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SOLVABLE SUBGROUPS AND THEIR LIE ALGEBRAS IN 
CHARACTERISTIC p 

DAVID J. W I N T E R 

1. Introduction. Throughout this paper, G is a connected linear algebraic 
group over an algebraically closed field whose characteristic is denoted p. For 
any closed subgroup H of G, h denotes the Lie algebra of H and H° denotes the 
connected component of the identity of H. 

A Borel subalgebra of g is the Lie algebra b of some Borel subgroup B of G. 
A maximal torus of g is the Lie algebra t of some maximal torus T of G. In [4], 
it is shown that the maximal tori of g are the maximal commutative subalgebras 
t_ of g consisting of semisimple elements, and the question was raised in § 14.3 
as to whether the set of Borel subalgebras of g is the set of maximal triangul-
able subalgebras of g. 

In this paper, we give an example showing that this is not true and show for 
p > 3 that the set of Borel subalgebras of g is, rather, the set of those maximal 
solvable subalgebras of g which contain a maximal torus of g. The upshot of 
this is that Borel subalgebras (as well as maximal tori) of g can, for p > 3, be 
characterized within the language of restricted Lie algebras (see [6], [8]). 
(It would be very interesting to know what happens for p = 2,3. The situation 
there appears to be quite complicated, especially in characteristic p = 2, and 
requires methods different than those of this paper.) 

We also examine the normalizer N(t) and centralizer C(t) in G of a maximal 
torus t of g. The latter group C(t), unexpectedly, is connected. (It is pointed 
out in [1] that C(s) need not be connected for every torus s). The Weyl group 
W(t) = N(t)/C(Û of g is isomorphic to the Weyl group W(T) = N(T)/C(T) 
of G (although both N(t), C(t) generally are larger than N(T), C(T)). More
over, W(t) acts transitively on the set of Borel subalgebras of g. 

2. Borel subalgebras of g. We assume in this section that p > 3 and begin 
by stating without proof a simple proposition on root grcups which can easily 
be verified by examining the root systems of the rank 1 and 2 groups Ai, 
A i X A i, A 2, B2, G2 generated by the root groups Ua. 

2.1. PROPOSITION. Let G be semisimple with maximal torus T, set of roots R, 
root groups Ua and root spaces ga = ua (a Ç R). Then 
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1. ka, gbi = W if and only if [Uaj Ub] = {1}; and 
2. [Ua, Ub] 7* \l) if and only if a + b £ gKJ {0} ; so that 
3. [ga,g*l * {0} if and only if a+ b e | U | 0 | . 

We now establish the restricted Lie algebra characterization of Borel sub-
algebras. 

THEOREM. The Borel subalgebras of g are those maximal solvable subalgebras b 
of g which contain a maximal torus t of g. 

Proof. Let b be a maximal solvable subalgebra of g containing a maximal 
torus / of g. Letting R be the radical of G and ir : G —> G = G/R the canonical 
homorphism, the differential dir : g —• g = g/r is surjective (see [4; p. 82]) and 
preserves maximal tori (see [8; 2.16]). It follows that the image b = dwb is a 
maximal solvable subalgebra of g containing the maximal torus I = dirt of ~g. 
This shows that it suffices to prove the theorem for G semisimple, for then b 
would be the Lie algebra of a Borel subgroup B of G, whence b would be the 
Lie algebra of the Borel subgroup B = T~~1(B) of G. Consider the root space 
decomposition g = t + Ya^R ga> For a £ R, ga is of dimension 1. Since O ^ , 
it follows that b = t + Sa^s ga for some subset S of -R. Since g-a + fg-a» _ga] + ga 
is semisimple for all a (e.g. see [4; p. 12]) and since B is solvable, S 
and —5 = { — a\a G S] are disjoint. Furthermore, 5 is closed in the sense that 
for any a, b £ S_ for which a -j- b (z R, a -\- b is also in S (since a + b ^ 0 and 
[|o, g&] = g«+6 C_^ by the above proposition). Since 5 satisfies these two con
ditions, S is contained in the set of positive roots for some ordering ([3 ; p. 163] ), 
so thatjfr is contained in and therefore equal to the corresponding Borel sub
algebra. (We use here the maximal solvability of b in_g). 

We now construct a maximal triangulable subalgebra of g which is not a 
Borel subalgebra of g. For this, it is convenient and informative to state with
out proof the following proposition on which the example is based. 

PROPOSITION. Let G be semisimple and express G as G = G1G2 . . . Gn (almost 
direct) where the Gf are almost simple closed normal subgroups of G. Let x be a 
nilpotent element of g, b_a Borel subalgebra of g containing a maximal torus of g, 
u the ideal of nilpotent elements of b. Then 

1. x can be expressed uniquely as x = YA xt where xt is nilpotent and xt £ gi 
for 1 ^ i ^ n; 

2. b contains x if and only if b contains xtfor 1 ^ i S n; 
3- u = H ^ ^ | < (direct). 

To construct the example, take G to be semisimple of type ^4p_i X Av-\ and 
of isogeny class such that G = G1G2 (almost direct) where Gt is a closed con
nected normal subgroup of G of type Ap-i with gt isomorphic to the Lie algebra 
h of linear transformations of trace 0 in a vector space V over F of dimension 
p for i = 1,2 and where gi f~\ g2 is the center of gt for i = 1, 2. (See [4], 10.4.) 
The Lie algebra h is unusual in that the center of h is spanned by the identity 
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transformation t and t = [m, n] where m and n are t ransformations defined 
in terms of a basis e\, . . . , ep by e^m = jej+i (1 ^ j ^ p — 1), epm = 0, 
e ;n = ej-i (2 ^ j ^ p), eiti = 0. Thus , there exist elements mu nt in gt such 
tha t [mj, Hi] = tt is nonzero and spans the center of g 7- for i = 1, 2. Since gi 
and g2 have the same one-dimensional center, we can choose the mu nu tt such 
t ha t [mi, ni] = ti = t2 = [m2, n2]. Let w = Wi + m2, n = n\ — n2. Note t h a t 
[gi> £2] = {0} since [Gi, G2] = {1}. Since the mu nt are ni lpotent , m and n are 
therefore nilpotent. Moreover, [m, n] = [mi, wi] — [m2, ?z2] = /1 — h = 0! 
Thus , w = m F + wF is an abelian subalgebra of g consisting of ni lponent ele
ments . I t is certainly tr iangulable, bu t it is not contained in a maximal solvable 
suba lgebra^ of g containing a maximal torus of g. For if it were, the ni lpotent 
elements m = mi + m2 and n = n\ — n2 of b would have components mj, 
w2 , ni, — n2 in b by the above proposition. Bu t t h a t would be impossible since 
[&, b] consists of ni lpotent elements (since b is t r iangulable) and therefore 
cannot contain the nonzero semisimple element [mi, n{\ = h. Thus , no maxi
mal tr iangulable or maximal solvable subalgebra of g containing u contains a 
maximal torus of g. Fur thermore , the subspace u + Fm\ + Fti is a solvable 
subalgebra which is not tr iangulable since its derived algebra contains the 
nonzero semisimple element [mi, m] = [mi, m2] = t\. 

3. T h e Weyl g r o u p of g. For this section, we drop the assumption p > 3. 
Le t^ be a maximal torus of g and T a maximal torus of G with Lie algebra t. 

We cannot precisely compare the normalizers N(t) = {x G G\x~ltx C t) and 
N(T) = {x G G\x~lTx C T) or the centralizers 

C(t) = {x G G\x~Hx = t for all t G t\ 

and C(T) = {x G Glx^/x = / for all i f T) , bu t we can closely relate the 
Weyl group W(t) = N(t)/C(t) of g with the Weyl group W(T) = N{T)/C(T) 
of G and establish t ha t C(t) is connected. W e begin with the solvable case, 
which is settled by the following proposition. (This proposition is also proved 
in [2, Prop. 4.7]. Note t h a t t need not be maximal in the proposit ion.) 

PROPOSITION. Let G be solvable. Then N(i) and C(t) are connected and 
N(t) = C(t). 

Proof. Let x G N(t) and note t h a t x~lC{t)x = C(t). I t follows t h a t x~lTx C 
C(t)o, so t h a t x~xTx = y~lTy for some y G C(t)o by the conjugacy of the 
maximal tori x~lTx and T of C(£)o- Bu t then xy~l G N(T) = C(T) C C(t)0i 

so t ha t x mus t be in C(£)Q. This is t rue for all x G -Af(£). I t follows 
t h a t N(t) = C(t) = C(f)o, which was to be proved. 

T H E O R E M . C(t) is connected for any maximal torus t of g. 

Proof. Let B be a Borel subgroup of G containing T. Let x G C(t). T h e 
automorphism Ad x : y —» x - 1 ^ of g keeps fixed each element of t and there
fore stabilizes each root space ga of t in g. 
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Since b is a sum of such root spaces, b is stable so that x is in the normalizer 
N(b) of b in G. But B = N(b) (see [4; 14.5] and [2; 2.5 and 2.6]), so that 
x Ç B. Thus, we have C(t) C $ , so that C(t) is connected by the above prop
osition for the solvable case. 

THEOREM. The Weyl group W(t) = N(t)/C(t) acts simply transitively on the 
set of B or el subalgebras of g containing t_ and W(T) is isomorphic to W(t) under 
the canonical mapping xC(T) v-±xC(t). 

Proof. The Borel subgroups B of G and Borel subalgebras b of g are in 1 — 1 
correspondence relative to B >—» b and fr f—> N(b) (see [4, 14.5], [2, 2.5 and 2.6]). 

We have seen in the proof of the above theorem that x~lbx = b for x G C(t) 
and b a Borel subalgebra of g containing^. Furthermore, N(t) acts transitively 
on the set of Borel subalgebras b containing t by the above correspondence, 
since N(t) Z) N(T) and N(T) acts transitively on the Borel subgroups of G 
containing T and therefore also on the Borel subalgebras of g containing /. 
Suppose that x Ç N(t) and x~lbx = b. Then x Ç N(b) = B, a Borel subgroup 
of G with Lie algebra b containing^. By the above proposition for the solvable 
case, we therefore have x G C(t). Thus, W(t) = N{t)/C(t) acts simply transi
tively on the set of maximal solvable subalgebras b containing L Since 
W(T) = N(T)/C(T) also acts simply transitively on the same set, it is now a 
simple exercise to show that the mapping xC(T) \-+ C(t) is an isomorphism 
from W(T) to W(t). 
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