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Let (X, B, m) be a measure space and let f(z) be a real-valued or com-
plex-valued measurable function on X. A non-negative measurable function
s(xz) will be said to dominate f(z) provided |f(z)| < s{x) for almost all
in X. The function s(z) will be said to dominate the sequence {f,(x)},cn,
N ={1,2,---}, provided it dominates each f,(x) in the sequence. Unless
otherwise specified, each integral will be over X with respect to m.

Lebesgue’s theorem on dominated convergence [1], a cornerstone of
modern analysis, says (cf. [3, p. 29]) that if the sequence {f,(x)},.n of real-
valued measurable functions on X is dominated by an integrable function,
then

liminf f,(x) < liminf | f,(x)

and

lim sup f,(x) = lim sup | f,(x).

n=+ 00 - 00

Furthermore, if lim, . f,(x) exists for almost all x in X, then

f lim f, () = lim | f,(z).
- 00 n—>oo

The purpose of this note is to prove a converse to Lebesgue’s theorem.
Our proof is based on the following theorem of B. C. Rennie [2]: If the
sequence {f,(2)},en Of real-valued or complex-valued integrable functions tends
almost everywhere to a function f(z) on X, and if lim,, , , [ g(x)f.(x) = [ g(=)f(x)
for each bounded measurable function g(x) on X, then each infinite subsequence
of {fo(2)}nen Contains an infinite sub-subsequence which is dominated by an
integrable function.

We note that if the f,(z)’s are real-valued only, then in Rennie’s proof
it suffices to consider only those real-valued measurable functions g(z)
such that [g(z)] = 1 for each z in X.

THEOREM. Let {f.(%)}..n De a sequence of extended-real-valued in-
tegrable functions on X such that
411
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7{x) = lim sup f,(x) and s(x) = lim inf f,(z)

n- 0o n-co

are integrable, and let

R,(@) = (r v f,)(®) = max {r(z), {.(z)}

Sa(®) = (s n /a) (%) = min {s(z), },(2)}

for each x and n. If

and

lim | g(z)R fg and lim | g(z fg )s(x)
7n-00 n-s0

for each measurable function g(x) with range {1, —1}, then each infinite sub-
sequence of {f,(x)},n contains an infinite sub-subsequence which is dominated
by an integrable function.

ProoF. Let A be the set of all z in X such that 7(z) or s(x) or at least
one f,(x) is infinite. Since 4 is of measure zero, we may redefine the func-
tions on 4 without changing the values of their integrals on X and, hence,
without loss of generality in our proof. For each # in 4 and each # in N let
f.(x) = 0. Then 7(x) and s(z) and all /,(z), R,(x) and S,(z) are finite
everywhere.

In the sequel N(1), N(2) and N(3) will denote infinite subsets of N
such that N(1) DN (2) DN(3). Let N(1) be any infinite subset of N. For
each n e N(1) the function R, () is the least upper bound of two integrable
functions and is, therefore, integrable. Since 7(z) = limsup, . f,.(z) =
lim sup,,, R,(*) and since R,(x) = r(z) for each =z in X, we see that
lim,_, ., R,(#) = 7(x). By hypothesis lim,, [ g@)R,(x) = [ g(x)r(z) for
each measurable function g(x) with range {1, —1}. Thus the sequence
{R,(x)},n satisfies the hypotheses of Rennie’s theorem for real-valued
functions, and it follows that the subsequence {R,(z)}ncn¢y Contains an
infinite sub-subsequence {R, (%)},cnz dominated by an integrable function
R(z).

By an argument similar to the one above we can show that {S,(z)},.nx@
contains a subsequence {S,(z)},cx dominated by an integrable function
S{z). It follows that —S(x) = f,.(x) = R(x) for all « and all n e N(3),
and, hence, that the sub-subsequence {f,(%)},.n( is dominated by an
integrable function. Since {f,(%)}..yq) Was a generic subsequence of
{f.(®)},cn, the proof is complete.

We conclude by giving an example to show that the conditions of the
theorem do not require the sequence {f,(z)},.» to be convergent or to be
dominated by an integrable function. For each # in N let the function
f.(x) be defined on the half-open interval (0, 1] by
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0 if 0 <z <<l/(n+1),
fo(®) = (n if 1/(n41) =z <1/n,
(=Drif Ijn <z < 1.

Each f.(x) is integrable with respect to Lebesgue measure on (0, 1]. It
follows that
7(z) = lim sup f,(x) = 1,

n— 00

s(z) = lim inf f,(z) = —1,

if 1 1) < ,

R (2)=(rvf,) (@) = {’1” ;th!r(:;—e,) Sx<l/n
and

Sn(x) = (S nf,,)(x) = —1.
We note that r(z) and s(z) are integrable on (0, 1], and that

1 1
lim | R,(x) =f r(z).
n->004J 0 0

Let g(x) be a measurable function on (0, 1] such that |g(x)] = 1. It follows

that
1 1
lim [ g(@)R, () = f ¢l (@),

noood0

and it is trivial that

lim [ g(S,(e) = [ glosta).

n-+00J90

Let D, be a function on (0, 1] which dominates f,(x), fy(z), * « *, f¢(x). Since

f: Dy(w) = 3*., 1+ 1),

it follows that if a function D(x) dominates the sequence {f,(x)},.y On
(0, 1], then D(z) is not integrable.
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