
ANZIAM J. 50(2008), 45–57
doi:10.1017/S1446181108000333

THE FUNDAMENTAL AND NUMERICAL SOLUTIONS OF
THE RIESZ SPACE-FRACTIONAL REACTION–DISPERSION

EQUATION

J. CHEN1, F. LIU ˛ 2,3, I. TURNER2 and V. ANH2

(Received 2 June, 2006; revised 13 December, 2007)

Abstract

A Riesz space-fractional reaction–dispersion equation (RSFRDE) is obtained from
the classical reaction–dispersion equation (RDE) by replacing the second-order space
derivative with a Riesz derivative of order β ∈ (1, 2]. In this paper, using Laplace and
Fourier transforms, we obtain the fundamental solution for a RSFRDE. We propose an
explicit finite-difference approximation for a RSFRDE in a bounded spatial domain, and
analyse its stability and convergence. Some numerical examples are presented.
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1. Introduction

Space-fractional diffusion equations have been shown to be useful as models of
anomalous transport in many diverse disciplines, including finance, semiconductor
research, biology and hydrogeology [9, 19]. For example, they have been used in
groundwater hydrology to model the transport of passive tracers carried by fluid flow
in a porous medium [1, 22] or in financial markets to model high-frequency price
dynamics [21, 25]. Feller [4] provided a basic analytic theory for the space-fractional
diffusion processes via inversion of the Riesz potential. Mainardi et al. [17] presented
an explicit representation of the Green function for the space-fractional diffusion
equation, and provided a general representation of the Green functions for which the
fundamental solution can be interpreted as a spatial probability density. Gorenflo and
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Mainardi [6] considered random walk models for space-fractional diffusion processes.
Gorenflo et al. [5] used the method of Laplace transform to obtain the Wright function
as the scale-invariant solution of the diffusion-wave equation. Benson et al. [2, 3]
considered the space-fractional advection–dispersion equation and gave an analytic
solution in terms of the α-stable process. Mainardi [16] obtained the fundamental
solutions for the basic Cauchy and signalling problems for a time-fractional diffusion-
wave equation. Liu et al. [13] derived the complete solution of the time-fractional
advection–dispersion equation.

However, numerical methods and theoretical analyses of fractional differential
equations are still at an early stage of development. Lin and Liu [10] proposed
higher-order (2–6) approximations of a nonlinear fractional-order ordinary differential
equation with initial value and proved the consistency, convergence and stability
of the fractional higher-order methods. Lynch et al. [15] presented two different
discretization methods for fractional-order equations, but stability and convergence
was not presented. Shen and Liu [23] estimated the discretization error of the space-
fractional diffusion equation. Liu et al. [12] presented the numerical solution of a
space-fractional Fokker–Planck equation. Meerschaert et al. [18] considered the finite-
difference approximations for two-sided space-fractional partial differential equations
and discussed their stability, consistency and convergence.

Henry and Wearne [8] considered a two-species fractional reaction–diffusion
system. Fractional reaction–diffusion equations can be used to model activator–
inhibitor dynamics with anomalous diffusion, which occurs in spatially inhomoge-
neous media [8]. To the best of the authors’ knowledge, this area has not been explored
vigorously.

In this paper we define a Riesz space-fractional reaction–dispersion equation
(RSFRDE). Using the method of Laplace and Fourier transforms, we obtain their
fundamental solutions. We then propose an explicit finite-difference approximation
(EFDA) scheme for these equations in a bounded spatial domain, and analyse its
stability and convergence. Some numerical examples will be presented to show the
application of the technique.

2. The fundamental solution of the RSFRDE

The following RSFRDE with initial and boundary conditions is considered:
∂u(x, t)

∂t
= −u(x, t)+ x Dβ

0 u(x, t), x ∈ R, t ∈ R+,

u(x, 0) = g(x), x ∈ R,
u(±∞, t) = 0, t ∈ R+,

(2.1)

where x Dβ

0 is the Riesz fractional derivative of order β for 1< β ≤ 2, defined by
analytic continuation in the whole range 0< β ≤ 2, β 6= 1 (see [7]) as

https://doi.org/10.1017/S1446181108000333 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181108000333


[3] Riesz space-fractional reaction–dispersion equation 47

x Dβ

0 := −c(I−β+ + I−β− ), (2.2)

where c =
1

2 cos(βπ/2)
, I−β± =

d2x

dx2 I 2−β
± ,

and the Weyl integrals I β± defined in [20] are as follows:
(I β+φ)(x)=

1
0(β)

∫ x

−∞

(x − ξ)β−1φ(ξ) dξ, β > 0,

(I β−φ)(x)=
1

0(β)

∫
+∞

x
(ξ − x)β−1φ(ξ) dξ, β > 0,

where φ(x) ∈ L1(−∞,+∞).
Note that x Dβ

0 is a pseudo-differential operator with the symbol x D̂β

0 (k)=−|k|
β . In

particular, we have x D2
0 = d2/dx2, but x D1

0 6= d/dx . Throughout the remainder of this
section we derive the fundamental solution to (2.1) by applying Laplace and Fourier
transforms to (2.1) with an initial condition with respect to the variables t and x . Recall
the following formulae proved in [17]:

L{ f ′(t); s} = s f̃ (s)− f (0+), F{x Dβ

0 f (x); k} = −|k|β f̂ (k).

Applying the Laplace transform to (2.1) produces the following nonhomogeneous
differential equation:

sũ(x, s)− g(x)=−ũ(x, s)+ x Dβ

0 ũ(x, s). (2.3)

Next, application of the Fourier transform to (2.3) with respect to the variable x taking
into account the Fourier transform of the Riesz fractional derivative, yields

ŝ̃u(k, s)− ĝ(k)=−̂̃u(k, s)− |k|β ̂̃u(k, s). (2.4)

From (2.4) we obtain

̂̃u(k, s)=
ĝ(k)

s − (−1− |k|β)
.

By using the known Laplace transform

ect L
←→

1
s − c

, Re(s) > |c|,

where c ∈ R, we have that

e(−1−|k|β )t ĝ(k)
L
←→

ĝ(k)

s − (−1− |k|β)
= ̂̃u(k, s). (2.5)

Inverting the Laplace transform in (2.5) gives

û(k, t)= e(−1−|k|β )t ĝ(k). (2.6)
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To invert the Fourier transform in (2.6), we recall the formulae

f (x)=F−1
{ f̂ (k); x} =

1
2π

∫
+∞

−∞

e−ikx f̂ (k) dk, x ∈ R,

f̂ (k)=
∫
+∞

−∞

eikx f (x) dx, k ∈ R.

Then,

u(x, t)=
1

2π

∫
+∞

−∞

e−ikx e(−1−|k|β )t ĝ(k) dk =
∫
+∞

−∞

Gβ(x − y, t)g(y) dy,

where

Gβ(x − y, t)=
1

2π

∫
+∞

−∞

e(−1−|k|β )t−ik(x−y) dk,

the Green’s function of (2.1) obtained when g(x)= δ(x) (the Dirac delta function).

3. An EFDA for RSFRDE

In this section, we obtain the numerical solution of a RSFRDE in a bounded
spatial domain

∂u(x, t)

∂t
=−u(x, t)+ x Dβ

0 u(x, t), 0< x < b, 0≤ t ≤ T,

u(x, 0) =g(x), 0≤ x ≤ b,

∂u(0, t)

∂x
=0, u(b, t)= 0, 0≤ t ≤ T,

(3.1)

where 1< β ≤ 2, and we assume that both u(x, t) and g(x) are real-valued and
sufficiently well-behaved functions. We discretize the Riesz derivative to derive a
numerical solution for the RSFRDE.

From (2.2), using the boundary conditions ∂u(0, t)/∂x = 0 and u(b, t)= 0,

I−β+ =
d2x

dx2 I 2−β
+ =

d2

dx2

[
1

0(2− β)

∫ x

0
(x − ξ)1−βu(ξ, t) dξ

]
=

u(0, t)x−β

0(1− β)
+

1
0(2− β)

∫ x

0

∂2u(ξ, t)

∂ξ2 (x − ξ)1−β dξ, (3.2)

I−β− =
d2x

dx2 I 2−β
− =

d2

dx2

[
1

0(2− β)

∫ b

x
(ξ − x)1−βu(ξ, t) dξ

]
=

1
0(2− β)

[
−(b − x)1−β

∂u(b, t)

∂x
−

∫ x

b
(ξ − x)1−βu′′ξ (ξ, t) dξ

]
. (3.3)

Define 1t = τ as the grid step in time, tn = nτ , 0≤ tn ≤ T , as the integration
time, 1x = h > 0 as the grid size in the spatial variable x , h = b/L , L being a
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positive integer, u(xl , tn)= u(lh, nτ), un
L = u(b, nτ) and un

l denotes the numerical
solution at point (xl , tn). Using a second-order difference approximation, the resulting
discretization on I−β+ and I−β− takes the following form:

I−β
+

u(xl , tn)≈
h−β

0(3− β)

[
un

0(1− β)(2− β)

lβ
+

l−1∑
j=0

c j
(
un

l− j+1 − 2un
l− j + un

l− j−1
)]

and

I−β
−

u(xl , tn)≈
h−β

0(3− β)

[
−
(2− β)(un

L − un
L−1)

(L − l)β−1
+

L−l−1∑
j=0

c j
(
un

l+ j−1 − 2un
l+ j + un

l+ j+1
)]
,

where c j = ( j + 1)2−β − j2−β .
Substituting the above expressions into (3.2) and (3.3), we obtain a finite-difference

approximation for Equation (3.1) as

un+1
l − un

l

τ
= −un

l −
h−β

2 cos(βπ)0(3− β)

[
un

0(1− β)(2− β)l
−β

+

l−1∑
j=0

c j (u
n
l− j+1 − 2un

l− j + un
l− j−1)− (2− β)(L − l)1−β(un

L − un
L−1)

+

L−l−1∑
j=0

c j (u
n
l+ j−1 − 2un

l+ j + un
l+ j+1)

]
.

(3.4)

The above equation together with the boundary conditions can be written as the
following EFDA:

un+1
l = un

l − τun
l + d1(l)u

n
0 + k

l−1∑
j=0

c j
(
un

l− j+1 − 2un
l− j + un

l− j−1

)
+ k

L−l−1∑
j=0

c j
(
un

l+ j−1 − 2un
l+ j + un

l+ j+1

)
+ d2(l)u

n
L−1, (3.5)

for l = 1, . . . , L − 1, where k, d1(l) and d2(l) are given by the expressions
k = −

τh−β

2 cos(βπ/2)0(3− β)
> 0,

d1(l) = k(1− β)(2− β)l−β < 0,

d2(l) = k(2− β)(L − l)1−β > 0.

(3.6)

The EFDA (3.5) can be written in the matrix form U n+1
= BU n , where U n

=

(un
1, un

2, . . . , un
L−1)

T and B = (bi j )(L−1)×(L−1) is a matrix of coefficients.
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4. Analysis of stability

Let U represent the exact solution of the partial differential equation (3.1), and let u
be the exact solution of the EFDA, then the error e =U − u. To prove the stability
and the convergence, we need the following lemmas.

LEMMA 4.1. Let A ∈ Cm×n and let ρ(A) be the spectral radius of the matrix A, then
ρ(A)≤ ‖A‖ for any matrix norm.

PROOF. See [24]. 2

LEMMA 4.2. Let cl = (l + 1)2−β − l2−β (l ≥ 0), and let k, d1(l) and d2(l) be as
defined in (3.6). Then:

(1) cl−1 > cl > 0, cl−1 − 2cl + cl+1 > 0, l ≥ 1;
(2) d2(l)+ k(−2cL−l−1 + cL−l−2) > 0, 0≤ l ≤ L − 1;
(3) d2(l)− cL−l−1k < 0, 0≤ l ≤ L − 1;
(4) d1(l)+ k(cl−2 − cl−1) > 0, l ≥ 2.

PROOF. (1) Let f (l)= cl = (l + 1)2−β − l2−β . Then for any l ≥ 0,

f ′(l)= (2− β)[(l + 1)1−β − l1−β
] = (2− β)(1− β)ξ−β < 0, (4.1)

f ′′(l)= (2− β)(1− β)[(l + 1)−β − l−β ] = (2− β)(1− β)(−β)η−β−1 > 0, (4.2)

where ξ, η ∈ (l, l + 1). It follows from (4.1) and (4.2) that

cl−1 > cl > 0, cl−1 − 2cl + cl+1 > 0, l ≥ 1.

(2) Owing to cl = (l + 1)2−β − l2−β
= (2− β)ξ1−β , ξ ∈ (l, l + 1), it follows that

(2− β)(l + 1)1−β < cl < (2− β)l1−β .

Hence,

d2(l)+ k(−2cL−l−1 + cL−l−2)

= k(2− β)(L − l)1−β + k(−2cL−l−1 + cL−l−2)

= k[(2− β)(L − l)1−β − cL−l ] + k(cL−l − 2cL−l−1 + cL−l−2) > 0. (4.3)

(3) From (4.3), d2(l)− kcL−l−1 = k[(2− β)(L − l)1−β − cL−l−1]< 0.
(4) Owing to

cl−2 − cl−1 = f (l − 2)− f (l − 1)

= −(2− β)[(ξ + 1)1−β − ξ1−β
]

= −(2− β)(1− β)η−β >−(2− β)(1− β)l−β ,

where ξ ∈ (l − 2, l − 1) and η ∈ (ξ, ξ + 1), we obtain (1− β)(2− β)l−β + (cl−2
− cl−1) > 0. Noting that k > 0 and d1(l)= k(1− β)(2− β)l−β , we have d1(l)
+ k(cl−2 − cl−1) > 0. 2
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THEOREM 4.3. Suppose that

τ +
τh−β

cos(βπ/2)0(3− β)
(−3+ 22−β) < 1,

then the explicit finite-difference method (3.5) for Equation (3.1) is stable.

PROOF. Noting that k > 0, d1(l) < 0, d2(l) > 0 and

L−1∑
j=1

|b1 j | = |1− τ + d1(1)− 2k + kc1| + |k + k(c0 − 2c1 + c2)|

+

L−4∑
j=1

|k(c j − 2c j+1 + c j+2)| + |d2(1)+ k(−2cL−2 + cL−3)|, (4.4)

applying Lemma 4.2, we conclude that, if 1− τ + d1(1)− 2k + kc1 > 0, then b11
≥ 0. Thus,

L−1∑
j=1

|b1 j | = 1− τ + d1(1)+ d2(1)− kcL−2 < 1. (4.5)

Similarly, if 1− τ + 2k(−2c0 + c1) > 0, then when 2≤ i ≤ L − 2,

L−1∑
j=1

|bi j | = 1− τ + d1(i)+ d2(i)− kcL−i−1 < 1, (4.6)

and if 1− τ + d2(L − 1)+ k(−4c0 + c1) > 0,

L−1∑
j=1

|bL−1 j | = 1− τ + d1(L − 1)+ d2(L − 1)+ k(c1 − 2) < 1. (4.7)

Combining (4.5)–(4.7), we easily conclude that, if 1− τ + 2k(−2c0 + c1) > 0,
that is,

τ +
τh−β

cos(βπ/2)0(3− β)
(−3+ 22−β) < 1,

then ‖B‖∞ =max1≤i≤L−1
∑L−1

j=1 |bi j |< 1. Furthermore, using Lemma 4.1 and
according to the Lax–Richtmer definition of stability [24], we obtain that the
EFDA (3.5) is conditionally stable. 2
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5. Analysis of convergence

In order to prove convergence, we introduce the following propositions.

PROPOSITION 5.1. Let u j = u( jh, t),

I−β+ u(x, t)=
u(0, t)x−β

0(1− β)
+

1
0(2− β)

∫ x

0
(x − ξ)1−β

∂2u(ξ, t)

∂ξ2 dξ,

Ĩ−β+ u(x, t)=
h−β

0(3− β)

[
u1
(1− β)(2− β)

lβ
+

l−1∑
j=0

c j (ul− j+1 − 2ul− j + ul− j−1)

]

and assume that u(x, t) is a smooth function. Then I−β+ u(x, t)− Ĩ−β+ u(x, t)
= O(h2−β), where x = lh, l = 1, . . . , L − 1.

PROOF. Considering the standard central difference formula, we have

h−β

0(3− β)

l−1∑
j=0

c j (ul− j+1 − 2ul− j + ul− j−1)

=
h2−β

0(3− β)

l−1∑
j=0

c j
∂2u(x − jh, t)

∂z2 +
Cx2−β

0(3− β)
h2. (5.1)

The mean value theorem of differential calculus then yields

1
0(2− β)

∫ x

0
(x − ξ)1−β

∂2u(ξ, t)

∂ξ2 dξ

=
1

0(2− β)

l−1∑
j=0

∫ ( j+1)h

jh
z1−β ∂

2u(x − z, t)

∂z2 dz

=
h2−β

0(3− β)

l−1∑
j=0

c j
∂2u(x − θ1h, t)

∂z2 , (5.2)

where θ1 ∈ [ j, j + 1].
From (5.1) and (5.2),

∣∣∣∣ 1
0(2− β)

∫ x

0
(x − ξ)1−β

∂2u(ξ, t)

∂ξ2 dξ −
h−β

0(3− β)

l−1∑
j=0

c j
(
ul− j+1 − 2ul− j + ul− j−1

)∣∣∣∣
=

∣∣∣∣ h2−β

0(3− β)

l−1∑
j=0

c j

[
∂2u(x − θ1h, t)

∂z2 −
∂2u(x − jh, t)

∂z2

]
−

Cx2−β

0(3− β)
h2
∣∣∣∣

=

∣∣∣∣ h2−β

0(3− β)

l−1∑
j=0

c j
∂3u(x − θ2h, t)

∂z3 ( j − θ1)h −
Cx2−β

0(3− β)
h2
∣∣∣∣
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≤
Mh3−β

0(3− β)

l−1∑
j=0

c j +
|C |b2−β

0(3− β)
h2

=
Mx2−β

0(3− β)
h +
|C |b2−β

0(3− β)
h2
≤

Mb2−β

0(3− β)
h +
|C |b2−β

0(3− β)
h2
= O(h) (5.3)

where θ2 ∈ [ j, j + 1].
Hence,

∣∣∣I−β+ u(x, t)− Ĩ−β+ u(x, t)
∣∣∣

=

∣∣∣∣ (u1 + C
′

h2)l−βh−β

0(1− β)
+

1
0(2− β)

∫ x

0
(x − ξ)1−β

∂2u(ξ, t)

∂ξ2 dξ

−
h−β

0(3− β)

[
u1
(1− β)(2− β)

lβ
+

l−1∑
j=0

c j
(
ul− j+1 − 2ul− j + ul− j−1

)]∣∣∣∣
≤

∣∣∣∣ C
′

x−β

0(1− β)
h2
∣∣∣∣+ Ch ≤

∣∣∣∣ C
′

0(1− β)

∣∣∣∣h2−β
+ Ch = O(h2−β). (5.4)

2

PROPOSITION 5.2. Let

I−β− u(x, t)=−
u′(b, t)(b − x)1−β

0(2− β)
+

1
0(2− β)

∫ b

x
(ξ − x)1−β

∂2u(ξ, t)

∂ξ2 dξ,

Ĩ−β− u(x, t)=
h−β

0(3− β)

[L−l−1∑
j=0

c j
(
ul+ j−1 − 2ul+ j + ul+ j+1

)
−
(2− β)(uL − uL−1)

(L − l)β−1

]
.

Then I−β+ u(x, t)− Ĩ−β− u(x, t)= O(h2−β), where x = lh, l = 1, . . . , L − 1.

PROOF. The proof is similar to that of Proposition 5.1. 2

From Propositions 5.1 and 5.2, we obtain the following result.

PROPOSITION 5.3. Let

x D̃β

0 u(x, t)=−
1

2 cos(βπ/2)
[ Ĩ−β+ u(x, t)+ Ĩ−β− u(x, t)] and

x Dβ

0 u(x, t)=−
1

2 cos(βπ/2)
[I−β+ u(x, t)+ I−β− u(x, t)].

Then x D̃β

0 u(x, t)= x Dβ

0 u(x, t)+ O(h2−β), where x = lh, l = 1, . . . , L − 1.

REMARK 1. The explicit finite-difference scheme (3.5) has a local truncation error of
e = O(τ )+ O(h2−β).
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THEOREM 5.4. If

τ +
τh−β

cos(βπ/2)0(3− β)
(−3+ 22−β) < 1,

then the explicit finite-difference method (3.5) for the RSFRDE (3.1) is convergent.

PROOF. At the mesh points (xl , tn), un
l =U n

l − en
l . Substituting into (3.4) and using

the Taylor theorem and Proposition 5.3, we obtain

en+1
l − en

l

τ
= −en

l −
h−β

2 cos(βπ/2)0(3− β)

[
en

1(1− β)(2− β)l
−β

+

l−1∑
j=0

c j
(
en

l− j+1 − 2en
l− j + en

l− j−1

)
− (2− β)(L − l)1−β(en

L − en
L−1)

+

L−l−1∑
j=0

c j
(
en

l+ j−1 − 2en
l+ j + en

l+ j+1

)]
+ O(h2−β)+ O(τ ), (5.5)

and the initial and boundary conditions are

e0
l = 0, (l = 0, . . . , L), en

0 = en
1 + O(h2) and en

L = 0, n ∈ N .

Equation (5.5) can be rewritten in matrix form as

En+1 = B En + R, E0 = O(L−1)×1,

where En = (en
1 , en

2 , . . . , en
L−1)

T, R = τ
(
O(h2−β)+ O(τ )

)
(1, . . . , 1)T. Thus,

we have

En+1 = B En + R = · · · = (Bn
+ Bn−1

+ · · · + B2
+ B + I )R and

‖En+1‖∞ ≤ (‖B
n
‖∞ + ‖B

n−1
‖∞ + · · · + ‖B‖∞ + ‖I‖∞)‖R‖∞.

According to Theorem 4.3, if τ + τh−β(−3+ 22−β)/cos(βπ/2)0(3− β) < 1, then
‖B‖∞ ≤ 1. We thus obtain

‖En+1‖∞ ≤ (n + 1)τ |O(h2−β)+ O(τ )| ≤ C(h2−β
+ τ).

This inequality completes the proof. 2

6. Numerical results

In order to demonstrate the efficiency of the RSFRDE, the method of lines (MoL)
for RSFRDE is now presented. This method was introduced by Liu et al. [11, 12, 14] to
solve fractional partial differential equations successfully. The MoL for the RSFRDE
can be written in the following form: for 1< β < 2, l = 1, . . . , L − 1,
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FIGURE 1. (a) The numerical solutions obtained using the MoL and the EFDA for β = 1.7 and T = 0.3;
(b) the evolution result using the EFDA with β = 1.7 (0≤ t ≤ 1, 0≤ x ≤ π ).

dul

dt
= −un

l −
h−β

2 cos(βπ/2)0(3− β)

[
u0(1− β)(2− β)l−β

+

l−1∑
j=0

c j
(
ul− j+1 − 2ul− j + ul− j−1

)
− (2− β)(L − l)1−β(uL − uL−1)

+

L−l−1∑
j=0

c j
(
ul+ j−1 − 2ul+ j + ul+ j+1

)]
,

with u0 = u1, uL = 0 and ul = u(xl , t).
To test the numerical scheme, it is preferable to use a simple analytical model.

In this section we present an example in a bounded domain to demonstrate that the
RSFRDE can be applied to simulate the behaviour of a fractional reaction–diffusion
equation. Such a numerical technique overcomes the problem of not being able to
evaluate the analytical solution for 1< β ≤ 2 owing to the nature of the Mittag–Leffler
function. We consider the system

∂u(x, t)

∂t
= −u(x, t)+x Dβ

0 u(x, t), 0≤ x ≤ π, 0≤ t ≤ T,

u(x, 0) = g(x)= x2 sin x, 0≤ x ≤ π,
∂u(0, t)

∂x
= 0, u(π, t)= 0, 0≤ t ≤ T .

REMARK 2. We take L = 100, that is, h = π/100, τ = 0.0001 and β = 1.7. Then
τ + τh−β(−3+ 22−β)/

(
cos(βπ/2)0(3− β)

)
= 7.936× 10−2 < 1. Thus, τ , h and β

satisfy the convergence condition.

Figure 1(a) shows the numerical solutions using the MoL and the RSFRDE with
h = π/100 and τ = 0.0001 for β = 1.7 and T = 0.3. It is seen that the EFDA is in
good agreement with the MoL.
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FIGURE 2. Comparison of the response of the RSFRDE for real orders β = 1.2, 1.4, 1.6 and 1.8 at:
(a) T = 0.4; (b) T = 0.8.

Figure 1(b) shows the evolution result using the EFDA with h = π/100, τ = 0.0001
and β = 1.7, 0≤ t ≤ 1, 0≤ x ≤ π . It is apparent that the order β = 1.7 exhibits
diffusive behaviour for different times.

Figures 2(a) and (b) compare the response of the RSFRDE equation for different
orders 1.2≤ β ≤ 1.8 at T = 0.4 and T = 0.8, respectively.

7. Conclusions

In this paper we have given the fundamental solution for a RSFRDE and have
provided an EFDA in a bounded domain. The difference approximation has been
proved to be conditionally stable and convergent.
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Anwendungen 18 (1999) 231–246.

[8] B. I. Henry and S. L. Wearne, “Existence of Turing instabilities in a two-species fractional
reaction–diffusion system”, SIAM J. Appl. Math. 62 (2002) 870–887.

[9] R. Hilfer, Application of fractional calculus in physics (World Scientific, Singapore, 2000).
[10] R. Lin and F. Liu, “Fractional high order methods for the nonlinear fractional ordinary differential

equation”, Nonlinear Anal. 66 (2007) 856–869.
[11] F. Liu, V. Anh and I. Turner, “Numerical solution of the fractional-order advection–dispersion

equation”, Proc. Int. Conf. on Boundary and Interior Layers – Computational and Asymptotic
Methods, Perth, Australia, 2002, 159–164.

[12] F. Liu, V. Anh and I. Turner, “Numerical solution of space-fractional Fokker–Planck equation”,
J. Comput. Appl. Math. 166 (2004) 209–219.

[13] F. Liu, V. Anh, I. Turner and P. Zhuang, “Time-fractional advection–dispersion equation”, J. Appl.
Math. Comput. 13 (2003) 233–246.

[14] F. Liu, V. Anh, I. Turner and P. Zhuang, “Numerical simulation for solute transport in fractal
porous media”, ANZIAM J. 45(E) (2004) 461–473.

[15] V. E. Lynch, B. A. Carreras, D. del Castillo-Negrete, K. M. Ferreira-Mejias and H. R. Hicks,
“Numerical methods for the solution of partial differential equations of fractional order”, J.
Comput. Phys. 192 (2003) 406–421.

[16] F. Mainardi, “The fundamental solutions for the fractional diffusion-wave equation”, Appl. Math.
9 (1996) 23–28.

[17] F. Mainardi, Yu. Luchko and G. Pagnini, “The fundamental solution of the space-time-fractional
diffusion equation”, Fract. Calc. Appl. Anal. 4 (2001) 153–192.

[18] M. M. Meerschaert and C. Tadjeran, “Finite difference approximations for two-sided space-
fractional partial differential equations”, Appl. Numer. Math. 56 (2006) 80–90.

[19] I. Podlubny, Fractional differential equations (Academic Press, New York, 1999).
[20] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives: theory and

applications (Gordon and Breach, Newark, NJ, 1993).
[21] E. Scalas, R. Gorenflo and F. Mainardi, “Fractional calculus and continuous-time finance”, Physica

A 284 (2000) 376–384.
[22] R. Schumer and D. A. Benson, “Eulerian derivative of the fractional advection–dispersion

equation”, J. Contaminant 48 (2001) 69–88.
[23] S. Shen and F. Liu, “Error analysis of an explicit finite difference approximation for the space-

fractional diffusion equation with insulated ends”, ANZIAM J. 46 (2005) 871–887.
[24] G. D. Smith, Numerical solution of partial differential equations: Finite difference methods

(Clarendon Press, Oxford, 1985).
[25] W. Wyss, “The fractional Black–Scholes equation”, Fract. Calc. Appl. Anal. 3 (2000) 51–61.

https://doi.org/10.1017/S1446181108000333 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181108000333

