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On the Distribution of Pseudopowers

Sergei V. Konyagin, Carl Pomerance, and Igor E. Shparlinski

Abstract. An x-pseudopower to base g is a positive integer that is not a power of g, yet is so modulo p

for all primes p ≤ x. We improve an upper bound for the least such number, due to E. Bach, R. Lukes,

J. Shallit, and H. C. Williams. The method is based on a combination of some bounds of exponential

sums with new results about the average behaviour of the multiplicative order of g modulo prime

numbers.

1 Introduction

Let g be a fixed integer with |g| ≥ 2. Following E. Bach, R. Lukes, J. Shallit, and

H. C. Williams [1], we say that an integer n > 0 is an x-pseudopower to base g if n is

not a power of g over the integers but is a power of g modulo all primes p ≤ x, that

is, if for all primes p ≤ x there exists an integer ep ≥ 0 such that n ≡ gep (mod p).

Denote by qg(x) the least x-pseudopower to base g.

A well-known result of A. Schinzel [20] asserts that if f and g > 0 are integers such

that f 6= gk for all integers k ≥ 0, then for infinitely many primes p the congruence

gx ≡ f (mod p) does not have solutions in nonnegative integers x. Therefore,

qg(x) → ∞, x → ∞.

E. Bach et al. [1] have shown that if the Riemann hypothesis holds for Dedekind zeta

functions, then there is a constant A > 0, depending only on g, such that

qg(x) ≥ exp(A
√

x/(log x)2).

On the other hand, if Mx =
∏

p≤x p is the product of all primes p ≤ x, then

qg(x) ≤ 2Mx + 1, when x ≥ 2. Indeed, both Mx + 1 and 2Mx + 1 are ≡ g0 (mod p)

for all primes p ≤ x and evidently not both can be powers of g. The prime number

theorem implies that Mx = e(1+o(1))x, so we have

(1.1) qg(x) ≤ e(1+o(1))x, x → ∞.

Though the inequality qg(x) ≤ 2Mx + 1 cannot be improved in general (consider the

case g = Mx + 1), if g is fixed or |g| is not too large compared with x, there is a chance

to improve the bound (1.1). Supported by numerical data, a heuristic argument is
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given in [1] suggesting that qg(x) for fixed g is about exp(cgx/ log x), where cg > 0.

We obtain a more modest upper bound valid for |g| ≤ x as well as several more

results about the distribution of x-pseudopowers to base g.

For an integer m we use Zm to denote the residue ring modulo m. For a prime p,

we denote by Ug,p the subset of Zp generated by powers of g modulo p, that is,

Ug,p = {n ∈ Zp : n ≡ gk (mod p) for some nonnegative k ∈ Z}.

Clearly, if gcd(g, p) = 1, then Ug,p is a subgroup of Z∗
p, while if p | g, then Ug,p =

{0, 1}.

We consider the set

Wg(x) = {n ∈ [0, Mx) : n ∈ Ug,p for all primes p ≤ x}.

The set Wg(x) consists of both the x-pseudopowers to base g that lie below Mx and the

true powers of g in this range. (In the case that Mx | g, the set Wg(x) also contains 0,

but we assume that |g| ≤ x and x is large, so that this case does not occur.) The

number of true powers of g below Mx is O(x), which turns out to be minuscule in

comparison to #Wg(x).

We first get a good lower bound for #Wg(x). Then we estimate exponential sums

with elements of Wg(x) and use these bounds to derive some uniformity-of-distribu-

tion results for elements of Wg(x). Our estimate for qg(x) follows from these results.

2 Our Approach and Results

Our approach is based on a combination of two techniques:

• recent bounds of exponential sums over reasonably small subgroups of the multi-

plicative group Z∗
p due to Heath-Brown and Konyagin [10],

• lower bounds on multiplicative orders on average which we derive from upper

bounds of R. C. Baker and G. Harman [2, 3] (which are summarised in [9]) for

the Brun–Titchmarsh inequality on average.

We do not try to obtain numerically the best results; rather we concentrate on the

exposition of our main ideas. Certainly with more work and numerical calculations

one can get more precise results. Furthermore, any further advance in our knowledge

on the above two topics would immediately lead to further progress on this problem

as well.

For prime p ∤ g, let lg(p) = #Ug,p, the multiplicative order of g modulo p. We also

put lg(p) = 1 for g ≡ 0 (mod p). We now define the product

(2.1) Rg(x) =
∏

p≤x

lg(p).

The Chinese remainder theorem implies that

#Wg(x) =
∏

p≤x

#Ug,p.
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Further, for p | g, we have #Ug,p = 2 = 2lg(p). Thus, if gcd(g, Mx) has exactly k

prime factors,

(2.2) #Wg(x) = 2kRg(x) ≥ Rg(x).

Note that Rg(x)1/π(x) is the geometric mean of lg(p) for p ≤ x and so has some

independent interest. Our first result gives a lower bound for Rg(x) and so, via (2.2),

gives a lower bound for #Wg(x).

Theorem 2.1 For x sufficiently large and for g an integer with 2 ≤ |g| ≤ x, we have

#Wg(x) ≥ Rg(x) ≥ exp(ηx),

where η = 0.58045.

We put e(u) = exp(2πiu) and define exponential sums

Sa,g(x) =

∑

n∈Wg (x)

e(an/Mx).

Theorem 2.2 For x sufficiently large and for any integers a, g with 2 ≤ |g| ≤ x, we

have

|Sa,g(x)| ≤ #Wg(x) gcd(a, Mx) exp(−γx),

where γ = 0.11286.

For a positive integer h ≤ Mx, let Ng(x, h) denote the number of members of

Wg(x) below h. Using some standard arguments, we derive the following from our

estimates of the sums Sa,g(x).

Theorem 2.3 For x sufficiently large and for any integers g and h with 2 ≤ |g| ≤ x

and 1 ≤ h ≤ Mx we have

Ng(x, h) = #Wg(x)
h

Mx

+ Eg(x, h),

where |Eg(x, h)| ≤ #Wg(x) exp(−γx) and where γ is as in Theorem 2.2.

In particular, we improve (1.1) to qg(x) ≤ e0.88715x for x sufficiently large and

|g| ≤ x. Indeed, if we take h = e0.88715x in Theorem 2.3, then that result implies

that there are at least 1
2
#Wg(x)h/Mx numbers in Wg(x) below h. Together with The-

orem 2.1, this implies that there are more than e0.467x members of Wg(x) below h.

But there are only O(x) numbers below h that are true powers of g, so there are many

members of Wg(x) below h that are x-pseudopowers to base g.
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3 Proof of Theorem 2.1

It is well known (see [5, 6, 12, 17]) that lg(p) ≥ x1/2 for all but o(x/ log x) primes

p ≤ x. Thus for Rg(x), given by (2.1), we immediately obtain

(3.1) Rg(x) ≥ exp(x/2 + o(x)).

We now obtain a more accurate estimate for Rg(x).

Let P(m) denote the largest prime divisor of m ≥ 2 (with the convention

P(1) = 0). We use π(x, y) to denote the number of primes p ≤ x with P(p − 1) ≤ y

and define the constant

(3.2) c = lim inf π(x, x1/2)/π(x).

Lemma 3.1 For the product Rg(x), given by (2.1), we have

Rg(x) ≥ exp
( 1 + c

2
x + o(x)

)

,

where c is given by (3.2).

Proof Let P0 be the set of primes p ≤ x with lg(p) ≤ x1/2, let P1 be the set of primes

p ≤ x with lg(p) > x1/2 and P(p− 1) > x1/2, and let P2 be the set of all other primes

p ≤ x.

We simply ignore the contribution from primes in P0 (which, as we have men-

tioned, is exp(o(x)) anyway).

For each p ∈ P1, since lg(p) | p − 1 and (p − 1)/P(p − 1) < x1/2, we have

P(p − 1) | lg(p). Thus,

(3.3)
∑

p∈P1

log lg(p) ≥
∑

p∈P1

log P(p − 1) =

∑

x1/2<q≤x

π(x; q, 1) log q + o(x),

where q runs over primes and π(x; k, b) denotes the number of primes p ≤ x with

p ≡ b (mod k). Indeed, each q in the indicated range corresponds to π(x; q, 1)

primes p ≤ x with P(p − 1) = q, and almost all primes p so counted in the sum are

in P1. It follows from the Bombieri–Vinogradov theorem and the Brun–Titchmarsh

inequality (see [13, Theorems 6.6, 17.1]) that

∑

q≤x1/2

π(x; q, 1) log q = (1/2 + o(1))x,

and since
∑

q≤x π(x; q, 1) log q = (1 + o(1))x, we have

(3.4)
∑

x1/2<q≤x

π(x; q, 1) log q = (1/2 + o(1))x,
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as noted by M. Goldfeld [8]. We thus have from (3.3) that

(3.5)
∑

p∈P1

log lg(p) ≥ (1/2 + o(1))x.

We now consider the contribution from primes in P2. For each such prime p we

have lg(p) ≥ x1/2, so that

(3.6)
∑

p∈P2

log lg(p) ≥ 1

2
log x

∑

p∈P2

1 =
1

2
π(x, x1/2) log x + o(x).

The bounds (3.5) and (3.6), together with (3.2), imply that
∑

p≤x

log lg(p) ≥ (1/2 + c/2 + o(1))x,

which concludes the proof.

There is probably little doubt that c = ρ(2) = 1 − log 2 = 0.3068 · · · , where

ρ(u) is the Dickman–de Bruijn function (see [21]), however proving this seems to be

inaccessible by present methods; see [4,18,19] where more general conjectures about

π(x, y) are discussed. Note that in [18] we have the inequality

π(x, x1/2) ≥ (1 − 4 log(5/4) + o(1))x/ log x,

so that c ≥ 0.107425 · · · . The key tool in [18] is a result of C. Hooley [11] from 1973.

Using more modern tools we now obtain a larger value of c.

For 1/2 ≤ u < 1 let C(u) denote a monotone nondecreasing function such that

for any ε > 0 and A > 0, we have

(3.7) π(x; k, b) ≤ (C(u) + ε)
x

ϕ(k) log x

for all integers k ≤ xu but for at most xu/ logA x exceptions, for all b coprime to k for

allowable values of k, and for all x ≥ x0(A, ε). H. Montgomery and R. Vaughan [16]

have a version of the Brun–Titchmarsh theorem which allows one to take C(u) =

2/(1 − u) with no exceptional values of k and with ε = 0, (see also [9, Theorem 8.1]

or [13, § 6.8]). But allowing a small exceptional set as indicated here then permits

one to get smaller values of C(u). This is the arena of “the Brun–Titchmarsh theorem

on average.” The key results we use are due to É. Fouvry [7] and R. C. Baker and

G. Harman [2, 3]. (There are many other contributors to this subject, we refer to [9]

for more details and further references).

For a monotone nondecreasing function C(u) satisfying (3.7), let us define ϑC by

the equation

(3.8)

∫ ϑC

1/2

C(u) du = 1/2.

(Note that for any monotone nondecreasing function C(u) the integral is well de-

fined.)

We now use the approach of [18] to show the following lower bound on c.
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Lemma 3.2 For the constant c given by (3.2), we have

c ≥ 1 −
∫ ϑC

1/2

C(u)

u
du,

where C(u) is an arbitrary monotone nondecreasing function satisfying (3.7) and ϑC is

defined by (3.8).

Proof Let

H(x, t) =

∑

x1/2<q≤t

π(x; q, 1) log q,

where q runs over primes. Thus, by partial summation, we have

(3.9) π(x) − π(x, x1/2) =

∑

x1/2<q≤x

π(x; q, 1) =
H(x, x)

log x
+

∫ x

x1/2

H(x, t)

t log2 t
dt.

Using (3.4), the first term on the right in (3.9) is (1/2 + o(1))x/ log x, so it remains to

get a good upper bound for the integral.

Using the inequality (3.7), partial summation, and the prime number theorem,

we have

(3.10) H(x, t) ≤ x

∫ log t/ log x

1/2

C(u) du + o(x).

Thus, for any value of ϑ ∈ (1/2, 1) we have

(3.11)

∫ xϑ

x1/2

H(x, t)

t log2 t
dt ≤ x

∫ xϑ

x1/2

1

t log2 t

∫ log t/ log x

1/2

C(u) du dt + o(x/ log x).

By a change of variables and an interchange of the order of integration, the double

integral is equal to

∫ xϑ

x1/2

1

t log2 t

∫ log t/ log x

1/2

C(u) dudt =

∫ ϑ

1/2

C(u)

∫ xϑ

xu

1

t log2 t
dtdu

=

∫ ϑ

1/2

C(u)

∫ ϑ log x

u log x

1

v2
dvdu

=
1

log x

∫ ϑ

1/2

C(u)
( 1

u
− 1

ϑ

)

du.

Thus, from (3.11) we have

∫ xϑ

x1/2

H(x, t)

t log2 t
dt ≤ x

log x

∫ ϑ

1/2

C(u)

(

1

u
− 1

ϑ

)

du + o(x/ log x).
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Using H(x, t) ≤ H(x, x) = (1/2 + o(1))x (see (3.4)), we then have for any ϑ ∈
(1/2, 1) that

∫ x

x1/2

H(x, t)

t log2 t
dt =

∫ xϑ

x1/2

H(x, t)

t log2 t
dt +

∫ x

xϑ

H(x, t)

t log2 t
dt

≤ x

log x

∫ ϑ

1/2

C(u)
( 1

u
− 1

ϑ

)

du +
x

2 log x

( 1

ϑ
− 1 + o(1)

)

,

which we rewrite as

(3.12)

∫ x

x1/2

H(x, t)

t log2 t
dt ≤ x

log x

(

∫ ϑ

1/2

C(u)

u
du − 1

ϑ

∫ ϑ

1/2

C(u)du +
1

2ϑ
− 1

2
+ o(1)

)

.

If we choose ϑ = ϑC defined by (3.8), then using (3.9) and (3.12), we obtain

π(x) − π(x, x1/2) ≤ x

log x

∫ ϑC

1/2

C(u)

u
du + o(x/ log x),

which concludes the proof.

We now use known results on the possible choices of the function C(u) in (3.7),

as summarised in [9], to obtain a lower bound for c.

Lemma 3.3 For the constant c given by (3.2), we have c > 0.160901.

Proof For u ∈ [0.51, 0.56], we define C(u) as a step-wise monotonically nonde-

creasing function whose values at u = 0.533 and u = 0.5 + 0.005 j, j = 3, . . . , 12 are

given by G. Harman in [9, Theorem 8.2] as C(0.533) = 2 and in [9, Table 8.1] as:

u C(u) u C(u) u C(u) u C(u) u C(u)

0.515 1.223 0.525 1.75 0.535 2.09 0.545 2.47 0.555 2.76

0.52 1.632 0.53 1.82 0.54 2.25 0.55 2.66 0.56 2.88

For other values of u, we also use analytic expressions which are due to R. C. Baker

and G. Harman [2,3] and É. Fouvry [7]. These results are also presented in [9, p. 184]

(for u ∈ [0.5, 0.51)) and in [9, Theorem 8.4] (u ∈ [17/32, 5/7]):

• for 0.5 ≤ u < 0.51, we have C(u) = 1 + 150(u − 1/2)2;
• for 17/32 < u ≤ 4/7, we have C(u) = 14/(12 − 13u) − log(4(1 − u)/3u) (in fact

we use it only for 0.56 < u ≤ 4/7);
• for 4/7 < u ≤ 3/5 we have C(u) = 14/(12 − 13u);
• for 3/5 < u ≤ 5/7 we have C(u) = 8/(3 − u).

With this we compute (using Mathematica)
∫ 0.51

0.5

C(u) du = 0.01005,

∫ 0.56

0.51

C(u) du = 0.107405,

∫ 4/7

0.56

C(u) du ≈ 0.034177,

∫ 3/5

4/7

C(u) du ≈ 0.091260,

∫ .6759

3/5

C(u) du ≈ 0.257087,

∫ .67591

3/5

C(u) du ≈ 0.257121,
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where the approximations are rounded to 6 decimal places.

Therefore,

∫ 0.6759

1/2

C(u) du < 0.49999,

∫ 0.67591

1/2

C(u) du > 0.50001,

and we see that for our choice of C(u), 0.6759 < ϑC < 0.67591.

We also compute

∫ 0.51

0.5

C(u)

u
du < 0.019902,

∫ 0.56

0.51

C(u)

u
du < 0.199610,

∫ 4/7

0.56

C(u)

u
du < 0.060412 ,

∫ 3/5

4/7

C(u)

u
du < 0.155787,

∫ 0.67591

3/5

C(u)

u
du < 0.403388.

Therefore,
∫ ϑC

1/2

C(u)

u
du <

∫ 0.67591

1/2

C(u)

u
du < 0.839099 ,

so that with Lemma 3.2 the result follows.

Theorem 2.1 now follows from Lemmas 3.1 and 3.3.

4 Proof of Theorem 2.2

Let

(4.1) Tg(x) =

∏

p≤x

lg (p)>p2/3

(lg(p)p−2/3).

We now show that the exponential sum Sa,g(x) is related to Tg(x) and the product

Rg(x) defined in (2.1).

Lemma 4.1 For any integer a, we have

|Sa,g(x)| ≤ #Wg(x)d exp
(

x/4 + o(x)
)

Rg(x)−5/8Tg(x)−3/8

as x → ∞, where d = gcd(a, Mx).

Proof By the Chinese Remainder Theorem we see that

(4.2) Sa,g(x) =

∑

n∈Wg (x)

e(an/Mx) =

∏

p≤x

∑

n∈Ug,p

e(apn/p),
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where ap ∈ Zp is determined by the condition

ap(Mx/p) ≡ a (mod p).

If p ∤ ag, the bound of D. R. Heath-Brown and S. V. Konyagin [10] applies which

gives the estimate

(4.3)
∣

∣

∣

∑

n∈Ug,p

e(apn/p)
∣

∣

∣
≤ Clg(p)3/8 p1/4

for some absolute constant C > 1. We also recall the well-known bound

(4.4)
∣

∣

∣

∑

n∈Ug,p

e(apn/p)
∣

∣

∣
≤ p1/2

(provided p ∤ ag), which is better than (4.3) for lg(p) > p2/3 (see [14, Theorem 3.4]).

For the set P0 of primes p ≤ x with p | ag we estimate the exponential sums over

Ug,p trivially as 2lg(p). For the set P1 of primes with p ∤ ag and lg(p) ≤ p2/3 we use

the bound (4.3). Finally, for the set P2 of primes with p ∤ ag and lg(p) > p2/3 we use

the bound (4.4).

Thus, substituting these bounds in (4.2), we obtain

(4.5) |Sa,g(x)| ≤ 2#P0C#P1

∏

p∈P0

lg(p)
∏

p∈P1

lg(p)3/8 p1/4
∏

p∈P2

p1/2.

We majorize the first two factors in (4.5) as eO(π(x))
= eo(x). The first product in (4.5)

may be restricted to the primes p ≤ x which divide a, and since lg(p) < p, this

product is bounded by gcd(a, Mx) = d. Let Q1,Q2 be the same as P1,P2 but without

the restriction that p ∤ ag. Thus, the three products in (4.5) are at most

d
∏

p∈Q1

lg(p)3/8 p1/4
∏

p∈Q2

p1/2
= d

∏

p≤x

lg(p)3/8 p1/4
∏

p∈Q2

lg(p)−3/8 p1/4

= dRg(x)3/8M1/4
x Tg(x)−3/8.

Thus, the result follows from (4.5), the prime number theorem in the form Mx =

e(1+o(1))x, and the inequality (2.2).

Using the elementary bound (3.1) together with Lemma 4.1 and the trivial bound

Tg(x) ≥ 1 already gives a nontrivial estimate on the sums Sa,g(x), namely

|Sa,g(x)| ≤ #Wg(x) gcd(a, Mx) exp(−x/16 + o(x)).

Using Theorem 2.1 in place of (3.1) and still using only Tg(x) ≥ 1 we get

|Sa,g(x)| ≤ #Wg(x) gcd(a, Mx) exp(−0.11278x)

for all large x. We now obtain a nontrivial estimate for Tg(x), which in turn implies a

slightly better estimate for Sa,g(x).
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Lemma 4.2 For the product Tg(x) given by (4.1), a function C(u) satisfying (3.7),

and ϑC > 2
3

defined by (3.8) we have

Tg(x) ≥ exp
(

x

∫ ϑC

2/3

(

1 − 2

3u

)

C(u) du + o(x)
)

.

Proof Let P be the set of primes p ≤ x with lg(p) > x1/2 and P(p − 1) > x2/3.

Similarly to the proof of Lemma 3.1 we have lg(p) > p2/3 for all p ∈ P and so

log Tg(x) ≥
∑

p∈P

(

log lg(p) − 2

3
log p

)

≥
∑

x2/3<q≤x

π(x; q, 1)
(

log q − 2

3
log x

)

+ o(x),

(4.6)

where q runs over primes.

Next, we follow the proof of Lemma 3.2. By partial summation, we have

∑

x2/3<q≤x

π(x; q, 1)
(

log q − 2

3
log x

)

=
1

3
H(x, x) − 2 log x

3

∫ x

x2/3

H(x, t)

t log2 t
dt.

(4.7)

Using (3.10) as in the argument for (3.12), and recalling (3.8), we get

∫ x

x2/3

H(x, t)

t log2 t
dt ≤ x

log x

(

∫ ϑC

2/3

C(u)

u
du +

3

2

∫ 2/3

1/2

C(u) du

− 1

ϑC

∫ ϑC

1/2

C(u) du +
1

2ϑC

− 1

2
+ o(1)

)

=
x

log x

(

∫ ϑC

2/3

C(u)

u
du +

3

2

∫ 2/3

1/2

C(u) du − 1

2
+ o(1)

)

.

Combining this with (4.6) and (4.7), and then using (3.4), we complete the proof.

Using the estimates for the function C(u) as discussed in the proof of Lemma 3.3

we can now get an explicit estimate for Tg(x).

Lemma 4.3 For the product Tg(x), given by (4.1), and x sufficiently large, we have

Tg(x) ≥ exp(0.000217x).

Proof This follows immediately from Lemma 4.2, the estimate ϑC > 0.6759 seen in

the proof of Lemma 3.3, and the formula C(u) = 8/(3 − u) for the range [3/5, 5/7]

also seen in the proof of Lemma 3.3.

We now have Theorem 2.2 by using, in the inequality of Lemma 4.1, our estimate

for Rg(x) in Theorem 2.1 and our estimate for Tg(x) in Lemma 4.3.
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5 Proof of Theorem 2.3

Using that for any integer m ≥ 1 we have

m−1
∑

a=0

e(au/m) =

{

0 if u 6≡ 0 (mod m),

m if u ≡ 0 (mod m),

(which follows from the formula for the sum of a geometric progression) we write

Ng(x, h) =

∑

n∈Wg (x)

h−1
∑

k=0

1

Mx

Mx−1
∑

a=0

e
(

a(n − k)/Mx

)

.

Changing the order of summation and separating the term #Wg(x)h/Mx correspond-

ing to a = 0, we derive

(5.1)
∣

∣

∣
Ng(x, h) − #Wg(x)

h

Mx

∣

∣

∣
≤ 1

Mx

∆,

where

∆ =

Mx−1
∑

a=1

|Sa,g(x)|
∣

∣

∣

h−1
∑

k=0

e(ak/Mx)
∣

∣

∣
.

For each d | Mx with d < Mx we now collect together the terms with gcd(a, Mx) = d

and also apply Lemma 4.1, getting the estimate

∆ ≤ #Wg(x) exp(x/4 + o(x))Rg(x)−5/8Tg(x)−3/8

×
∑

d<Mx

d|Mx

d

Mx−1
∑

a=1
gcd(a,Mx)=d

∣

∣

∣

h−1
∑

k=0

e(ak/Mx)
∣

∣

∣

≤ #Wg(x) exp
(

x/4 + o(x)
)

Rg(x)−5/8Tg(x)−3/8

×
∑

d<Mx

d|Mx

d

Mx/d−1
∑

b=1

∣

∣

∣

h−1
∑

k=0

e(bk/(Mx/d))
∣

∣

∣
.

We now recall that for any integers m ≥ 2 and 1 ≤ b < m, we have the bound

∣

∣

∣

h−1
∑

k=0

e(bk/m)
∣

∣

∣
≪ m

min{b, m − b} ,

which again follows from the formula for the sum of a geometric progression, see [13,

Bound (8.6)]. This implies that

m−1
∑

b=1

∣

∣

∣

h−1
∑

k=0

e(bk/m)
∣

∣

∣
≪ m log m.

https://doi.org/10.4153/CJM-2010-020-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-020-4


On the Distribution of Pseudopowers 593

Thus ∆ ≤ #Wg(x)Mx exp
(

x/4 + o(x)
)

Rg(x)−5/8Tg(x)−3/8, where we used that

∑

d<Mx

d|Mx

1 ≤ 2π(x)
= exp(o(x)).

Substituting this bound in (5.1), we obtain

∣

∣

∣
Ng(x, h) − #Wg(x)

h

Mx

∣

∣

∣
≤ #Wg(x) exp

(

x/4 + o(x)
)

Rg(x)−5/8Tg(x)−3/8.

Theorem 2.3 now follows from our estimates for Rg(x) and Tg(x) in Sections 3 and 4,

respectively.

6 Remarks

Using better estimates that already exist for C(u), it is possible to get a larger value of

ϑC and consequently better numbers in Lemmas 3.3 and 4.3. In particular, in [3, 9]

a method of computing a somewhat smaller function C satisfying (3.7) is described

leading to ϑC > 0.677. Using this value of ϑC in our estimate for Tg(x) allows us

to replace 0.000217 with 0.000272. The changes in the estimate for c in Lemma 3.3

depend much more intrinsically on the better estimates for C(u) that support a value

of ϑC that is greater than 0.677; we have not worked this out.

Certainly if more information about the possible choice of the function C(u) be-

comes available, one can immediately obtain even better numerical estimates for the

constant c and thus improve the results of Theorems 2.1, 2.2, and 2.3.

Another avenue for improvement could come with our estimate for lg(p) when

P(p − 1) ≤ √
x. We used the estimate lg(p) ≥ √

x for almost all such primes p ≤ x.

It follows from [6, Theorem 6] that there is some ε > 0 such that for a positive

proportion of these primes we have lg(p) ≥ x1/2+ε. Having a version of this theorem

with explicit constants would allow a numerical improvement in our Lemma 3.1 and

thus an improvement in our principal results.

It is very plausible that the technique of [14, Chapter 7] can be used to improve our

bound on qg(x) (but not the bounds of Theorems 2.2 and 2.3). However adjusting

this technique to the case of composite moduli and then tuning it to accomodate in

an optimal way our current knowledge of the behaviour of lg(p) may take significant

efforts.

Finally, we recall that under the Generalised Riemann Hypothesis we have lg(p) =

p1+o(1) for almost all primes p (see [5, 15, 17]) which immediately gives

Rg(x) = exp(x + o(x)) and Tg(x) = exp(x/3 + o(x)).

In turn, this means that one can take any γ < 1/2 in Theorems 2.2 and 2.3 and one

has qg(x) ≤ ex/2+o(x).
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