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Abstract

A topological space X is said to be S-closed if every cover of X by regular closed sets of
X has a finite subcover. In this note some characterizations of S-closed Hausdorff spaces are
obtained.
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1. Introduction

In 1976, Thompson [9] introduced the concept of S-closed spaces in terms
of semiopen sets due to Levine [6]. The present author [7] defined subsets
said to be S-closed relative to a topological space. For a topological space
(X, 1), the family of open sets of (X, t) whose complements are S-closed
relative to (X, t) was utilized as a base for a topology t* on X by Di Maio
[2]. The purpose of the present note is to obtain some characterizations of
S-closed Hausdorff spaces by utilizing 1*, the family of semiopen sets and
that of #-semiopen sets due to Joseph and Kwack [5].

2. Preliminaries

Throughout the present note spaces always mean topological spaces. Let
(X, 7) beaspace and 4 be a subset of X . The closure of 4 and the interior
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of A are denoted by Cl(A) and Int(A), respectively. A subset A4 is said
to be semiopen [6] (respectively regular closed) if A C Cl(Int(A)) (respec-
tively A = Cl(Int(A))). The family of all semiopen (respectively regular
closed) sets in (X, 1) is denoted by SO(X, 7) (respectively RC(X, 1)).
The complement of a semiopen set is said to be semi-closed. The intersec-
tion of all semi-closed sets containing A is called the semi-closure [1] of A
and is denoted by sCl/(4).

DEFINITION 2.1. A subset 4 of a space (X, 7) is said to be S-closed
relative to (X, 1) [7] if for every cover {U_ |a € V} of 4 by semiopen sets
of (X, 1), there exists a finite subset V,, of V such that 4 c J{C/(U,)|a €
Vol

0A space (X, 1) is said to be S-closed [9] if X is S-closed relative to
(X, 7). It is shown in [4, Theorem 3.2] that a space (X, 7) is S-closed if
and only if every regular closed cover of X has a finite subcover. We recall a
space (X, 7*) defined by Di Maio [2]. The family of all open sets of (X, 1)
whose complements are S-closed relative to (X, t) is a base for a topology
7° on X . Aspace (X, 1) is said to be extremally disconnected (briefly E.D.)
if CI(U)et forevery Uer.

DEFINITION 2.2. A space (X, 7) is said to be weakly-Hausdorff (briefly
weakly- T,) [8] if each point x € X is the intersection of regular closed sets
of (X, 7).

Let 4 be a subset of a space (X, 7). A point x € X is said to be in the
@-semiclosure [5] of A, denoted by 6 —sCl(A4),if ANCI(U) # & for every
U e SO(X, t) containing x. If @ —s5CIl(A) = A, then A is said to be 6-
semiclosed. The complement of a 6-semiclosed set is said to be 8-semiopen.
By t* we denote the family of all §-semiopen setsin (X, ). The following
lemma is obvious from the definitions and will be often used in the sequel.

LeEMMA 2.3. The following are equivalent for a subset A of a space (X, 1):
(a) det’;
(b) for each x € A, there exists U € SO(X, t) such that x € U C
Cl(U) c 4;
(c) A is the union of regular closed sets of (X, 7).

In general, 7+ is not a topology on X. Let X = {a,b,c} and 7 =
{2, X, {a}, {b}, {a, b}} [3, Example 0.4]. Then {a, c} and {b, c} are
§-semiopen in (X, 1) but {a,c}n{b,c} ¢ v°. However, we have the
following lemma.

LEMMA 2.4. The following are equivalent for a space (X, 1):
(a) (X,1) isED,;
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(b) SO(X, 1) is a topology on X ;
(c) t* is a topology on X .

PROOF. (a) = (b). Let 4,BeSO(X, 7). Since (X, 1) isE.D., Cl(Int(A))
€ 7 and hence we have ANB C Cl(Int(A))NCIl(Int(B)) c CI{Cl(Int(4))Nn
Int(B)] C Cl(Int(A N B)). Therefore, we obtain 4N B € SO(X, 7). Now
[6, Theorem 2] completes the proof.

(b)=>(c). Let 4,Be 1" and x € ANB. There exist U, V € SO(X, 1)
suchthat x e U c CI(U) C A and x € V c CI{(V) C B. Therefore, we have
xeUnVcCliUnV)cClUNCI(V)CcANB and UNV € SO(X, 7).
This shows that 4N B € 7. Lemma 2.3 completes the proof.

(c) = (a). Suppose that (X, 7) is not E.D. There exists U € 7 and x €
X such that x € CI(U) — Int(CI(U)). Let A = CI/(U) and B = X —
Int(CI(U)), then A, B € RC(X, 1) and hence 4, B € t*. Since 7" is
a topology, x € ANB € t*. There exists V € SO(X, 1) such that x €
VcCl(V)c ANnB. Since V C B, Int(V) C Int(A) N B = &. However,
x €V eSO(X, 1) and hence Int(V) # &. This is a contradiction.

LEMMA 2.5. Ifa space (X, 1) isE.D.and A€ SO(X, 1), then sCl(A) =
0 —sCl(4)=Cl(A).

Proor. This is shown in [3, Lemma 0.3].

3. Characterizations

THEOREM 3.1. The following are equivalent for a space (X, 1):
(a) (X, t") is Hausdorff,

(b) (X, 1") is weakly-T,;

(c) (X 1) is S-closed Hausdorff,

(d) (X, SO(X, 1)) is S-closed Hausdorff;

(e) (X, ") is compact Hausdorff.

PrOOF. In the sequel, we denote the closure and the interior of a subset 4
of X with respect to the topology t~ by Cl (4) and Int (A), respectively.

(a) = (b). The proof is obvious.

(b) = (c). Let (X, 7") be weakly- T, . First, we shall show that (X, 1) is
S-closed. Let x and y be distinct points of X . There exists F € RC(X, ")
such that x € F and y ¢ F. Since Int (F) # &, thereexists U, V € 1
suchthat @ # UCc X -F,d#V cInt(F) and X -U and X -V
are S-closed relative to (X, 7). Since X — F and Int (F) are disjoint,
UnV =@ and hence X = (X - U)U (X — V) is S-closed relative to
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(X, 1) [7, Theorem 3.6]. Therefore, (X, 7) is S-closed. Next, we shall show
that (X, 1) is weakly-T,. For this purpose, we prove that RC(X,t") C
RC(X,1). Let F e RC(X,1"). Since 7" C 7, we have Int (F) C Int(F)
and hence F = Cl (Int (F)) c Cl (Int(F)) c CI(F) = F. Therefore,
we obtain F = CI (Int(F)). Since t° C t, Cl(Int(F)) c Cl (Int(F))
and hence Cl(Int(F)) c F. In order to show the opposite inclusion, we
suppose that x ¢ CI(Int(F)). There exists ¥V € t containing x such that
VNnInt(F)=a;hence Int(CI(V))nInt(F)=. Since X - Int(Cl(V)) €
RC(X, 1) and (X, 1) is S-closed, it follows from [7, Theorems 3.3 and
3.4) that X — Int(CI(V)) = CI(X — CI(V)) is S-closed relative to (X, 7).
Therefore, we have x € Int(CI(V)) € t° and hence x ¢ CI (Int(F)).
Since F = Cl (Int(F)), we have x ¢ F and hence F c Cl(Int(F)).
Consequently, we obtain F € RC(X, t). Therefore, it follows that (X, 1)
is weakly- T, . Moreover, an S-closed weakly- T, space is E.D. [4, Theorem
3.7]. Every regular closed set is clopen in an E.D. space. Therefore, (X, 7)
is Hausdorff.

(c) = (a). Since (X, 1) is S-closed Hausdorff, it follows from [9, Theorem
7] that (X, 1) is E.D. Let x and y be any distinct points of X . There exist
U,Versuchthat xeU,yeV and UnV =@ ; hence CI(U)NCI(V) =
@ . Since CI(U) and CI(V) areclopenin (X, 7) and (X, 1) is S-closed, it
follows from [7, Theorem 3.3] that X — CI/(U) and X — CI(V') are S-closed
relative to (X, 7). Therefore, we obtain x € CI(U) e t*,y € CI(V) € t*
and CI(U)NCI(V) =@. This shows that (X, t*) is Hausdorff.

(c)=(d). Since (X, t) is S-closed Hausdorff, (X, 1) is E.D. [9, Theo-
rem 7] and by Lemma 2.4 SO(X, 1) is a topology on X . Let {V |a € V}
be any SO(X, 7)-semiopen cover of X. For each o € V, there exists
U, € SO(X, ) such that U, C V, C SO(X, 1) — C/(U,). By Lemma
2.5, SO(X, 1)-Cl(U,) = sCl(U,) = CI(U,) and hence V, € SO(X, 1) [6,
Theorem 4]. Therefore, {V |a € V} is a 7-semiopen cover of X . There
exists a finite subset V; of V such that X = J{CI(V )|a € V}. It fol-
lows from Lemma 2.5 that (X, SO(X, 1)) is S-closed. It is obvious that
(X, SO(X, 1)) is Hausdorff.

(d) = (e). By Lemma 2.4, 7+ is a topology on X . Let 2" be a cover of X
by 7*-open sets. Then each member of 7 is §-semiopen in (X, 7). Every
6-semiopen set of (X, 7) is the union of regular closed sets of (X, 7). Every
regular closed set of (X, 7) is semiopen and semiclosed in (X, 1) and hence
clopen in (X, SO(X, 1)). Therefore, 7" has a finite subcover. This shows
that (X, t*) is compact. Next, we shall show that (X, t*) is Hausdorff. Let
x and y be any distinct points of X . Since (X, SO(X, 7)) is Hausdorff,
there exists U, V € SO(X, 1) suchthat x e U, yeV and UNnV = Q;
hence sCI(U)NV =<. By Lemmas 2.4 and 2.5, C/(U)NV =& and hence
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Cl(UYNCl(V)=. Since CI(U) and CI(V) are regular closed in (X, 1)
and RC(X,1)c ", (X, ") is Hausdorff.

(e) = (c). Since t* is a topology on X, by Lemma 2.4 (X, 1) is E.D.
First, we shall show that (X, 7) is S-closed. Let 7° be a cover of X by
regular closed sets of (X, 7). Since RC(X, 1) c t" and (X, %) is com-
pact, 7 has a finite subcover. This shows that (X, 7) is S-closed. Next,
we shall show that (X, 7) is Hausdorff. Let x; and x, be any distinct
points of X . Since (X, t*) is Hausdorff, there exists ¥}, ¥, € t* such that
x, €V,x, €V, and V,nV, = . Moreover, there exists U, € SO(X, 1)
such that x; € U, ¢ C(U;) ¢ V; for i = i,2. Therefore, we have
Ci(U)nCl(U,) =2. Since U, € SO(X, 1), we have CI(U,) = Cl(Int(U,))
for i =1, 2. Thus, C/(U,) and CI/(U,) are open in (X, 7) since (X, 1)
is E.D. Therefore, (X, 1) is Hausdorfl.

REMARK 3.2. Every S-closed weakly- T, space is E.D. [4, Theorem 3.7].
Each regular closed set is clopen in an E.D. space. Therefore, every S-closed
weakly- 7, space is Urysohn. The statement (c) in Theorem 3.1 is thus equiv-
alent to each one of the following:

(¢) (X, 1) is S-closed weakly-T,;

(") (X, 1) is S-closed Urysohn.
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