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A NOTE ON DOUBLES OF 4-MANIFOLDS 

BY 

STEVEN H. WEINTRAUB 

If M is a simply-connected 4-manifold with boundary, let D(M) denote its 
double M U a M ( - M ) . If M is closed, let D{M) denote M#-M. In either case, 
D(M) is a simply-connected 4-manifold of index zero, and so by a theorem of 
Wall [8], M#k(S2xS2) must be standard for k sufficiently large, where by 
standard we mean diffeomorphic to the connected sum of copies of S2 x S2 and 
S2*S2, the non-trivial S2 bundle over S2 (which is itself diffeomorphic to 
C P 2 # - C P 2 [7]). In this paper we give abound on k, in the case where M has no 
3-handles. 

THEOREM 1. Let M be a simply-connected 4-manifold with one 0-handle, m 
1-handles, m + n 2-handles, and no 3-handles. Then D ( M ) # ( m - l ) ( S 2 x S 2 ) is 
diffeomorphic to # (n + m - l ) ( S 2 x S 2 ) if M has even intersection form, and 
#(n + m — 1)(S2 X S2) if M has odd intersection form. 

COROLLARY 2. If M as above has no 1-handles, D(M) is standard. 

This corollary applies in particular to the Kummer surface ([2]), or in fact to 
any simply-connected algebraic surface ([6]). 

Note that we have shown in [7] that if the 2-handles are attached so as to 
correspond to a plumbing diagram, M itself is standard. 

COROLLARY 3. If Mis a homotopy 4-cell as above, D(M) # (m - 1)(S2 x S2) is 
diffeomorphic to (m-l)(S2xS2). 

Proof. D(M) is the boundary of Mxl, and Mxl has the same handle 
structure as M. Consider M as built up first by attaching the 1-handles to 
obtain MX = D4t/m(D3xS1), where tj denotes boundary connected sum, and 
then attaching the 2-handles to Mt. Since M is simply-connected, this gives a 
presentation of the trivial group 

{xu ..., xm ; rx = r2 = • * * — rm + n = 1) 

Then DiMj is the boundary of Mxxl D(M1) = #m(S3xS1), and M x l is 
constructed from M1xl by adding 2-handles "crossed with I " (i.e. if the 
attaching map of a 2-handle of M is ç:D2xS1-> M, the attaching map of the 
corresponding 2-handle of M x I is <p x id : (D2 x S1) x f -> M x J). 
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Now to M add (m - 1 ) additional trivial 2-handles (i.e. handles whose core 
circles are unknotted, unlinked circles lying in a disk on dM), and cross these 
handles with I. We now have a manifold M'xl, and d(M'xI) = 
D ( M ) # ( m - l ) ( S 2 x S 2 ) . 

Consider M' x I. It is constructed by adding 2-handles to Mxl, so the core 
circles of these handles lie in D(M). Since D(M) is a 4-manifold, any two 
homotopic curves in D(M) are isotopic. Thus we may isotope our ( m - 1 ) 
trivial circles to represent the generators xu . . . , xm_i. On the one hand, this 
does not change M'xl (up to diffeomorphism), but on the other hand, these 
( m - 1 ) 2-handles now geometrically cancel the first ( m - 1 ) 1-handles, leaving 
a handle structure on M'xl consisting of one 1-handle and m + n 2-handles, 
giving a presentation of the trivial group 

\Xm '•> r l = r2 = ' ' ' = rm+n = V 

At this stage all of the r[ are words in xm, i.e. powers of xm, r[ = x^, and so by 
sliding handles over each other (which has the effect of multiplying the words) 
we may arrange that ri = xm, in which case we may cancel the 1-handle with 
this 2-handle, leaving M'xl with a handle structure of only 2-handles. But 
then the core circles of these 2-handles, being circles in D 4 , may be isotoped to 
standardly embedded circles, and so M'xI = t^Eh where each Et is either the 
trivial or non-trivial D2-bundle over S2, depending on the framing, so D(M') = 
a(M'xJ) = a(/7Ei) = # ( S 2 x S 2 ) # ( S 2 ^ S 2 ) , (and it is well-known that 
(S2 x S2) # (S2 X S2) = (S2 X S2) # (S2 X S2)), completing the proof. 

Our argument is of course quite similar to the argument in [1], proving that 
the Andrews-Curtis conjecture implies that a homotopy 4-sphere without 
3-handles is homeomorphic to S4. In fact, our argument shows that a weak 
form of the Andrews-Curtis conjecture implies a corresponding, but weaker 
result. 

To be precise, let ACkm be the following conjecture: 

ACkrn. Every presentation of the trivial group with no more than m 
generators may be changed to the trivial group by Andrews-Curtis moves 
together with the adjunction of no more than k consequences of the relations. 

Then we have 

THEOREM 4. Let M be as in Theorem 1. Then ACKrn 4> D(M)#k(S2x S2) is 
standard. 

Proof. We may trivialize the presentation either by sliding handles, or by 
adding at most k new 2-handles, adding these handles as in the fourth 
paragraph of the proof of Theorem 1 so as to represent the additional 
necessary consequences of the relations. 

Trivially, ACKm^>AC€n for fc<^ and n<m, ACkm^> ACk+^m+€ by using 
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€ relations to kill generators, and as observed above, ACm^hm is true (by 
adjoining the relations xt = • • = x^^ = 1). Also, the Andrews-Curtis conjec­
ture AC is equivalent to (J m AC0,m. 

Consider, however, the presentation of the trivial group 

{a, b, c : [a, b]b = [b, c]c = [c, d]a = 1}. 

This is considered to be a possible counterexample to AC (see [4, Problems, 
5.1 and 5.2]), but clearly does satisfy AC13-adding a = l, for example, 
trivializes the presentation. 

We conclude by observing that Wall's Theorem, mentioned above, can be 
combined with other known results to give a purely low-dimensional proof (no 
homotopy theory!) of the following well-known theorem: 

THEOREM. Every orientable 3-manifold embeds in U5 and immerses in U4. 

Proof. If M is an orientable 3-manifold, then M bounds a simply-connected 
([5]) and even parallelizable ([3]) 4-manifold N. Then M^D(N), and hence 
Mc:D(N)#k(S2xS2) = €(S2xS2) for fc sufficiently large. But €(S2xS2) em­
beds in M5, and €(S2xS2)-D4 immerses in R4, so M does too. 
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