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Let (X, B, m) be a measure space and let f(x) be a real-valued or com-
plex-valued measurable function on X. A non-negative measurable function
s(x) will be said to dominate f[x) provided \f(x)\ ^ s(z) for almost all x
in X. The function s(x) will be said to dominate the sequence {/n(a0}nejv,
N = {1, 2, • • •}, provided it dominates each fn{x) in the sequence. Unless
otherwise specified, each integral will be over X with respect to m.

Lebesgue's theorem on dominated convergence [1], a cornerstone of
modern analysis, says (cf. [3, p. 29]) that if the sequence {fn[x)}neN of real-
valued measurable functions on X is dominated by an integrable function,
then

and

fliminf/>) ^ lim inf ("/„(*)
J n-»oo n-»oo J

lim sup fn(x) ^ lim sup fn{x).
J n-*oo n-*oo J

Furthermore, if l im, .^ fn(x) exists for almost all x in X, then

f lim/„(*) = lim \fn(x).
J n-»oo n-*ooj

The purpose of this note is to prove a converse to Lebesgue's theorem.
Our proof is based on the following theorem of B. C. Rennie [2]: If the
sequence {fn{

x)}neN °f real-valued or complex-valued integrable functions tends
almost everywhere to a function f(x) on X, and if lim,,.^$g{x)fn(x) = Jg{x)f(x)
for each bounded measurable function g(x) on X, then each infinite subsequence
°f {fn(x)}neN contains an infinite sub-subsequence which is dominated by an
integrable function.

We note that if the /B(a;)'s are real-valued only, then in Rennie's proof
it suffices to consider only those real-valued measurable functions g(x)
such that \g(x)\ = 1 for each x in X.

THEOREM. Let {fn{x)}neN be a sequence of extended-real-valued in-
tegrable functions on X such that
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r(x) = lim sup/„ (a;) and s(x) = liminf fn(x)
n-»oo n-»oo

are integrable, and let

Rn(x) = (r u fn)(x) = max (r(x), /„(*)}
and

Sn{x) = (sn fn){x) = min {s(x), fn(x)}

for each x and n. If

lim \g(x)Rn(x) = I g(x)r(x) and lim | g{x)Sn(x) = \ g{x)s(x)

for each measurable function g(x) with range {1, —1}, then each infinite sub-
sequence of {fn{x)}neN contains an infinite sub-subsequence which is dominated
by an integrable function.

PROOF. Let A be the set of all x in X such that r(x) or s(x) or at least
one fn(x) is infinite. Since A is of measure zero, we may redefine the func-
tions on A without changing the values of their integrals on X and, hence,
without loss of generality in our proof. For each x in A and each n in N let
fn(x) = 0. Then r(x) and s(x) and all /„(#), Rn(x) and Sn(x) are finite
everywhere.

In the sequel N(l), N(2) and N(Z) will denote infinite subsets of N
such that N(1)DN(2)DN(3). Let #(1) be any infinite subset of N. For
each n eN(l) the function Rn(x) is the least upper bound of two integrable
functions and is, therefore, integrable. Since r(x) =\imsvLpn_tcofn(z) =
lim sup,,.,^ Rn(x) and since Rn{x) ~^r(x) for each x in X, we see that
l i n v ^ Rn{x) = r{x). By hypothesis l i n v ^ $ g(x)Rn{x) = f g(x)r{x) for
each measurable function g(x) with range {1, —1}. Thus the sequence
{Rn{x)}neN satisfies the hypotheses of Rennie's theorem for real-valued
functions, and it follows that the subsequence {Rn(x)}nemi) contains an
infinite sub-subsequence {R»(x)}nemz} dominated by an integrable function

By an argument similar to the one above we can show that {Sn(x)}nem2)
contains a subsequence {Sn(x)}neNl3) dominated by an integrable function
S(x). It follows that -S(x) ^fn{x) ^ R(x) for all x and all neN(Z),
and, hence, that the sub-subsequence {fn(x)}nem3) is dominated by an
integrable function. Since {fn{

x)}nem\) w a s a generic subsequence of
{fn(

x)}neN> t n e proof is complete.
We conclude by giving an example to show that the conditions of the

theorem do not require the sequence {/„(*)}neN to be convergent or to be
dominated by an integrable function. For each n in N let the function
fn(x) be defined on the half-open interval (0, 1] by
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!

0 if 0 < x <

n if l/(n+l) ^ x < \\n,
(-l)-if 1/fi^a^l.

Each /„(#) is integrable with respect to Lebesgue measure on (0, 1]. It
follows that

r(x) =limsup/n(a;) = 1,
n-»oo

s(x) = liminf fn(x) = — 1 ,
n-»oo

n if 1/1
and

We note that r(x) and s(x) are integrable on (0, 1], and that

Mm F Rn(x) = Fr(x).
n-»ooJo Jo

Let g(x) be a measurable function on (0, 1] such that \g(x)\ = 1. It follows
that

lim (1g(x)Rn(x) = Fg{x)r[x),
n-*ooJ0 Jo

and it is trivial that

lim I g{x)Sn{x) = I g{x)s(x).
n-»ooJo JO

Let Dk be a function on (0, 1] which dominates f^x), /2(#), • • ", /*(«)• Since

Jo

it follows that if a function D(x) dominates the sequence {fn{x)}neN on
(0, 1], then D[x) is not integrable.
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