PARALLEL GURVES

G. P. HENDERSON

In the Euclidean plane a curve C has a one-parameter family of parallel involutes and a unique evolute C^{*} which coincides with the locus of the centres of the osculating circles of C. If \bar{C} is parallel to C, C^{*} is also the evolute of \bar{C}.

We will study parallel curves in n-dimensional Euclidean space and obtain generalizations of the properties given above.

Definition. Curves C and \bar{C} are parallel if there is a one-to-one correspondence between their points such that the tangents at corresponding points are parallel and such that the join of corresponding points is perpendicular to the tangents.

This definition was given by Da Cunha (1).
It follows at once that parallelism is an equivalence relation.
We denote the position vector of a point on a curve C in n-space by r. We suppose that r is an $(n+1)$-times differentiable function of the arc length s of C. Let C have the moving n-hedron ξ_{1}, \ldots, ξ_{n} and non-vanishing curvatures k_{1}, \ldots, k_{n-1}. We use corresponding notations for curves \bar{C}, \widetilde{C}, etc.

If C and \bar{C} are parallel, the distance between corresponding points is constant as we see by differentiating $(\bar{r}-r)^{2}$.

To find the curves \bar{C} parallel to a given curve C we put

$$
\begin{equation*}
\bar{r}=r+\sum_{1}^{n} u_{i} \xi_{i} \tag{1}
\end{equation*}
$$

where u_{1}, \ldots, u_{n} are scalar functions of s to be determined. Since $(\bar{r}-r) \xi_{1}=0$, $u_{1}=0$. Differentiating (1) and using the Frenet formulae

$$
\begin{equation*}
\xi_{i}^{\prime}=-k_{i-1} \xi_{i-1}+k_{i} \xi_{i+1} \quad(i=1, \ldots, n) \tag{2}
\end{equation*}
$$

in which $k_{0}=k_{n}=0, k_{i}>0,(i=1, \ldots, n-1)$, we obtain

$$
\bar{\xi}_{1} \bar{s}^{\prime}=\left(1-k_{1} u_{2}\right) \xi_{1}+\sum_{2}^{n}\left(u_{i}^{\prime}-k_{i} u_{i+1}+k_{i-1} u_{i-1}\right) \xi_{1}
$$

Since

$$
\begin{equation*}
\bar{\xi}_{1}=\epsilon \xi_{1} \tag{3}
\end{equation*}
$$

$$
(\epsilon= \pm 1)
$$

we have

$$
\begin{equation*}
\bar{s}^{\prime}=\epsilon\left(1-k_{1} u_{2}\right) \tag{4}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
u_{i}^{\prime}=-k_{i-1} u_{i-1}+k_{i} u_{i+1} \quad(i=2, \ldots, n) \tag{5}
\end{equation*}
$$

\]

These differential equations determine an $(n-1)$-parameter family F_{n-1} of parallel curves. We see that there is exactly one \bar{C} through every point of the common normal ($n-1$)-space $H_{n-1}(s)$.

We assume that \bar{s} is defined so that $\bar{s}^{\prime}>0$. Differentiating (3) we find

$$
\begin{equation*}
\bar{\xi}_{i}=\epsilon \xi_{i}, \quad \bar{k}_{i} \bar{s}^{\prime}=k_{i} \quad(i=1, \ldots, n) \tag{6}
\end{equation*}
$$

In connection with these equations for \bar{k}_{i}, it should be mentioned that if the curvatures never vanish, the sense of the vectors of the moving n-hedron of a curve will be chosen so that the curvatures are positive.

Let $C_{\lambda}: r_{\lambda}=r_{\lambda}(s)$ be a set of curves parallel to C. Since the distances $\left|r_{\lambda}-r_{\mu}\right|$ are constant, the figure consisting of the points r_{λ} will move rigidly as s varies. If a subfamily F_{p} of F_{n-1} intersects say $H_{n-1}\left(s_{0}\right)$ in a linear p-space then F_{p} intersects every $H_{n-1}(s)$ in a linear p-space $H_{p}(s)$. Thus the concept of linear dependence can be applied to parallel curves.

Lemma 1. Let

$$
C_{j}: r_{j}=r+\sum_{i=1}^{n} u_{i j} \xi_{i} \quad(j=1, \ldots, p)
$$

be p curves in $F_{n-1} . C, C_{1}, \ldots, C_{p}$ span an F_{p} if and only if the Wronskian of $u_{21}, \ldots, u_{2 p}$ does not vanish.

Proof. The equations (5) imply that the $u_{2 i}$ are ($n-1$)-times continuously differentiable solutions of a linear homogeneous differential equation of order $n-1$ with continuous coefficients. Hence if the Wronskian vanishes, the $u_{2 i}$ are linearly dependent (2, p. 116). That is, there exist constants α_{i}, not all zero, such that

$$
\begin{equation*}
\sum_{1}^{p} u_{2 i} \alpha_{i}=0 \tag{7}
\end{equation*}
$$

and since $\left(r_{i}-r\right)^{\prime}=-k_{1} u_{2 i} \xi_{1}$, we have

$$
\sum_{1}^{p} \alpha_{i}\left(r_{i}-r\right)^{\prime}=0
$$

and

$$
\begin{equation*}
\sum_{1}^{p} \alpha_{i}\left(r_{i}-r\right)=r_{0}=\mathrm{a} \text { constant vector. } \tag{8}
\end{equation*}
$$

Since $\left(r_{i}-r\right) \xi_{1}=0, r_{0} \xi_{1}=0$; so that if $r_{0} \neq 0, C$ is in an $(n-1)$-space which contradicts $k_{n-1} \neq 0$. Hence $r_{0}=0$ and the $r_{i}-r$ are dependent. On the other hand (7) can be obtained from (8) by differentiating.

Lemma 2. The curves C, C_{1}, \ldots, C_{p} of Lemma 1 span an F_{p} if and only if the determinant $\left|u_{i j}\right| \neq 0(i=2, \ldots, p+1 ; j=1, \ldots, p)$.
Proof. Using (5) we find that $k_{2}{ }^{p-1} k_{3}{ }^{p-2} \ldots k_{p}\left|u_{i j}\right|$ is the Wronskian of u_{21},

Lemma 3. If C is on a hypersphere, every curve \bar{C} parallel to C is on a concentric hypersphere.

Proof. Let r_{0} be the centre of the hypersphere on which C lies. Then $\left(r-r_{0}\right) \xi_{1}=0$ and $\left(\bar{r}-r_{0}\right) \bar{\xi}_{1}=\epsilon(\bar{r}-r) \xi_{1}+\epsilon\left(r-r_{0}\right) \xi_{1}=0$. Thus \bar{C} is on a hypersphere with centre r_{0}.

Definition. ${ }^{1} C$ is a p th involute of C_{p}^{*} and $C^{*}{ }_{p}$ is a p th evolute of C if C is an orthogonal trajectory of the osculating p-spaces of $C^{*}{ }_{p}(p=1, \ldots, n-1)$.

Theorem 1. The pth involutes of a curve form an F_{p}.
Proof. Let $\tilde{C}: \tilde{r}=\tilde{r}(s)$ be a p th involute of C. We can write

$$
\tilde{r}=r+\sum_{i=1}^{p} a_{i} \xi_{i}
$$

in which the a_{i} are to be determined so that $\tilde{\xi}_{1} \xi_{i}=0(i=1, \ldots, p)$. These conditions are satisfied if and only if

$$
\begin{align*}
a_{1}^{\prime}=k_{1} a_{2}-1, \quad a_{i}^{\prime}=k_{i} a_{i+1}-k_{i-1} a_{i-1}, \quad a_{p}^{\prime}=- & k_{p-1} a_{p-1} \tag{9}\\
& (i=2, \ldots, p-1),
\end{align*}
$$

and when the a_{i} are chosen in this way, a_{p} does not vanish identically and $\tilde{\xi}_{1}=$ $\pm \xi_{p+1}$ whenever $a_{p} \neq 0$.

Let $\widetilde{C}_{(1)}$ and $\widetilde{C}_{(2)}$ be p th involutes of C. $\tilde{\xi}_{1(1)}$ is parallel to $\tilde{\xi}_{1(2)}$ since each is parallel to ξ_{p+1} and

$$
\left(\tilde{r}_{(1)}-\tilde{r}_{(2)}\right) \tilde{\xi}_{1(1)}= \pm\left(\tilde{r}_{(1)}-\tilde{r}_{(2)}\right) \xi_{p+1}=0
$$

Thus $\widetilde{C}_{(1)}$ and $\widetilde{C}_{(2)}$ are parallel.
Since (9) is a system of linear non-homogeneous differential equations for the a_{i}, we can determine $\tilde{r}_{(1)}, \ldots, \tilde{r}_{(p+1)}$ so that $\tilde{r}_{(1)}-\tilde{r}_{(i)}(i=2, \ldots, p+1)$ are independent. Then if \tilde{r} is any other p th involute $\tilde{r}_{(1)}-\tilde{r}, \tilde{r}_{(1)}-\tilde{r}_{(i)}$ are dependent. Thus the p th involutes form an F_{p}.

Next we find some necessary conditions in order that $C^{*}{ }_{p}$ shall be a p th evolute of C. Let $S^{*}{ }_{p}(s)$ be the osculating p-space of $C^{*}{ }_{p}$. Put

$$
\begin{equation*}
r_{p}^{*}=r+\sum_{1}^{n} b_{i} \xi_{i} . \tag{10}
\end{equation*}
$$

The b_{i} are to be determined so that $r^{*}{ }_{p}-r$ is in $S^{*}{ }_{p}$ and so that ξ_{1} is orthogonal to $S^{*}{ }_{p}$. We see that $b_{1}=0$ and differentiating (10) and using $r^{*}{ }^{(i)} \xi_{1}=0(i=$ $1, \ldots, p$) we obtain

$$
\begin{equation*}
b_{i}=c_{i} \quad(i=1, \ldots, p+1) \tag{11}
\end{equation*}
$$

where c_{1}, \ldots, c_{n} are defined by

$$
\begin{equation*}
c_{1}=0, k_{1} c_{2}=1, c_{i}^{\prime}=-k_{i-1} c_{i-1}+k_{i} c_{i+1} \quad(i=2, \ldots, n-1) \tag{12}
\end{equation*}
$$

[^1]Hence b_{1}, \ldots, b_{p+1} are known. We will show later that the remaining b_{i} can be determined so that C_{p}^{*} is a p th evolute ($p \neq n-1$ if C is on a hypersphere).

Theorem 2. In general the curves of an F_{p} have exactly one common pth evolute $C^{*}{ }_{p}$. There is an exception if and only if the members of F_{p} are on concentric hyperspheres whose common centre lies on all the $H_{p}(s)$. In this case there is no common pth evolute.

Proof. Let C, C_{1}, \ldots, C_{p} span F_{p}. If $C^{*}{ }_{p}$ is a common p th evolute of these curves, then $C^{*}{ }_{p}$ is a p th evolute of every member of F_{p}. For $r^{*}{ }_{p}-r, r^{*}{ }_{p}-r_{i}$, ($i=1, \ldots, p$) are in S_{p}^{*} and ξ_{1} is orthogonal to $S^{*}{ }_{p}$. If

$$
\bar{r}=r+\sum_{1}^{p} \alpha_{i}\left(r_{i}-r\right)
$$

is any other curve in $F_{p}, r^{*}-\bar{r}$ is in S_{p}^{*} and $\bar{\xi}_{1}$ is orthogonal to S_{p}^{*}. Thus as far as common p th evolutes are concerned we can replace F_{p} by C, C_{1}, \ldots, C_{p}.

Since $r_{p}^{*}-r, r_{p}^{*}-r_{j}(j=1, \ldots, p)$ are dependent and the $r_{j}-r$ are independent we can write

$$
\begin{equation*}
r_{p}^{*}=r+\sum_{1}^{p} \lambda_{j}\left(r_{j}-r\right) . \tag{13}
\end{equation*}
$$

Putting

$$
r_{j}=r+\sum_{i=2}^{n} u_{i j} \xi_{i}
$$

we have

$$
r_{p}^{*}=r+\sum_{j=1}^{p} \sum_{i=2}^{n} u_{i j} \lambda_{j} \xi_{i}
$$

But $C^{*}{ }_{p}$ is a p th evolute of C. Hence by (11), $\left(r^{*}{ }_{p}-r\right) \xi_{i}=c_{i}(i=1, \ldots$. $p+1)$. Thus

$$
\begin{equation*}
\sum_{j=1}^{p} \lambda_{j} u_{i j}=c_{i} \quad(i=2, \ldots, p+1) \tag{14}
\end{equation*}
$$

By Lemma 2, the determinant $\left|u_{i j}\right|$ is not zero so these equations determine λ_{j} uniquely. Thus there is not more than one common p th evolute of the curves of F_{p} and if there is one it is the curve $C^{*}{ }_{p}$ given by (13) and (14).

Suppose now, first, that the vectors $r^{*}{ }_{p}{ }^{(i)}(i=1, \ldots, p)$ are linearly independent. We then prove that $C^{*}{ }_{p}$ actually is a common p th evolute. Differentiating (13) and using $r^{*}{ }_{p}{ }^{(i)} \xi_{1}=0$, we obtain

$$
r_{p}^{*(i)}=\sum_{j=1}^{p} \lambda_{j}^{(i)}\left(r_{j}-r\right), \quad(i=1, \ldots, p)
$$

Since the $r^{*}{ }_{p}^{(i)}$ are independent, we can solve these equations for the vectors $r_{j}-r$ in terms of $r^{*}{ }^{\left({ }^{(i)}\right.}$. Now writing
$r_{j}=r+\left(r_{j}-r\right)=r_{p}^{*}-\sum_{i=1}^{p} \lambda_{i}\left(r_{i}-r\right)+\left(r_{j}-r\right)=r_{p}^{*}+$ a vector in S_{p}^{*},
we see that the point r_{j} is in S_{p}^{*}. Since we also have ξ_{1} perpendicular to $S^{*}{ }_{p}$, $C^{*}{ }_{p}$ is the common p th evolute.

Suppose next that the vectors $r^{*}{ }_{p}{ }^{(i)}$ are dependent so that $C^{*}{ }_{p}$ is less than p-dimensional. We can write

$$
r_{p}^{*}{ }_{(p)}=\sum_{i=1}^{p-1} d_{i} r_{p}^{*}{ }^{(i)}
$$

and differentiating this,

$$
r_{p}^{*}{ }_{p}^{(p+1)}=\sum_{i=1}^{p-1} d_{i} r_{p}^{*}{ }_{p}^{(i)}+d_{i} r_{p}^{*}{ }^{(i+1)} .
$$

Since $r^{*}{ }^{(i)} \xi_{1}=0(i=1, \ldots, p), r^{*}{ }_{p}{ }^{(p+1)} \xi_{1}=0$. Further differentiations yield $r^{*}{ }_{p}{ }^{(i)} \xi_{1}=0(i=1, \ldots, n)$. When we differentiate $r^{*}{ }_{p}{ }^{(i)} \xi_{1}=0$ we obtain $r^{*} p^{(i)} \xi_{2}=0(i=1, \ldots, n-1)$. Continuing this, we have $r^{*}{ }_{p} \xi_{j}=0(j=1$, \ldots, n); hence $r^{*}{ }_{p}{ }^{\prime}=0$ and $C^{*}{ }_{p}$ reduces to a point. Thus there is no common p th evolute. By (13), r^{*} is on $H_{p}(s)$ and since $\left(r^{*}{ }_{p}-r\right) \xi_{1}=0, C$ is on a hypersphere with centre $r^{*}{ }_{p}$.

Finally we show that if C is on a hypersphere with centre r_{0} and if r_{0} is in $H_{p}(s)$, there is no common p th evolute. We can write

$$
r_{0}=r+\sum_{1}^{p} \mu_{i}\left(r_{i}-r\right), \quad r_{0}^{(j)} \xi_{1}=0 \quad(j=1, \ldots, p)
$$

But these are the conditions which determine $r^{*}{ }_{p}$ and λ_{i}. Thus $r^{*}{ }_{p}=r_{0}$, and the result follows.

We observe that there is a $(1-1)$ correspondence between p th evolutes of C and p-spaces in $H_{n-1}(s)$ through r.

Theorem 3. The hypersphere with centre $r^{*}{ }_{p}$ and radius $\left|r_{p}{ }_{p}-r\right|$ has at least $(p+1)$ th order contact with C at r.
Proof. The points of intersection of C and the hypersphere with centre $r_{p}^{*}\left(s_{0}\right)$ and radius $\left|r^{*}{ }_{p}\left(s_{0}\right)-r\left(s_{0}\right)\right|$ are obtained by solving the equation

$$
f(s) \equiv\left[r(s)-r_{p}^{*}\left(s_{0}\right)\right]^{2}-\left[r\left(s_{0}\right)-r_{p}^{*}\left(s_{0}\right)\right]^{2}=0
$$

for s. We find

$$
f^{(i)}(s)=2\left[r_{p}^{*}(s)-r_{p}^{*}\left(s_{0}\right)\right] r^{(i)}(s) \quad(i=1, \ldots, p+1) .
$$

Therefore

$$
f^{(i)}\left(s_{0}\right)=0 \quad(i=1, \ldots, p+1)
$$

Consider the $(n-1)$ th evolute $C^{*}{ }_{n-1}=C^{*}$. Assuming that C is not on a hypersphere, C^{*} is the $(n-1)$ th evolute of every member of F_{n-1} and by Theorem $3, C^{*}$ is the locus of the centres of the osculating hyperspheres of every curve in F_{n-1}. Thus the family of parallel curves has a common locus of centres of osculating hyperspheres. (This is true even in C if on a hypersphere).

Next we obtain the relationship between the moving n-hedrons of C and C^{*}. Since

$$
r^{*}=r+\sum_{2}^{n} c_{i} \xi_{i}
$$

$r^{* \prime}=\left(c_{n}^{\prime}+k_{n-1} c_{n-1}\right) \xi_{n}$, and we see that C is on a hypersphere if and only if
$c_{n}^{\prime}+k_{n-1} c_{n-1}=0$. We will assume that this expression never vanishes and that s^{*} is defined so that $s^{* \prime}<0$. Then $s^{* \prime}=\left(c_{n}^{\prime}+k_{n-1} c_{n-1}\right) \epsilon^{*}$ and $\xi^{*}{ }_{1}=\epsilon^{*} \xi_{n}$, where $\epsilon^{*}= \pm 1$. Further differentiations yield

$$
\begin{equation*}
\xi_{i}^{*}=\epsilon^{*} \xi_{n+1-i}, \quad k_{i}^{*} s^{*}=-k_{n-i} \quad(i=1, \ldots, n) \tag{15}
\end{equation*}
$$

Definition. The p th polar developable D_{p} of $F_{n-1}(p=1, \ldots, n-1)$ is the surface

$$
\begin{equation*}
z_{p}=r+\sum_{1}^{p+1} c_{i} \xi_{i}+\sum_{p+2}^{n} y_{i} \xi_{i} \tag{16}
\end{equation*}
$$

in which $s, y_{p+2}, \ldots, y_{n}$ are parameters.
A particular curve C of F_{n-1} has been used in this definition. In order to justify this we will prove that the same surface is obtained if we use any other curve

$$
\bar{C}: \bar{r}=r+\sum_{1}^{n} u_{i} \xi_{i}
$$

of F_{n-1}. We now have

$$
\begin{aligned}
\bar{z}_{p} & =\bar{r}+\sum_{1}^{p+1} \bar{c}_{i} \bar{\xi}_{i}+\sum_{p+2}^{n} \bar{y}_{i} \bar{\xi}_{i} \\
& =r+\sum_{i}^{p+1}\left(\epsilon \bar{c}_{i}+u_{i}\right) \xi_{i}+\sum_{p+2}^{n}\left(\epsilon \bar{y}_{i}+u_{i}\right) \xi_{i}
\end{aligned}
$$

Using (4), (5), (6) and (12) we obtain $\epsilon \bar{c}_{i}+u_{i}=c_{i}(i=1, \ldots, n)$ so that $\bar{z}_{p}=z_{p}$.

Theorem 4. (a) The p th evolutes of a member of F_{n-1} are on D_{p}.
(b) D_{p+1} is the envelope of the $(n-p-1)$-spaces which generate $D_{p}(p=1$, $\ldots, n-2)$.
(c) If C is not on a hypersphere, D_{p} is generated by the $(n-p-1)$-dimensional osculating spaces of $C^{*}=D_{n-1}$.
(d) If F_{p} has a pth evolute, this evolute is the locus of the point of intersection of $H_{p}(s)$ and the corresponding generator of D_{p}.
(e) The first evolutes of the curves in F_{n-1} are geodesics on D_{1}.
(f) If $x=x(s)$ is a geodesic on D_{1} and is not a straight line, x is a first evolute of some member of F_{n-1}.

Proof. (a) Compare (10), (11) and (16).
(b) The equations of a generator of D_{p} are $(R-r) \xi_{i}=c_{i}(i=1, \ldots$, $p+1)$. Differentiating these, we see that there is an envelope and that it is D_{p+1}.
(c) The $(n-p-1)$-dimensional osculating spaces of C^{*} are

$$
R=r^{*}+\sum_{i}^{n-p-1} y_{i}^{*} \xi_{i}^{*}
$$

in which the $y^{*}{ }_{i}$ are parameters. This is

$$
R=r+\sum_{i}^{n} c_{i} \xi_{i}+\sum_{p+2}^{n} \epsilon^{*} y_{n+1-i}^{*} \xi_{i},
$$

using (15). When we put

$$
c_{i}+\epsilon_{\epsilon^{*}}^{y_{n+1-i}}=y_{i} \quad(i=p+2, \ldots, n)
$$

R becomes z_{p}.
(d) Let C, C_{1}, \ldots, C_{p} span F_{p} and let the point of intersection of $H_{p}(s)$ and the generator be R. Since R is in H_{p},

$$
R=r+\sum_{1}^{p} \mu_{i}\left(r_{i}-r\right)
$$

The generator is $(R-r) \xi_{j}=c_{j}(j=1, \ldots, p+1)$. The unique solution of these equations is $\mu_{i}=\lambda_{i}, R=r^{*}{ }_{p}$.
(e) The principal normal of $C^{*}{ }_{1}$ is $\pm \xi_{1}$ which is normal to D_{1}. Hence $C^{*}{ }_{1}$ is a geodesic.
(f) We will show that every first involute of $x=x(s)$ is parallel to C. Let $y=y(s)$ be a first involute of x. Since x is a geodesic, $\xi_{2(x)}= \pm \xi_{1}$ and since y is a first involute of $x, \xi_{1(y)}= \pm \xi_{2(x)}$. Thus $\xi_{1(y)}$ is parallel to ξ_{1}. Also $(y-r) \xi_{1}$ $=(y-x) \xi_{1}+(x-r) \xi_{1}$. The first term of this is zero because $y-x$ is parallel to $\xi_{1(x)}$ and the second term is zero because x is on D_{1}. Hence $y=y(s)$ is parallel to C.

Next we want to develop D_{1} on an ($n-1$)-space and determine the point of the $(n-1)$-space which corresponds to $\left(s, y_{3}, \ldots, y_{n}\right)$ of D_{1}. Since D_{1} is the tangent hypersurface of $C^{*}{ }_{n-1}$ (provided C is not on a hypersphere) we will first see how to develop the tangent hypersurface of a given curve C on an ($n-1$)-space H. Vectors in H will be denoted by capital letters.
C will roll along a curve $R=R(s)$ in H and R will have arc length s. The point

$$
z=r+\sum_{1}^{n-2} y_{i} \xi_{i}
$$

of the tangent hypersurface is mapped on

$$
Z=R+\sum_{1}^{n-2} y_{i} T_{i}
$$

where $\left(T_{1}, \ldots, T_{n-1}\right)$ is the moving $(n-1)$-hedron of R. Now using the fact that the line element is invariant under this transformation we find that k_{i} for R is equal to k_{i} for $C(i=1, \ldots, n-2)$.

Turning now to the first polar developable of C, the point

$$
z=r^{*}+\sum_{1}^{n-2} y_{i}^{*} \xi_{i}^{*}=r+c_{2} \xi_{2}+\sum_{3}^{n}\left(c_{i}+\epsilon^{*} y_{n+1-i}^{*}\right) \xi_{i}
$$

of D_{1} corresponds to

$$
Z=R^{*}+\sum_{1}^{n-2} y_{i}^{*} T_{i}^{*}
$$

where R^{*} and $T^{*}{ }_{i}$ are determined by

$$
\begin{array}{r}
\frac{d R^{*}}{d s^{*}}=T_{1}^{*}, \quad \frac{d T_{i}^{*}}{d s^{*}}=-k_{i-1}^{*} T_{i-1}^{*}+k_{i}^{*} T_{i+1}^{*}, \quad \frac{d T_{n-1}^{*}}{d s^{*}}=-k_{n-2}^{*} T_{n-2}^{*} \\
(i=1, \ldots, n-2)
\end{array}
$$

Now

$$
R^{*}=\int T_{1}^{*} d s^{*}=\int \epsilon \epsilon^{*}\left(c_{n-1} k_{n-1}+c_{n}^{\prime}\right) T_{1}^{*} d s
$$

and after integrating by parts $n-1$ times we obtain

$$
R^{*}=\epsilon^{*} \sum_{2}^{n} c_{i} T_{n+1-i}^{*}
$$

Let us put

$$
{ }_{\epsilon}^{*} T_{n-i}^{*}=T_{i}, \quad c_{j}+\epsilon^{*} y^{*}{ }_{n+1-j}=y_{j} \quad(i=1, \ldots, n-1 ; j=3, \ldots, n) .
$$

The point

$$
r+c_{2} \xi_{2}+\sum_{3}^{n} y_{i} \xi_{i}
$$

of D_{1} corresponds to

$$
\begin{equation*}
c_{2} T_{1}+\sum_{3}^{n} y_{i} T_{i-1} \tag{17}
\end{equation*}
$$

where T_{1}, \ldots, T_{n-1} are solutions in H of

$$
\begin{equation*}
T_{1}^{\prime}=k_{2} T_{2}, \quad T_{i}^{\prime}=-k_{i} T_{i-1}+k_{i+1} T_{i+1} \quad(i=2, \ldots, n-1) . \tag{18}
\end{equation*}
$$

We have assumed above that C is not on a hypersphere. However, once we have (17) and (18) we can easily verify, by comparing line elements, that they are correct in this case also.

Let A be an arbitrary constant vector in H. The general solution of the differential equations (5) is

$$
u_{i+1}=A T_{i} \quad(i=1, \ldots, n-1)
$$

Thus we have a $(1-1)$ correspondence between points of H and curves of F_{n-1}. The geometrical significance of the point A which corresponds to \bar{C} of F_{n-1} is that if the whole n-space is moved rigidly when we are developing D_{1}, \bar{C} cuts H in the fixed point A. This follows from the fact that the point of intersection of \bar{C} and the tangent $(n-1)$-space of D_{1} is

$$
r+\sum_{2}^{n} u_{i} \xi_{i}
$$

and since $T_{1}=\epsilon^{*} T^{*}{ }_{n-1}=\epsilon^{*} \xi^{*}{ }_{n-1}=\xi_{2}$, the transform of this point is

$$
\sum_{2}^{n} u_{i} T_{i-1}=\sum_{2}^{n}\left(A T_{i-1}\right) T_{i-1}=A .
$$

Theorem 5. When D_{1} is developed on H, the pth evolutes of curves of F_{n-1} become p-dimensional curves in H.

Proof. We may assume that the p th evolute under consideration is the common p th evolute $C^{*}{ }_{p}$ of C_{1}, \ldots, C_{p+1} where C_{1}, \ldots, C_{p+1} are parallel curves which span an F_{p}. Let C_{i} correspond to the point A_{i} of H.

$$
\begin{aligned}
r_{p}^{*}=r_{1}+\sum_{2}^{p+1} \lambda_{i}\left(r_{i}-r_{1}\right)=r & +\sum_{j=2}^{n}\left(A_{1} T_{j-1}\right) \xi_{j} \\
& +\sum_{i=2}^{p+1} \sum_{j=2}^{n} \lambda_{i}\left\{\left(A_{i}-A_{1}\right) T_{j-1}\right\} \xi_{j}
\end{aligned}
$$

which transforms to

$$
\begin{aligned}
R_{p}^{*} & =\sum_{j=2}^{n}\left(A_{1} T_{j-1}\right) T_{j-1}+\sum_{i=2}^{p+1} \sum_{j=2}^{n} \lambda_{i}\left\{\left(A_{i}-A_{1}\right) T_{j-1}\right\} T_{j-1} \\
& =A_{1}+\sum_{2}^{p+1} \lambda_{i}\left(A_{i}-A_{1}\right)
\end{aligned}
$$

Thus the transform is in the p-space determined by A_{1}, \ldots, A_{p+1}. (If the A_{i} were in a ($p-1$)-space, C_{1}, \ldots, C_{p+1} would not span an F_{p}). If R_{p}^{*} were in a ($p-1$)-space the determinant $\left|\lambda_{i}{ }^{(j)}\right|(i=2, \ldots, p+1 ; j=1, \ldots, p$) would be identically zero; the vectors $r^{*}{ }_{p}{ }^{(j)}$ would be dependent, and C_{1}, \ldots, C_{p+1} would have no common p th evolute.

We now have a $(1-1)$ correspondence between p th evolutes of curves of F_{n-1} and p-spaces in H.

Consider the case $p=1$. The transform of the common first evolute of C_{1} and C_{2} is $R^{*}{ }_{1}=A_{1}+\lambda_{2}\left(A_{2}-A_{1}\right)$, the straight line through A_{1} and A_{2}. $C^{*}{ }_{1}$ actually corresponds to a segment of this line. The segment includes A_{1} if and only if $\lambda_{2}=0$ for some s. The family of first evolutes of C_{1} corresponds to the family of straight lines through A_{1}. Thus we have the following theorem.

Theorem 6. The family of geodesics (which are not straight lines) through a point of D_{1} is the family of first evolutes of some curve of F_{n-1}.

Theorem 7. The angle between the tangents at corresponding points of two first evolutes of a given curve is constant. This angle is equal to the angle between the lines in H which correspond to the two first evolutes.

Proof. Let the given curve be C and let $C^{*}{ }_{1(i)}(i=1,2)$ be the common first evolute of C and C_{i}. Since the tangent of $C^{*}{ }_{1(i)}$ is parallel to $r_{i}-r$, the cosine of the angle between the tangents is

$$
\begin{aligned}
\frac{\left(r_{1}-r\right)\left(r_{2}-r\right)}{\left|r_{1}-r\right|\left|r_{2}-r\right|} & =\frac{\left[\sum_{1}^{n-1}\left(A_{1} T_{i}\right) \xi_{i+1}\right]\left[\sum_{1}^{n-1}\left(A_{2} T_{j}\right) \xi_{j+1}\right]}{\sqrt{\left[\sum_{1}^{n-1}\left(A_{1} T_{i}\right) \xi_{i+1}\right]^{2}\left[\sum_{1}^{n-1}\left(A_{2} T_{j}\right) \xi_{j+1}\right]^{2}}} \\
& =\sum_{1}^{n-1}\left(A_{1} T_{i}\right)\left(A_{2} T_{i}\right) / \sqrt{\sum_{1}^{n-1}\left(A_{1} T_{i}\right)^{2} \sum_{1}^{n-1}\left(A_{2} T_{i}\right)^{2}} \\
& =A_{1} A_{2} / \sqrt{A_{1}^{2} A_{2}^{2}}
\end{aligned}
$$

References

1. P. J. Da Cunha, Du parallelisme dans l'espace Euclidien, Portugaliae Math., 2 (1941), 181-246.
2. E. L. Ince, Ordinary differential equations (London, 1927).

[^0]: Received November 1, 1951 ; in revised form May 22,1952 . In the first version of this paper only the case $n=4$ was considered; most of the results being from a Ph.D. thesis written under the direction of Professor H. S. M. Coxeter. The referee suggested that the theorems be generalized and stated many of the results that could be proved. I take this opportunity to thank him for his assistance.

[^1]: ${ }^{1}$ At first only the cases $n=4, p=1$ and 3 were considered. The referee suggested that involutes and evolutes of other orders be introduced.

