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ON THE EMBEDDING INTO A RING OF AN
ARCHIMEDEAN 1-GROUP

ANTHONY W. HAGER AND LEWIS C. ROBERTSON

We shall prove the following about the ‘“‘ringification’ p4 of [2] and [5] of an
archimedean I-group 4: (a) Any ‘“‘minimal ring” containing 4 is pA4; (b)
A+ pA is a reflector; (c) p4 need not be laterally complete when A is. These
constitute the solutions to the problems posed in [2] by Paul Conrad.

1. The embedding into a ring. Let.¥ be the category which has objects
archimedean /-groups A with distinguished positive weak unit e,, and mor-
phisms /-group homomorphisms k: 4 — B with h(ey) = ep. Let # be the
category with objects archimedean f-rings R with identity 15 which is a weak
unit, and morphisms /-ring homomorphisms 2: R — .S with (1) = 1s.

1.1 THEOREM. If A € L, then there is pA € K and an YL -embedding py: A — pA
with the universal mapping property: If h: A — R is an L -morphism, with
R € A, then there is a unique R-morphism ph: pA — R with (ph) 0 py = h.

It seems appropriate to credit this theorem to Conrad and the present
authors: In [2], Conrad creates a ‘‘ringification’’ ¢4: A — cA by embedding 4
into its essential closure D (Q) (Q being the Stone space of the polar algebra of
A) with e, +— 1; then ¢4 is the subring generated by 4. He then shows that
any f-ring B (archimedean or not) in which 4 is large (see § 4) with e, an
identity for B, is essentially ¢4 ; this uniqueness is a weak version of the map-
ping property of 1.1. (Actually, Conrad proceeded more generally, with a fixed
order basis rather than simply a weak unit; this will not concern us at present).
In ignorance of [2], we proved Theorem 1.1 in [5], but assuming scaler multi-
plication on the groups and rings. The appendix to [5] discusses these things,
and points out that the scalar multiplication is not needed.

We shall see in 3.2 below, that for each 4, (p4, p4) = (c4, cA). The con-
sequences are discussed there.

Remark on reflections. There is the obvious forgetful functor F: # — &,
and 1.1 says exactly that F has a left adjoint p for which the adjunctions p,4
are embeddings. In fact, F is one-to-one. (L.e., each & -object admits at most
one compatible multiplication making the weak unit the ring identity; this is
proved in 2.2 of [2], and again, differently, in §4 of [5].) This permits inter-
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preting # as a subcategory of &, and with this interpretation, 1.1 says that %
is reflective in &. (Terminology from, e.g., [6].)

While we shall use this terminology below—p4 will be called the % -reflection
of 4, and p4 the reflection embedding—we would like to point out that 1.1 and
(a) of the introduction (= 3.1 below) permit another proof of the uniqueness
of multiplication: Given R € £, the identity 1z: R — R is a “minimal £ -em-
bedding” of R ¢ & into R € #, hence by 3.1 has the universal mapping
property of 1.1. Thus, if R’ denotes the .# -object R with another multiplica-
tion, we have

R ___1_12__>R

1 7/
R //f
/
R ¥

for a unique Z-morphism f. Clearly f = 1, which says the multiplications of
R’ and R are the same.

2. Point-separating representation. Wide use has been made of various
representations of archimedean /-groups and rings as structures of continuous
extended-real-valued functions defined over spaces of ideals or something
similar. In our proof [5] of 1.1 (sketched in § 3) we employed a version of the
Yosida representation [9] (which, it seems to us, has been under-exploited),
and we shall need it further here.

Given 4 € &, let X, denote the space of ideals of A (also called solid
subgroups) which are maximal with respect to the property of not containing
the weak unit ey, given the hull-kernel topology.

If X is any topological space, let

D(X) = {f: X > [—o0, 400]|f continuous, f~!(—o0, 40 ) dense}.

2.1 THEOREM. If A € F, then X 4 is non-void compact Hausdorff, and there is
an &L -isomorphism A — A onto an “‘I-subgroup of D(X )" such that é, is the
function constantly 1 and A separates the points of X 4.

If A — A is an L -isomorphism onto an I-subgroup of D(X), with X compact
Hausdorff, such that ¢, = 1 and A separates points, then there is « homeomor-
phism 70 X — X4 such that @ o v = a for each a € A.

2.2 THEOREM. The representation A — A C D(X,) of 2.1 has the property:
Ifh: A — Bisan-morphism, then there is a unique continuous map 7 : Xpg —

X 4 such that h(a)” = & o7 for each a € A.

The proofs of 2.1 and 2.2 are in [5] for vector lattices; the necessary modifi-
cations (described in [5]) are easy.
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2.3 ProposiTION. With h and 7 as in 2.2, h 1s one-to-one if and only if T is onto.

Proof. We need to know that (for any 4), 4 separates points from closed
sets in X, (equivalently, the sets coz @ = {p|d(p) ## 0} form a base). This fol-
lows by a compactness argument from the point-separating. Then, 7 (Xp) # X4
is equivalent to the existence of @ € 4, a # 0, with (cozd) N 7(Xz) = 0.
For such «, we have @ (r(x)) = 0 for each x, hence 4(a) = 0 and % is not one-
to-one. The converse is now clear.

3. Strong uniqueness of pA. The principal result of this section (and the
paper) is

3.1 THEOREM. Let A € £, R € R, let h: A — R be an L -embedding, and
suppose there is no X-object properly between h(A) and R. Then there 1is an
R-isomorphism i : pA — R withic py = h.

This is the exact statement of (a) of the introduction. Before proceeding to
the proof, we give some corollaries.

3.2 COROLLARY. For each A ¢, Conrad's ringification (c4, cA) and
(pa, pA) (of 1.1) are related by a commuting X -isomorphism (per 3.1).

Proof. Conrad’s construct satisfies the condition in 3.1, by 1.1 of [2].

3.3 COROLLARY. For each A € £, Conrad’s (c4, cA) has the universal map-
ping property of 1.1.

Proof. By 3.2 and 1.1.

Thus referring to the questions at the end of [2]: 3.1 and 3.2 yield an an
affirmative answer to (1); 3.1 and 3.3 yield an affirmative answer to (2).
We now present the proof to 3.1, in several steps.

3.4 Given 4 € &, consider a diagram

A_ﬁﬁpA
7
/

//
/ph

h

/
R¥

with 4 = R as in the hypotheses of 3.1; the unique #-morphism ph with
(oh) 0 p4 = h exists by 1.1. Thus, the image (pk)(p4) € X, and by minimal-
ity, ph is onto. We seek to prove that pkis 1 — 1. Then ph will be the % -iso-
morphism of 3.1.
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Applying 2.2 to the above diagram yields the ‘““dual” commuting diagram

X.4+-_a— XoA
I¢] Y
Xk

in the category of compact Hausdorff spaces. (Here, é o @ = p4(¢)” for each
a € A; doB = h(a)" for each a € 4; boy = (ph) (b) for each b € pA.)
According to 2.3, @ and @8 are onto because p4 and % are one-to-one; and, ph will
be one-to-one if v is onto. We prove this in two steps:

3.5 LEMMA. Consider a commuting diagram

1 compact Hausdorff spaces. If a is irreducible and B is onto, then v is onto.

(A continuous function is called irreducible if it is onto, and maps no proper
closed subspace of the domain onto the range.)

Proof. v(Z) is compact, hence closed. If v were not onto, then v (Z) would be
be a proper closed subspace; hence a(y(Z)) # X, because « is irreducible. But
a(y(Z)) = B(Z) = X, because B is onto.

. « ) .
3.6 PROPOSITION. For each A € £, the continuous map X , < X ,, which ‘‘in-

A
duces’’ the reflection embedding A i oA per 2.2 1s irreducible.

Proof. We need to recall the construction of pA4 from § 6 of [5]:

Let L be the set of principal ideals (= solid subgroups) which contain the
weak unit e,, directed by set inclusion. For each I € L, pI is constructed
(below) with the universal mapping property of 1.1. Then, if J D I, the
inclusion “lifts” to an #-morphism ¢;” : pI — pJ, which is shown to be one-
to-one. This process provides a direct limit system in #. p4 is defined as

lir_r)l {pI|I € L} (the direct limitin &%),
and the reflection embedding p, : 4 — pA results from the fact that 4 =
U {I|I € L}.

For I € L, the construction of p/ is this: For some ¢« = ¢4, we have I =
{b € 4] |b| £ na for some integer n}. Letting R, = d7'(—o0, 400), each
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b € I is real-valued on R,, and we may view I as a subset of C(R,) (the con-
tinuous real-valued functions on R,). Since C(R,) € HA, there is a least
“AR-subobject”’ of C(R,) which contains I; this is taken as pI, with I — I C pI
the reflection embedding.

Now I has weak unit e, and fseparates the points of X 4. By 2.1, X; = X..
Since pI C C(R,), there is a compactification of R, over which all functions in
ol extend (with values in [—o0, +00]) and with the extensions separating
points (take a quotient of the Stone-Cech compactification 8R,). By 2.1, this
is X, 5. Evidently, there isa mapa;: X,; — X; = X, extending the inclusion
R, C X,.

ForJ DI, ¢;7 : pI — pJ is, by 2.2, “dually induced” by a map a;” : X,

— X,;. We now have an inverse limit system of compact Hausdorff spaces.

Let
Z =lim {X,;|I€ L}
P

For I ¢ L, let II;: Z — X,; be the projection and leta; 0 ll; =a:Z —
X = X,4. This is easily seen to not depend on the choice of I. We now shall
show that « is irreducible, and then that Z = X .

Let F be a proper closed set in Z. We may as well suppose that /' = Z — U,
where U is nonvoid and basic, of the form

U;openin X,,,. For each 1, let a; be a generator for I; with a; = ¢4, and let [
be generated by a«; v-:--v a, Since I D I; for each 7, U collapses to
Z N 1I71(G), where

G= n (@) (U

Then

a(F) = a,(H, <F>) = aI(H, z - U)) = a;(X,; = G).

Now o;(X,; — R,) =X, —R,(ea=a,v---va, by 6.11 of [3]. Since
GN R, #0,a;(X,; — G) misses some points of R,, hence is a proper subset
of X 4. Thus, « is irreducible.

To see that Z = X,,, we create a point-separating representation of p4 on
Z and use 2.2. If f € pA, then f € pI for some [ and is viewed as a
[—o0, +00]-valued function on X,;. Let f = f o Il ,; this is independent of
I. We want to show that

FH=0, +0) = JIT" (7 (=, +0))

is dense, and it is easy to check that irreducible maps inversely preserve dense
sets. So, it suffices that I1, be irreducible. But a; 0 I1, = « is irreducible,
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and so is a; (from the end of the last paragraph);thus II; must be. To see that
the f's separate points, suppose p ¥ ¢ in Z. For some coordinate I, p; # ¢,

and there is f € pI with f(p;) = f(g;); then f(p) = F(q).
The proof of 3.6 is complete.

4. On irreducibility and strong uniqueness. We make a few remarks on
the material of the preceding section. The first gives an algebraic version of the
irreducibility condition, and the second points out a generalization of 3.1.

4.1 PROPOSITION. Let h: A — B be an L -embedding. Then, h(A4) is large in
B if and only if the map o : Xy — X, “dually inducing” h (per 2.2) 1is irre-
ducible.

(“Large’” means that each nonzero ideal of B meets £(4) non-trivially, or
that whenever 0 < b € B, then there are ¢ € 4 and an integer #, with 0 <
h(a) < nb.)

Proof. First, irreducibility of « is easily seen to be equivalent to: For O open
and nonvoid in X, there is an open nonvoid V in X 4 with a='(V) C O. The
sets O and 1V may be taken to be basic; a convenient basis for an
X4 is {coz dla € A} (as in the proof of 2.2).

So, let k(4) be large in B, let 0 = coz b be given and choose ¢ and n with
0 < h(a) < nb. Obviously, coz h(a)” C coz (#d)" = coz b.Buth(u)” = d oa,
and coz h(a)" = a'(coz d). Thus V = coz d has o= (V) C O.

Conversely, let a be irreducible and let 0 < b € B. Choose n and open O
with 5|O = 1/n. Now take V = coz d; (a1 € A+) with o« (V) C O, and let
a=ay N ey (s0d=d A1) Thencozh(a)" = o' (cozd) = a(coz d,) C
O C cozb = coz (nd)". Clearly, 0 < h(a) < nb.

Combining 4.1 with the obvious generalizations of 3.4 and 3.5 (whose proofs
work here), we have

4.2 PROPOSITION. Let.% be a subcategory of &, and let A € L have an L -re-
fection Sy : A — sA with Sy an L -embedding. If S, (A) is large in sA, then any
L -embedding h : A — S for which there is no & -object properly between h(A)
and S is, up to F-isomorphism (as in 3.1), the S -reflection.

Remarks. (a) We do not suppose . is reflective, only that there be Sy :
4 —s4 (s4 € &) with the required universal mapping property (as in 1.1).

(b) Conrad showed that for his (¢4, c4), c4(A4) is large in c4. But without
knowing reflectivity (one of Conrad’s questions), we don’t see how to get the
conclusion of 4.2 (another of his questions).

The conclusion of 4.2 (or 3.1) seems a striking property. It is well known to
fail for “‘almost reflections’ like Dedekind or lateral completion, and is very
uncommon for topological embedding — reflections. (The only such examples
we know are in Hausdorff uniform spaces; those epi-reflective subcategories
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which contain all complete spaces.) On the other hand, we know of no embed-
ding—reflection in £ for which it fails.

4.3 Question. It it true that whenever ¥ is an embedding-reflective sub-
category of &, then for each reflection S, : 4 — s4, .S, (4) is large in sA4?

5. Lateral completeness. We present two examples of laterally complete
l-groups A for which pA fails to be laterally complete; thus Conrad’s question
(3) is answered negatively. The first example below was contributed by the
referee, who called it ‘‘the discrete version of the (second) example . ..”; this
is quite simpler then the second example. The second example (our original
one) is, however, a vector lattice, and since we don't see how to get a simpler
vector lattice example, we include it here. (These examples are also orthocom-
plete with pA failing to be (the first directly, the second by [8]); this was part
of Conrad’s question).

5.1. Example. Let T" be the subgroup of the additive reals R generated by 1
and w. For each 7, let T'; be a copy of 7" and let

@

A4=1] 7.

i=1

Then A is laterally complete, but the subring 4’ of 11%.; R, generated by .1
is not laterally complete. And A’ = pA either by 3.1 or by 1.1 of [2] (since -1
is large in 1=, R)).

5.2. Example. Let A be the lateral completion of the vector lattice P of con-
tinuous piecewise linear functions on the unit interval. We shall see that 4 is
not laterally complete. We require a description of 4.

Let X be the projective cover of the unit interval [4]: X is compact, ex-
tremally disconnected, and there is an irreducible map « : X — [0, 1]. (Or, X
is the Stone space of the Boolean algebra of polars of P.) A familiar [7; 1]
representation of P is created, with

P = {poalp € P}.

(As in § 3, the sets (P oa)~'(—co, 40) are dense, by irreducibility of «).
Then the lateral completion 4 emerges as the set of all f € D (X) such that for
some disjoint family % of clopen sets with \U % dense, flU € P for each
U ¢ U (Theorem 11 of [8]).

The description of these functions can be simplified a bit: First, such %’s
are at most countable because [0, 1] has the countable chain condition, and
irreducible maps inversely preserve this property. Second, then, if f € A there
is %4 = {U,} countable, and for each #n, P, € P such that f|U, = P,|U,.
Associated with P, is a ‘““partition” of [0, 1], say 0 = xp < 21 < -+ < Xpq1 =
1, such that on each [x;, x41], P, is linear. Then C* = clya™ (x4, %41) is clopen
in X (by extermal disconnectivity). Thus, for each z, there is linear ¢,, such
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that P,|C/ = ¢q,|C{. So, the system ¥~ = {U, N C{},.; consists of disjoint
clopen sets, the union is still dense, and for each V € ¥~ there is a lincar gy
such that f|V = gy|V.

Changing the notation, we have the following characterizing description of
those f € A: There is a countable dense disjoint family { U,} of clopen sets, and
for each #, linear g, € P, such that f|U, = ¢,|U,.

By extremal disconnectivity, D(X) € %, so by 3.1 or by § 1 of [2] p4 is the
smallest #-subobject (i.e., l-subring) of D(X) which contains 4. This, it is
easy to see, consists of those f € D(X) for which there is a positive integer d
and a countable, dense, disjoint family { U,} of clopen sets, and for each n a
polynomial p, of degree < d, with f|U, = p,| U,.

Thus we see that p4 is not laterally complete: Take any such infinite system
{U,}, let ', be the charatgeristic function of %,, and for each n choose a
polynomial p, of degree = 7. Then each 2 ,P, € pA4 but v, Z P, @ pA.
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