (17.1+0.036)
3 < 4{(460.95)(17.1) + l} <

Consequently |«4| sg 17, and hence a4 = —17. If a5 < 0, then (13.1)
implies ,w4 > 0, and we can distinguish two cases.

(i) When \pjn\ ^ 0.0405,

(433.003) (|y3|-|T4|) (433.003) (16.9595)

4{(460.95)(17) + l}

(ii) When l^/^l < 0.0405, since |04| < 17.1,

_ (M-l-faMM-l + W) . (17.1-1.93)(1.0405)

Thus we have a5 > 0, and the theorem is complete.
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14. Isolation of the value of a5

We prove the following succession of lemmas.

LEMMA 14.1. 0.03838 < \/uJ<pi\ < 0.040406, and £4 ^ 0.

LEMMA 14.2. <pt < 55.

LEMMA 14.3. e4 = —2.

LEMMA 14.4. a5 = 48, 50, or 52.

PROOF OF LEMMA 14.1. Now 03 = 461 —l/02 > 460.9525, and |9?3| > 17;
hence if |/*4/^4| ^ 0.03838,

(436.0024) (17.03838)
3 31348.77

Thus \fij<pt\ > 0.03838.
If Ei = 0, then \/jtJq>t\ = |T5/954| < 0.034, contradicting this result.

Thus we have |,M4| > 0.93, and if |(p4| < 29, we obtain

(|94l + 0.07)(y4-1.93) (17.07) (27.07)
4 4 ( | 0 | y + l ) <4{(17)(29) + 1 } < '

Supposing |<p4| > 29, then if \/iJ(p4\ ^ 0.040406,

(4) (433.0024) (17.035-0.040406)
3 < 4{ (460.9525) (17.035)+ 1} K

PROOF OF LEMMA 14.2. Since |A2| > 1,

29 03— 1

and |04| < 17.003. If cp4 > 55, then by the previous result,

< (|04[-2+l(r3|)(l.O4O41y4+l)

(15.066){(1.04041)(55) + l}
K 4{(17.003)(55) + l}

PROOF OF LEMMA 14.3. After Lemma 14.1, |«4| ^ 1. We may suppose
(as in the proof of Lemma 14.1) that \<p4\ > 29, and consequently

1.1 < (0.03838) (29) < |jU4| < (0.04041) (55) < 2.3.

The result follows by Lemma 5.1.
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PROOF OF LEMMA 14.4. If a5 ^ 46, then <pt < 46.1, and

Similarly, if a5 = 54,

1.93
> > 0.041.

46.1

2.0668

53*33

Both these results contradict Lemma 14.1, and the lemma follows since a5

must be even.

THEOREM 14.1. Any critical chain has

a5 = 50, [^ < 2, and E5 =jfc 0,

PROOF. Suppose that \fijg>t\ sS 0.03945. By the previous lemma
|a>3| > 17.01919, and so

< 0.06302112.

Also f2 < 461.05876, implying <px < 20.99783108. Thus by Lemma 11.4,

3(19.0608522)
1 20.99783108| 0J + 1 '

(14.1) Hence
9>4

< 0.03945.

Suppose that as = 52. Now 04 < 17.0022, and

290 , -1< < °-0 6 2 8 1 5 '
since 62 < 22. If 0 < tp5 < 20, then Theorem 2.4 implies

M c

' ^ 4(059,6_1)

Thus whatever the sign of <p5, we have y4 > 51.95, and by (14.1)

(1) (|04|-2+|g3|)(l.O3945y4+l)
4 4(|0«I?>4+1)

(15.06502){(1.03945) (51.95) + 1}
4{(17.0022) (51.95) 4-1}

< * .
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Thus a*

P. E. Blanksby [38]

52.

(i) If ab = 48, then
1.93 °04-

(ii) If a5 = 50, and either |^4| > 2, or e5 = 0, then by Lemma 5.1,

1.993
>

50.1
> 0.0397.

In both cases (i) and (ii) (14.1) is contradicted, and so the theorem
holds.

15. Structure of a critical chain for n ^ 6

We will show in this section that if Mn ^ k, for n ^ 6, then the chain
must have a certain periodic character. Throughout the section we will
consider the chain for 0O to be held constant.

LEMMA 15.1. / / \[j,2\ and |T2| both increase, then Afj2> increases.

LEMMA 15.2. We have a6 > 0.

LEMMA 15.3. / / \/u5\ and |T5| both increase, then AfJ2' increases.

PROOF OF LEMMA 15.1. We may write

3 ( ^ - 2 + | T , | )

from which the result follows for the cases when q>± increases and q>2 decreases,
respectively.

PROOF OF LEMMA 15.2. Suppose to the contrary that «6 < 0. Then,
since fi5j(p& < 0, we have /u5 > 0. Clearly |A5| > 2.05, and |05| < 50.1. If
\fi5l(p5\ ^ 0.043, then

^ (49.05) (0.957)
" 4(50.1) <

> 0.039.

Then we have |//5/9?s| < 0.043, and so

>
1.957

50.1

Since \<ps\ > 17.0199, then we see, as on previous occasions,

< 0.063021173.
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Similarly, |/*2| = 29+|^3/9?3| < 29.05647. If we calculate to sufficient
accuracy the corresponding values for the chain (c) of § 7, we obtain

(15.1) = 0.0630211983 \H2\e = 29.056475

where the subscript c, will denote, as before, the value of the particular
variable for the chain (c). Thus in the case when ae < 0, we have

fH

which by Lemma 15.1 implies

M[2) < (iWJ2))c = *•

PROOF OF LEMMA 15.3. By the previous lemma, and the information

already known about the chain,

1^1=29-
851 y>5—17

Since \fi5\ > 0.9, the remark (5.1) implies that |//2| will increase if yb

decreases. If <pb decreases, then <p2 will decrease, and so ifalVzl w n l increase.
If, however, <pb increases, then since

lA*»l = 29 +

which increases in q>5, as 851 —17(48+ |T5|) > 0, we have again that \/u2\
increases. It is easily checked that when |T6| and q>5 increase, \fi3] increases
and \<p3\ decreases, implying that

2919931 + ^3;

will increase.

The complete result now follows from Lemma 15.1.

LEMMA 15.4. We have that \/i5lq>5\ < 0.062.

PROOF. Assume that \iu5/(ps\ ^ 0.062. Now since 50.0588 < 05 < 50.0589,
and

0.0551 <
460-29

(17)(460)+ 1

we have, when cps > 53.5,

(05— 1 — |a4|) (0.938 ?P

< < 0.0552,
1703+1

(49.0038) (51.183)

10708
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and when g>5 < 48.1,

[40]

it-l) 9627

Thus we have that 49 ^ «6 ^ 53. Hence we may deduce from the inequali-
ties

P. E. Blanksby

k«l)(0.938yB-l) < (51.114)(44.1178)

0.062 <

that

(15.2)

< 0.0668,

3.034 < 1̂ 1 < 3.6,

whence es = —3, a6 is odd, and fie/(pe > 0.
If ae ^ 51, then \/i&\ > (50.9) (0.062) > 3.1, contradicting Lemma 5.1.

Clearly e6 # 0, else \/i5\ = 3+|,M6/cp6| < 3.01, contradicting (15.2). Thus
\fi6\ > 0.93, and since 06 < 49, and \q>e\ > 10 (by Lemma 5.1), we have
whatever the sign of q>6,

7) (45.07) (10.07)
~ < 1956 <

This completes the lemma, and we may now isolate the values of
a6, s5, ande6.

THEOREM 15.1. Any critical chain has

a6 = 49, £5 = - 3 , e6 = 0, fi6 < 0, and a7 < 0.

PROOF. Suppose that |JM5/9JS| ^ 0.06, then

1.94
> > 0.0388,

50

and so 1̂ ,1 < 0.9612.
Now \q>a\ > 17.02, implying that

<
0.9612
17.02

< 0.056475.

We also have

<
29(17.02)+0.9612
—̂  —

461(17.02) + !
< 0.063021198,

and so, from (15.1), |T2| < |T2|C, 1̂ 1 < |T2|C, and thus M^ < k.
We therefore have

(15.3) 0.06 < < 0.062.
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We use the method of the previous lemma to determine bounds on a6.
When <p5 > 59.5,

(49.0038) (0.94 y B + l ) 2789.8

4(50.0589<p5— 11910

and when <ps < 43.5,

(51.114)(0.94^-l) 2039
5 4 (50.0588 <p5—1) 8706

Thus we have 44 ^ «6 ^ 59, and by (15.3) it follows that 2.6 < \jib\ < 3.7,
whence e5 = —3. By Lemma 5.1, 2.933 < \ph\ < 3.067; thus if a6 :> 53
or a6 f^ 47, then

3.067
< < 0.06 or

52.9

2.933

° 0 6 2 '
respectively, and both contradict (15.3). Thus a6 = 49 or 51. Consider
the following two cases.

(i) \fi5\ ^ 3, (T6 ̂  0). If (p5 > 49, then \(i&j<p&\ < ^ < |/̂ s/<p5lc and
Lemma 15.1 implies M^ < k. If q>5 < 49, then <p6 > 0, and so fi6 ^ 0.
Hence when \/u6\ ^ 0.0189?6,

M , 8 )
(06-4+|<T5|)(l.O18y5-l)

- 1 )

and when \fi6\ > 0.018<p6, we have

3—0.018

4(49)

which, together with |^6| ^ 3, again implies that M[2) < k.

(ii) l̂ gl > 3, (T6 > 0). Now if e6 ^ 0, then \/i6\ > 0.93, and since we
have 06 < 51 and by Lemma 5.1, \<p6\ > 10,

(47.07) (10.07)

4{(51)(10)l} "

Hence e6 = 0. Thus when a6 = 51, we have, as usual,

3.007
IT.I < 0.007, and |TS| < < 0.06,1 6 5I 50.93

contradicting (15.3).
Thus we have a6 = 49, e6 = 0, and \fi&\ > 3. If a7 > 0, then /t6 > 0,

and
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<
40'.

45.1
1%

The theorem now follows.
We will now prove the main result of this section. It will fix the structure

of any critical chain pair for n ^ 5. The proof that the chain (c) of § 7 is
in fact the critical chain, will be a corollary of this result.

THEOREM 15.2. In any critical chain, we have for n ^ 3,

a2n = 49, E2n_x = (-l)n3, e2n = 0, and

*2n+l = —42, —44, or —46.

REMARK. One may also easily exclude a2n+1 — —46, in this result,
but it is not necessary for the proof of the corollary.

PROOF. Suppose that |^7/9?7| ^ 0.06. Now since 04 > 17 and |c8| > 0.05,
we have

-0.95
< 0.04107.1 5l 5O|04 (50)(17) +

Also
|06| < [49, 50, —17] < 48.98003.

When |<p6| < 40.085, since |/^6| = |T7| ̂  0.06,

(47.0211) (39.145)

4{(48.98003) (40.085) + !}

If |flj6| > 40.085, and a, = —40, then 0 < <p7 < 11.8, implying by Theorem
2.4, that My < k. Thus we have |9?6| > 41.9, and so

and

<

3|y6

0.06

41.9
< 3.00144 <

3 _
4 9

Consequently, by Lemma 15.3, we have

0.06 < < 0.067.

Using the above bounds on 66 and \as\, we have when \q>6\ > 47.9,

(45.0211) (47.9 + 0.94)
6 4{(48.98003)(47.9) + l}

and when \q>6\ < 39,
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(47.0211)(39-0.933)
8 4{(48.98003)(39) + l}

Since e6 = 0, then |a,| is even, and 40 ^ |a7| ^ 46.
It is more difficult to exclude \a7\ = 40 in this case, than when n > 3,

because of the sign of a5. However, if we can prove that

(15.4)

then

< 0.06135, and |<p6| < 40.03,

(47.0211) (39.09135)
6 4{(4898003) (4003)+ 1}4{(48.98003) (40.03)+ 1}

Let us consider the following inductive hypothesis:

For all 3 fS n :S w, »'«!/& w, w integral, suppose a2n = 49,

(15.5) eg,,.! = (-1)»3, ein = 0 wit* ( - l ) > 2 n > 0, |r2n+1| > 0.06,

and a2n+1 = —42, —44 or —46.

As in § 7, it follows that for all such n the products are given by (7.5)
and (7.6). We will observe the same notations. The hypothesis holds for
n == 3, by Theorem 15.1, and the above observations, with the proviso that
a7 may also take the value —40. Thus, wherever appropriate, we will use
the less stringent bound |a2n+il = *0, until we have shown that |«7| ^ 42
(that is, until the condition (15.4) is satisfied).

The proof follows the method of the previous theorem. Suppose that
«2m+a < °. t h e n s i n c e \e2m+i\ < 46.1 and (A2m+1)(iw2m+1) < 0, we have

(46.1 —0.93) (0.94)
< 4(46.1) < '

Hence we have

(15.6) a2m+2 > 0, and thus /<2m+1 = (— l)m+1lA«2m+il-

Now
3.007

0.06 < |A7| ^ |A2m+1| < — — < 0.0614

(15-7)

40.02 < |02 m + 1 | < 46.03.

Using the notation (7.6), we therefore have when q>2m+1 > 59.5,

(45.0914) (0.94<^2m+1+l) (45.0914) (56.93)
4(46.03<p2m+1+l) 10959
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and when <p2m+1 <

P. E. Blanksby [44]

2m+\
(40.96) (38.01)

6647 «•

Hence we have 42 5S «2m+2 ^ 59. Now by Lemma 5.1, and the inductive
hypothesis

/M2m+l
0.06 <

2m+1
< 0.063,

implying 2.5 < |jM8m+1| < 3.8, whence s2m+1 = (—l)m+13. We consider the
following cases, which eventually isolate the value of a2m+2.

(i) If «2m+2 ^ 53, then

lM2m+l

2m+1

3.067
< < 0.06.

52.9

(ii) If a2m+2 = 51, and either \fi2m+1\ < 3, or e2m+2 = 0, then

2m+l

3.007

50.93
< 0.06.

Both (i) and (ii) contradict (15.5).

(iii) If a2m+2 = 51 or 49, and |,M2m+1| > 3, with £2m+2 ^ 0, then
(—l)m

iM2m+2/?
)2m+2 > 0. by (15.6). Thus whatever the sign of ?>2m+2,

or parity of m, we have

M, (e2m+2—! —I
2m+2

Now since \fj,2m+2\ > 0.93, \cp2m+2\ > 10, and |A2m+2| > 3, then

(51.1—4) (10.07)
M 2m+2 2040

< k.

We have therefore excluded a2m+2 2s 51, and also fl2m+2 = 49 when
liM2m+il -> " a n d [e2 m + 2 | =£ 1.

In what follows we will supose, as in § 7, that without loss of
generality, m is odd.

(iv) If a2m+2 5S 45, then since \/u2m+1\ > 2.93, and by the bounds
(15.7), we have

(40.96) (45.1 —3.93)
l2m+1 < 4{(40.02)(45.

< k.
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(v) Suppose a2m+2 = 47, and cp2m+2 > 0. Then if \/i2m+1\ ^ 2.948,
we have

(40.96) (47-3.948)
2m+1 4{(40.02)(47) + l}

When |,M2m+1| < 2.948, we have |r2m+2| > 0.052, and (-l)m+V2m+2 > 0.
by (15.6). In fact, by Lemma 5.1, <p2m+2 > 15, and |A2m+2| > 3. Now when

, ,
4 ( 0 2 m + 2 ? w - i )

(43.1) (15.07)
4{(471)(15)1}

tam+21 ^ 2. then \fi2m+%\ > 1.93, and when 9?2m+2 < 40,

< ——

-J:<k,

and when 9?2m+2 > 40, then since |^2m+2/?'2m+2| > 0.052, we have

(45.1){(0.948)(40) + l} ^ u

• - 4{(47.1)(40)-l} ^ •

This excludes the case (f2m+x < 47.

(vi) Suppose a2m+2 = 47, and <p2m+2 < 0, then as in (v), if
li«2m+il ^ 2.978, since <p2m+1 < 47.1, we obtain M^+1 < k. When
\(*2m+i\ < 2.918, then (— l)">2m+2 > 0, and |r2m+2| > 0.022. Hence

^ (45.1) (0.978) ^ fc

< 4(47.1) < *•

(vii) We conclude from (i) to (vi) that a2m+2 = 49. We consider the
two subcases.

(a) When \/i2m+1\ ^ 3, if cp2m+1 > 49, then \/tam+1lq>9m+1\ < ^ . If

<P2m+i < 49. {<fim+i > 0). then as before (— l)m+V2m+2 ^ °. and when
|r2m+2| ^ 0.02,

(46.1)(1.08fa.+.-l)
2m+2 < 4 ( 4 9 1 1 ) < *'
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and when |r2m+2| > 0.02,

P. E. Blanksby

2.98

[46]

48.93
3

49"

Thus whenever a2m+2 = 49, and [iM2m+il S== 3,

(15.8)
2m+1

3
49-

(b) When \/u2m+1\ > 3, we have by (15.6), {-l)mix2m+2lcp2m+2> 0.
9?2m+2 > °. then exactly as before we have

<
0,2m+2" "•2m+2 45.1

402 m + 2 4(49.1)
<

Thus after (iii), we have, if )/Ji2m+1) > 3,

(15.9) 9 W 2 < 0 - ( - 1 ) m + V 2 m + 2 > 0, and e2m+2 = 0.

We have seen earlier in this proof that if |02 m + 2 | > 41, then
|<p2m+2| > 11.8. Thus in the case where |y«2m+il > 3, we have

0.0668
t2«t+2l

and so
11.8

3.0057

49

< 0.0057,

< 0.06135.

Thus by (15.8), in both cases (a) and (b), |r2m+1| < 0.06135. When m = 3,
if a7 = —40, then \<ps\ < 40.03, and so by (15.4) we may take 42 ^ \a7\ ^ 46
in the inductive hypothesis (15.5).

Now if for some n (3 ^ n fS m) we have |T 2 B + 1 | < ^ then

Thus if any |T B + 1 | < -^, by induction |T5| < ^ = |TS|C. By (15.8), this is
true for \(i2m+1\ ^ 3.

The semi-regular continued fraction for \<pn\,

\fp —- n ^ I 4.Q I^J I 49 • • • \a I 49 • • •]

is an increasing function of |«2 n + 1 | , if |«2r+il remains fixed for 3 ^ r < w.
Since the inductive hypothesis now implies |a2n+1| ^ 42, 3 ^ n ^ m, then
if for some such n, \a2n+1\ > 42, we have \<pe\ > \<p6\c = [42, —49]. Thus if
lT2m+il < TS> w e have |T7| < -^, and

3
< 3 + Jnl__ , = l/*5lc •

6lc
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[47] On the product of two linear forms 503

Thus by Lemma 15.3, M[2) < k. Consequently, when |r2m+1| < -^, we have
for 3 rgi n 52 m,

(15.10) |«2n+1| = 42.

We now show that if |T2B+1| and l^n+il both increase, then so too does
l/"2n-il» whenever 3 sS n 5g m. This is easily seen to be true when |r2m+1| < ~,
since

• l T2n+ll

*"l<"2«+l|-ril2n+ll

and the right hand side increases in both \/J-2n+1\ and |T2B+1|.

Thus whenever \ju2m+1\ ̂  3, we have both |T5| < |TB|C and \p6\ < 1̂ 1 „,
and so again by Lemma 15.3, M<?] < k. Hence we have \[i2m+x\ > 3, and all
its consequences (15.9). There remains only to prove |r2m+3| > 0.06, and
42 ^ |a2m+3| rg 46.

When |a2m+3| ^ 40, we have |<p2m+2| < 40.1, and since \/uZm+2\ =
f3| < 0.07, 02m+2 < 49.1, and |A2m+2| > 3,

MW ^ ("2m+2 I •*• I^2m+2l)(l9'2m+2l •*• ~T lyM2m+2l)
mim+2 < TTTj : —rr

\r2m+3

(47.1)(39.17)
< 4{(49.1)(40.1) + l} < k'

Thus we have |fl2™+3l ^ 42. Suppose \rim+s\ ^ 0.06, then

0.06
l/%n+il 3.00144

\<P2m+%\

and

T I ̂ - lra'"r^' ' ^- 3 _ i_ |
T2m+ll <• ^n,_. T T V <• Z9 ~ lT2m+llc-

It then follows by an identical argument to that above, that M{^ < k.
Hence |T2m+3| > 0.06.

When \<p2m+2\ > 47.9,
(45.1) (47.9+0.94)

2m+2 <4{(49.1) (47.9) + 1}

Hence a2m+3 = —42, —44, or —46. The inductive hypothesis is now shown
to hold at the (m+l)th step, and so the theorem follows.

COROLLARY. The chain (c) is the critical chain.

PROOF. SO far, in this section, we have been holding the chain for 80

constant. Now,
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504 P. E. Blanksby [48]

is clearly an increasing function of 60, and so takes its maximum value at
the largest allowable value for 0O, which by Theorem 11.1, is

0O = [2, 4, 4, 3, 2, 5, 5].

By Lemma 7.1 we have |T5| = ^ = |T5|C. If |a2n+1| > 42 for any
n ^ 3, we have as in Theorem 15.2, \fiB\ < 1^1,., and consequently M|2) < k.
Thus the chain (c) gives the maximum possible value for M^\ for chains
in which Mn 2; k, for all n. The result follows from this.

16. Critical forms

From § 7 and (4.2) we may exhibit the critical form

, (dx+y)(z+<py+*)
± O c p - l

with
2VTo—5195

d = ,
2997

91018391 q>5—1818229

and
18014063y5—359856 \

49(8238730 <p5—164581)/
where

The critical value is attained by this inhomogeneous form at
(x, y) = (—6, 0), and also by all other forms equivalent to it by a
unimodular integral transformation.

PART III: SUBSIDIARY RESULTS

17. Further questions

In part II we evaluated the best possible constant k, for the mixed
form problem. We immediately wonder whether k is an isolated constant,
and what values M(f; a) may take in the range [0, k].

We may readily imagine from the structure of the critical chain (c)
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[49] On the product of two linear forms 505

that k is a point of accumulation of infima of certain mixed forms, since
we have already seen in § 7, that the local products for large n still exceed
k, even if a2n+1 = —44. We will make use of the following result.

THEOREM 17.1. Suppose we are considering chain pairs with the property
that, for all n,

\On\>A>l, \<pn\>B>l.

Suppose two such chains have a common segment, that agrees for at least 2r+2
consecutive values of the chain pair. Then if F is any (fixed) one of the alter-
natives in (2.10), (6.1) or (6.2) at the central step of the common segment,
we have

F = -F'+0(l/r),

where the prime is used to distinguish between the two chains, and the
constant implied by the order notation is a function of A and B only.

PROOF. We may suppose, without loss of generality, that the common
chain segment is

(17-1) («_.«,£_+,_!),

Then, in the notation of § 2, (see [3]),

<Po = [al> a2> ' ' ' • a r . <Prl =

i = 0, 1, • • •, 2r+l .

9?0 == [ « !

from which it follows that

(17.2) \'Po~(p'o\

a, • • •, a r , <p'T] = Pr<Pr—pr-l

K<7r9>r-<7r-l)(?r?V-<7r-l)l

since from [3], pnqn-X-qnpn-X = 1 and |?r| > \qT_x\ > r—1. Similarly

(17.3) 60 = i

If « = [\r~\, where [a;] is the integral part of x, then since

\<Pl<Pi * * * 9 W l l

we have
\qn<pn-qn-i

i i

• • • <Pn
+ o - .
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506 P. E. Blanksby [50]

Now since <p1 and cp[ have at least the first n partial quotients identical,
we have by (17.2),

l«ll 7 = 7 < \<Pl—<Pl\

By an inductive argument it follows that, for / 5S n,

1 1

= fi'0+O ^j = fi'0

Thus by (17.4),

(17.5)

Similarly

(17.6)

Now F is of the form F = zoyol\do<po—l\, where by (17.2), (17.3),
(17.5), and (17.6)

Using (2.9), we obtain

Note that at each step of the argument the constant implied by the O
notation depends only on A and B.

This result will enable us to prove

THEOREM 17.2. For every k', such that 0 <: k' < k, there exist uncountably
many binary quadratic forms /, to each of which there corresponds at least one
real non-zero number a., with

M(f; a) = k'.

NOTE. It will become apparent that the following is really a straight
forward extension. There exist uncountably many 6, each for which there
correspond uncountably many pairs (<p, a) such that

inf
(0,0)

(dx+y)(x+(py+<x.)
= *'.
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[51] On the product of two linear forms 507

18. Construction of the chains (c*)

For convenience we will use the usual notation that any repeated chain
segment in a continued fraction expansion may be denoted by enclosing
it within brackets, subscripted by the number of repetitions.

We first note that Theorem 17.2 holds in the case k' = 0. Given any
integer s > 0, we can find an integer rs, such that for all r 2g rs,

(18.1) [(2)r, x] < 1 + j •

Consider any chain of the type (3.8), which has en = 0, for all n 2: 0,
and

Vo = [(2)frl, 4, (2)2Ti, 4, • • •, (2)2rf, 4, • • •].

Now at the central step of the block (2)2r, we have for the corresponding m,
by Theorem 2.4 and (18.1),

M ( 0 , i ) ( y . i ) (i/*) i

4 ( 0 l ) 4{(l + l / ) » - l } 5

The infimum of such a chain is consequently O, and there are un-
countably many sequences {r't}, with r'$ ^ra, for all s.

When k' > 0, we will construct a chain which is a modification of the
critical chain (c). Theorem 17.1 ensures us that, since all the partial quotients
of (c) are bounded below, there exists an integer N, such that no matter
how we change the chain (c), for n ^ N, we will always have Aff > k'.

Define co = [100] = 50+7V51, and an irrational (in general) number

( ^
4co

Since k' <\, then 0 < a < 1. If a is irrational, then expand I/a as a
semi-regular continued fraction to the integer above, and compute the
sequence of convergents {pjqn}, given by (2.7); if a is rational put
Pnlin = l/a f°r all n- It is known [3], that {pnlqn} converges to I/a from
above, and hence

(18.3) — ^ —, for all n.
q n <*•

Now let {rn} be a strictly monotone increasing sequence of positive
integers. Consider the chain denoted (c*), which is identical to c for all
n sS N (defined above), and for n > N has the form:
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508 P. E. Blanksby [52]

—42, 49,

0, 3,

—42, 100, 1000, /100\ —2mp1 /100\ — 2mp2 - - -

0, - 5 , 0, \ O / ^ 2mqx \ 0/2rj 2mq
i0, /100\ —2mp1 /100\ -

• • • /100\ -

• • • I o j 2 r <

2(18.4)
f\00\ —2mp,---

2 m q s •••

where m is an arbitrary positive integer, and the vertical line signifies the
point after which the chain differs from (c).

19. Evaluation of the infimum for the chain (c*)

(i) Without loss of generality, we can take a,N = 49, sN_1 = 3. All
the bounds on the variables for n < N conform to the requirements of
§ 7, implying that Mn > k', for n < N. Now

\<PN\O > \<PN\ > 42, 0.0499 < \juN\ < \fiN\c,

and 6N > 49.023, implying that M$ exceeds k, for i = 2, 3, 4. Also

(ejv-2.0015)(|yjyi-0.9501) (47.0215) (41.0499)
N . . . . . . -i 4{(49.023)(42) + l}

(ii) At the next step, clearly M^+1 > k, and

) ^ (40.9)(105.9) ^ fc
> 4(4201) > "•

Now since <pN+1 > {<pN+1)e, and ^ ^ l < \{iN+1\c, then we have
> W i i ) c > *• Also \6N+1\ > 42, cpN+1 > 99, | ^ + 1 | > 0.06, and

\fiN+1\ < 5.01, implying

(\eN+1\ -0.94) (yy + 1-4.01) (41.06) (94.99)

* + 1 4 ( l ^ | + l ) 4{(42)(99) + l} •

(iii) Now
( - i ) ^ i /^ + 8 + 2 f A 0

I 1
^ \9'jV+2+2r/

and | ^ + 2 | < 0.01, 5 < |A^+2| < 5.002, dN+2 > 100, <pN+z > 999. Clearly
> k.

(93.998) (998)
4{(100)(999) —1} >
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[53] On the product of two linear forms 509

(iv) Suppose that we examine a step in the chain for which an 2> 100,
an+1 ^ 100, and «„_! = en = 0; then |AJ < 1, and \fin\ < 1, implying

M > (fl«-

972

> 4(99»-l) > k>

Hence (i) to (iv) imply that the only steps in the chain that we still
need to examine are Mn and Mn+1, where an+1 = —2mps, for some s.
Let n and s denote such a position in the chain; then by the argument of
(iii) we have Xn < 0 and nn+1 < 0. We also have that

(19.1) 0 . > a>, <pn+1 > co.

Clearly MJ,1' > k. Using the methods of § 7, we obtain

( 9 , l + | A J ) ( | y J + l | / « . l ) = M<2)

WM + l)
if and only if

\K\ l/«»l
Now by the form of an+1 and sn,

is uniformly bounded for the particular « under consideration (the bound
being a function of k'). Since |^J may be made arbitrarily small by choosing
r$ suitably large, a suitable choice of rx enables the above condition to be
satisfied.

Similarly, we have M^] > M<?' if and only if

\<Pn\ — \Pn\ > - ;—rrT '
1 ^ l

XT

Now

is uniformly bounded, and by (18.3)

l̂ nl —li"«l > (2mps+0.01)—(2mqs+0.001)
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510 P. E. Blanksby [54]

and hence may be made large enough by a suitable choice of m. Thus we
may suppose M{*] > M^], and so Mn = M™, provided rt and m are chosen
(as functions of k') to be large enough. Now

a, 0.001
< T- + -,—r-

Thus by (19.1), (18.2) and (18.3),

(ft)-l)!|<pj/l— ™| +0.999

Mn> —V

4co

4<w

Now at the step Mn+1, the roles of |0K|, \<pn\ and 1^1, |AB| are inter-
changed, and the same bounds apply for the corresponding variables. Thus,
under the same conditions on r1 and m, we have

Mn+1 = Ml% > k'.

It therefore follows for the chain (c*) that

Mn > k', for all n.
Let

S = {w; an+1 = —2mps, for some s},

then since r. -> 00 as s -> 00, we have

lim

neS

lim

neS

\K

l in

neS

= o,

= ft),

M —
l y ± n

lim
n—>oo

neS

lim
tl—>-OO

neS

(to-

<Pn

ton

1)(
4«,

= lim

= 00.

1 - a )

— = a<

- k'

Hence

Consequently the infimum of the mixed form corresponding to (c*) is ^'.
There are uncountably many forms since {rn} is an arbitrary increasing se-
quence (except for rx), of which there are uncountably many to choose from.

1 In the case when I/a is rational, e.g. I/a = pjq, take pn = np and qn = n^.
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[55] On the product of two linear forms 511

Uncountably many d may be obtained in a similar way, from Theorem
17.1, by replacing 0_, = [5, 5, 2] with [4, (3)Si 4, ( 3 ) v • • •], for an arbitrary
increasing integer sequence {sn}, provided I is large enough. I do not give
the proof of this but it follows by straight forward calculations of the type
just given.
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