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HIGH LEVEL OCCUPATION TIMES FOR GAUSSIAN
STOCHASTIC PROCESSES WITH SAMPLE PATHS IN
ORLICZ SPACES

ANNA T. LAWNICZAK

Let X be a complete separable metric space, and {P.} a family of
probability measures on the Borel subsets of X. We say that { P} obeys the
large deviation principle (LDP) with a rate function I(-) if there exists a
function /(-) from X into [0, oo] satisfying:

(1)0 = I(x) = coforall x € X.

(11) I() is lower semicontinuous.

(iii) For each / << oo the set {x:I(x) = /} is a compact set in X.

(1v) For each closed set C € X

lim supelog P(C) = —inf I(x).
e—0

x€C
(v) For each open set G C X

lim infelog P(G) = —inf I(x).
0 xeG

It is easy to see that if 4 i1s a Borel set such that

inf I(x) = inf I(x) = inf I(x)
xeA’ xX€A x€A
then

lim € log P(4) = —inf I(x)
e—0

xXE€EA

where A and 4 are respectively the interior and the closure of the Borel
set A.

1. PROPOSITION [12]. Let P, satisfy the large deviation principle with a
rate function I(-). Let F be a continuous map from X — L where L is
another complete separable metric space. Then if we define Q, on L by
Q. =P oF ~! then Q. satisfies the large deviation principle with a rate

€

Sfunction #(-) defined by
Ay) = mf I(x).

x:F(x)=y
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2. ProposITION [3, 11]. Let (B, #(B), 1) be a real separable Banach space
with a mean-zero Gaussian measure p defined on the Borel o-algebra #(B).
Let H, be the closure in LX) of the set {x*(-):x* € B*}; and, for
h € H, let us define

S#(h) = th(x),u(dx).

Let {X;}:2, be a sequence of independent B-valued random elements, each
with distribution p. Set

and let p, be the distribution of S,/n, then {p,:n = 1} satisfies the large
deviation principle with the rate function 1,(-) defined as follows

1 =192 :
e — | 215 i xS S

o ifx € B\S,(H,),
and for any closed set F:

lim sup e log p(e” "F) = —inf I ,(x),
e—0 x€F

for any open set G:
lim inf € log p(e "G) = —inf I,(x).
e—0

x€G

In this paper we are going to show that Proposition 2 is true for Orlicz
spaces L, such that ¢( V1) is equivalent to ¢(¢) concave. It is easy to see
that this class of Orlicz spaces includes some non-locally convex vector
spaces. By applying the L.D.P. for Orlicz spaces we extend Kallianpur’s
and Oodaira’s (1978), Marlow’s (1973) results concerning some asymptot-
ic estimates for the probabilities of high level occupation times for
continuous Gaussian stochastic processes to the class of Gaussian
stochastic processes with sample paths in Orlicz spaces.

Let (T, % m) be an arbitrary o-finite measure space with o-algebra #
and a separable measure m. Let S be the space of equivalence classes in
measure m of all real valued % measurable functions. By ¢ let us denote a
continuous, non-negative, non-decreasing function defined for # = 0 such
that ¢(u) = 0 if and only if « = 0. We assume additionally that the
function ¢(u) satisfies the so-called A, condition, i.e., there is a positive
constant k such that for any u

d2u) = k(u).

For x € S let us define

https://doi.org/10.4153/CJM-1987-011-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1987-011-6

GAUSSIAN STOCHASTIC PROCESSES 241

Ry() = [ o 1x(0) | ymea

and let L, be the set of all x € S such that Ry(ax) < oo for some positive
scalar a. The set L, is a linear space under the usual addition and scalar
multiplication. Moreover it becomes a complete, separable metric space
under the (usually non-homogeneous) seminorm I|-||¢:

lIxlly = inf{c:c > 0, qu(c_lx) < c}.

The space (Lg, [Illy) is called an Orlicz space. It is easy to see that
convergence in the L, seminorm implies convergence in measure. In the
case that ¢ is a convex function L, is a Banach space [10]. We say that
&(1/u) is equivalent to a concave funcuon d(u)if forallu = 0

Ap(c;\Vu) = $(u) = Bd(c;\/u)

for some ¢, ¢, A, B positive constants. In this case Theorem 7.2.5 [5]
implies that ¢(u) satisfies A,-condition. The best known examples of the
Orlicz spaces are L,(T, %, m) spaces for 0 = p < oo [10].

For convenience let us recall some necessary facts concerning probabil-
ity measures on (Ly, #(L,) ) spaces.

A. For each probability measure p on (Ly, #(Ly) ) can be constructed a
measurable stochastic process £ = {&(¢):t € T} on

(©2,2,P) =L B(Ly), 1)

with sample paths in L such that &x) = x p ae.; induced measure B s
equal to g, and for every pair (s, u) of real numbers

&t sx = uy) = sé(t, x) = ué(t,y) m X p X pae.
Conversely, each jointly measurable stochastic process £(¢, w) defined on

T, with almost all its sample paths in L, induces an L(T, % m) valued
random element [1].

B. An L-valued r.e. £ (or p.m. pon (Lg, B(Ly)) is Gaussian if for any
pair of 1ndependent copies of €, X; and X,, the random elements X LT X
and X, — X, are independent; this is equivalent to: the process £ with
sample paths in L is Gaussian if and only if there exists a measurable
subset T, m(T,) = 0 such that for all finite sets {¢,,...,7,} € T\T the
random vector {((t)), ..., &(t;) ) is Gaussian [1].

C. Let £ = {£():t € T} be a measurable Gaussian stochastic process
and let

0(t) = E&(t), K(s, 1) = E(&(s) — 0(s))&@1) — 0(r)).
Then for almost every w, §(-, w) € L, if and only if 6(z) € L, and
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K‘/Z(t, t) € L, If almost all sample paths of the process £ belong to the
space L, then the measure p; induced by ¢ on (L, %(Ly)) is Gaussian

(1].

D. Let p be a mean-zero non-degenerate (Gaussian measure on
(L, B(Ly) ) and let £ = {&(¢):1 € T} be a measurable stochastic process,
such as in A, inducing the measure p. By A there exists a measurable
subset T,,, m(T;) = 0 such that for any t € T\T,

g(t»Xi)’)zi(t»x)ig(t,)’) [J‘Xp‘a'e'
Let

H, = lin{&1):t € T\T,}"".

From [7] it follows that the space H, does not depend on the version of the
stochastic process inducing the measure p and consists of quasi-additive
measurable functionals (q.m.f.) F [7], i.e.,

H” = {F:F :L, — R, measurable,
F(x =y) = F(x) = F(y) p X pae}.
For each F Hy. let

aro = [ [t orcouan| = nFo)

where [] denotes the class of functions equivalent m a.e. In [7] it was
shown that A is a one-to-one map which embeds continuously the space
Hn into L¢, and this embedding does not depend on the version of the
stochastic process inducing the measure p. When L, is a Banach space
from [7] it follows that S, defined in Proposition 2 equals A and the rate
function I,(-) is expressed as follows:

1
AT X7 if x € A(H))
I(x) = {2 "
oo if x & A(H).

Let {E;} be a CO.N.S. in H, and y,(1) = (&(t), E,), then by [1, 2]
&ngwmm
e

p a.e. in the seminorm of L.

3. PROPOSITION [8]. Any mean-zero, non-degenerate Gaussian measure |
defined on (Ly, B(Ly) ) such that ¢( \/1) is equivalent to §(t) concave is the
image under a continuous linear map of a centered Gaussian measure on a
separable real Hilbert space.
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Sketch of the proof. Let b > 0 be an arbitrary constant such that
R,(bK"(t, 1)) < oo,
then

vp(A) = L (bPcy 2K(t, 1) )m(dt), A € F
defines a non-negative, finite measure on % Let
Ly, = LT, # vy)

be a real, separable Hilbert space and u be a map defined on L, as
follows:

Ly 2 () = uf)(1) = F(OK" (1, 1)
then u is a linear, continuous map with values in L. Let
Y(OK ™1, 1) it K@t t) # 0
fw=1"

0 otherwise

J

95}

Il
M8
\:\‘x
&

is a mean-zero Gaussian random element with values in L, , such that
uS = £ ae.

4. THEOREM. Let p be a mean-zero, non-degenerate Gaussian measure
defined on (L, B(Ly) ) such that:
(1) &(2) is a convex function,
or

(i) @(\/1) is equivalent to §(t) concave function. Let {X;};2, be a
sequence of independent L ,-valued random elements, each with distribution p.
Set

n
S, = 2 X,
e

and let p, be the distribution of S,/n, then {u,:n = 1} satisfies the large
deviation principle with the rate function I W), defined as follows:

1
- f FX(x)mdx) if x = AF
I(x) = {2
co if x € AH,.
Proof. In the case that ¢(¢) is a convex function L, is a Banach space

and the theorem follows from Remark D. We have to prove only the case
where ¢(1/7) is equivalent to ¢(¢) concave function.
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In the proof we use the same notation as in the sketch of the proof of
Proposition 3. Let

Lyo = {f():f(t) € Ly, f(t) = 0 on the set {r:K(z, 1) = 0} }.

It is easy to see that Ly is a closed linear subspace of L, such that
u(L,4) S Ly Since the measures », and m are absolutely continuous
with respect to each other on the set {#:K (¢, t) # 0}, then u is a one-to-one
map with u~! defined as follows:

K %@, 0)f(r) if K@, t)# 0

—1 _
w0 = if K(t, 1) = 0

for any f € L.

Proposition 3 implies that the measure p is concentrated on the
subspace L, and w(4) = ,us(u_]A) for any measurable subset 4, where
s denotes the distribution of the random element S.

Since u is a continuous linear map [8], p = pg o u ftg is a mean-zero
Gaussian measure defined on the Hilbert space L, 4, then by Propositions
1 and 2 {u,:n = 1} satisfies the L.D.P. with the rate function

I(x) = inf I¢(y)

yviu(y)=x
where I is a rate function for the measures ug,. We will prove that
| .
EnA 'X|* if x € AH,
1(x) =
oo if x & AH,

where ||-|]| denotes the norm in the Hilbert space H,

Let us denote by § = {&(r):r € T}, n = {n(¢):t € T} a measurable
stochastic processes such as in A, inducing the measures u and pg
respectively. Since

n(t, x) € x for pg a.e. x;
&t x) € xforpae. x
then

un(-, x) = &, ux) m a.e. for pug a.e. x
~1 -1
u &, x) =n(,u x)ryae. forpae x

Let H, be the space of quasi-additive measurable functionals defined on
(Ly, #(Ly), p) and Hg the space of quasi-additive measurable functionals
defined on (L, 4, #(L,4). ps)- Since
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IAFO) | = ( / 52(t)du)%( / deu)% = K*@ 0 |IF|

then
AH, € L,

If Fis a q.m.f. on the space (L, Q?(L¢), w) then Fo uis a g.m.f. on the
space (L, 4, (L, 4), pg) and if G is a q.m.f. on the space (L, 4, B(L, 4), L)
then Gou 'isa q.m.f. on the space (L, #(L,), p). These follow from

0 = p X w({ (x, »):F(x = y) # F(x) = F(y)})
— pg X pg( { ™ 'x, u”y):F(x £ y) # F(x) = F(») })
= pg X ps({ (2 9):F(u(z = 5)) # F(uz) = F(us) }).
pX ({6 )G (x = ) # G 'x) = G 'y)})
= pg X p({ @ 'x, u” PG (x £y)) # G 'x)
+ G 'y)})
= pug X ps( { (2, 5):G(z £5) * G(z) = G(s)}) = 0.

Let G be pg q.m.f., then

w8,6x0 = ul [ e 006G )
= f K”(1, Om(t, X)G(x)ps(dx)
= f (1, ux)G(x)pgdx) = f &t )G 'y)udy) m ae.
Since G o u™ ' is p q.m.f., then u(A,G) € AH,, which implies u(A,Hy)
c AHM. We use the same notation for a function and the corresponding

equivalence class in measure.
Let F be p q.m.f., then

u(AF)) = u*‘( f e, X)F(x)u(dx))
= f K", D4, x)F(x)u(dx)
— [ e w opcoua

- / n(t, y)F(uw)pg(dy) v, ae.
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Since F o u is ug q.m.f., then

u '(AF) € AHg, and u”'(AH) S A H,
this implies that

u(AHg) = AH, < Ly,
From Propositions 1, 2 and Remark D it follows that

I(x) = inf Ig(y)

yu(y)=x
where I(-) is the rate function for the sequence {ug,:n = 1}.

If x € AH, then there exists a g.m.f. F such that x = AF. Since u is a
one-to-one map,

1(x) = Ig(u”'(AF))
1 1
-3 f [Fu(z)) Phs(dz) = 2 f F(y)u(dy).

If x & AH# then there is no y € A, Hg such that u(y) = x and this implies
that J,(x) = oo. This finishes the proof of the theorem that

. .
SIA” I if x € AH,
I(x) =1 2
oo if x & AH,.

5. COROLLARY. Let p be a mean-zero, non-degenerate Gaussian measure
defined on (Ly, B(Ly) ), such that ¢( V1) is equivalent to () concave, then
for any closed subset E

lim sup € log w(e “E) = —inf 1,(x)
0 x€E

and for any open subset D
lim inf € log p(e D) = —inf I,(x).
e—0 x€eD
Proof. The proof of this corollary is an immediate consequence of

Theorem 4 and Theorem 3.48 in [11], namely for any closed subset £ and
an open subset D

lim sup € log p(e “E) = lim sup € log ,us(efl/zu—'E)
>0 0

= —inf I¢(x) = —inf [ (y),
xeu 'E yeE
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lim inf € log p(e D) = lim inf € log pg(e “u" 'D)
e—0 e—0

= —inf Ig(x) = —inf [,(y),
xeu 'D yeD

because for any subset B

. inf I¢(x) if BN AH, #
inf Tg(x) = {xEu_'(BﬂAIIP) st w? o
xeu B o if BN AH, = ¢

{ inf Ig(u”'y) if BN AH, # ¢
yEBNAH,
o if B N AHM = ¢

yEBN AH“

_{ inf  1(y) if B0 AH, # ¢
0o if BN AH, = ¢

inf 1,(y).
_VEB

6. PROPOSITION. Let (Ly, B(Ly), p) be an Orlicz space with mean-zero,
non-degenerate Gaussian measure p and a rate function I W)

|

“IAT'XIP ifx € AH,
I(x) =142
oo if x & AH,

then

(1) the set K, = {AF:1,(AF) = rz}, 0 < r < oo is compact in Ly,

(ii) I(y) is lower-semicontinuous on AH, with respect to ||'llg-norm
convergence, i.e., if ||AF, — AF||¢ —0asn—o0, F, F € H, then

I(AF) = linrrl)ci;nf I(AF).

Proof. First we show that K, for any 0 < r < co is a compact subset of
Ly Let {AF,} C K, be an arbitrary sequence. By the Banach-Alaoglu
Theorem {F, } contains a subsequence {F, } which is weakly convergent to
Ffrom A~ 'K,. Remark D implies that there exists a measurable subset T,
m(T,) = 0, such that for any 1 € T\T, &) € H, and

AcF (1) = f &)E, du — f §(t)Fdp = AF(1).
Since
IAF (1) | =K', ) I\l = V2rK (1, 1)

for m ae. t, and K’(t, 1) € L, then by the Lebesgue Dominated
Convergence Theorem, AF, +—> AF in L, which proves that K, is a
compact subset of L.
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Proof of part (ii). By {F, } let us denote a subsequence such that
lim inf /,(AF,) = lim [ (AF,).

Since
IAF, — AF|ly— 0 asn’ — oo,

then there exists a subsequence {n”} C {n’} and a measurable subset T,
m(T,) = 0 such that for any t € T\T,, &(¢) is a q.m.f. and

(1), Fypy = AFp(t) = AF(t) = (&), F)
where (-, -) denotes the inner product in H,. Let
G = lin{é(?):t € T\T,}
then G is a dense subset of H, [7] and for any g € G
(g, Fp) (g F) asn” — oo
Since
IEl = sup{ (g, F-):g € G, ligll = 1},
then for any g € G, ||gll = 1
lim [IE,0|| = lim (g. F,) = (g F).

This implies that
lim [|F.|l = sup{ (g, F):g € G, llgll = 1} = |IFIl
n

which proves part (ii), because

lim inf [|F,)| = lim |IE,|| = ||F].
n n

7. Remark. In the case that ¢(¢) satisfies additionally
lim inf inf{c > 0:2¢(ct) > ¢(¢) } > 0

—00
the space L is locally bounded (i.e., contains a bounded neighbourhood
of zero) and for certain p, 0 < p = 1, there exists a p-homogeneous
F-norm |[}-||; equivalent to the original ||-||¢ [10].

8. PROPOSITION. Let u be a mean-zero, non-degenerate Gaussian measure
defined on (Ly, B(Ly)) such that
(i) ¢(2) is a convex function,
or
(ii) ¢(\/?) is equivalent to a $(t) concave function and
lim inf inf{c > 0:2¢(ct) = ¢(z) } > 0.

—00
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Let a = inf{I#(x):HxII, = 1} where |||, is p-homogeneous, 0 < p = 1,
F-norm equivalent to ||'||,, then 0 < a < oo, and

lim R %log p( {x:[|[R"'x|l, > 1}) = —a.
R—00

Proof. Lete = R ?and B = {x:llx|l; < 1}, then by Corollary 5
lim R™%log p( {x:IR™'xll; = 1})
R—00

= Tim € log p( {x:|le”xll, = 1})
0

— Tim € log u(e” "B°)
€0

IA

—inf [(x) = —inf I (x).

xE€B* [Ix|l, =1

lim R7? log w( {x:llR‘lxlll > 1})

R—00

— lim € log a( {x:lle"xll, > 1})
0

— lim € log (e "B°)
)

= —inf I (x) = —inf I (x).
x€B¢ [lxl;>1

Therefore

—inf I,(x) = lim R *log p( {x:|[R™'x|l; > 1})
[lxll>1 R—0c0

A

im R™7 log p( {x:IIR™'xll; > 1})
R—00

= —inf I(x).
lIxll =1
Since
a= inf{I”(x):lelll > 1,x € AH,}
= inf{L(x):|lxll, = 1, ¢ > 1, x € AH,}
= inf{’L(x):lIxll, = 1, ¢ Z 1, x € AH,}
= inf{IF()c):llxlll =1,x € AHM}
then

lim R % log w( {x:IR 'x|l;, > 1}) = —a.

R—00
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If @ = 0, then there exists a sequence {F,} of g.m.f.’s such that
IA¢F Il > 1 and ||F,|| = 1/n. This implies that

| 1,
IAF (D] = K*, ) IF)l = - K", 1).

Since K"(1, 1) € Ly, then by the Lebesgue Dominated Convergence
Theorem ||A5F,,||¢ — 0 as n — oo, which implies that |[AF|l, — 0
as n — oo contradicting the assumption that ||[A F |l > 1, therefore
0 < a << oo

LeMMA 1. Let (T, % m) be a measurable space with a o-finite measure m,
and Ly(T, % m) an Orlicz space, then for any B > 0

Dg = {f(t):f(t) € Ly, m({t:f(t) > 1}) > B}
is an open set in L.

Proof. 1t is enough to prove that for some 8 > 0

Dy = {J/():f(t) € Ly, m({t:f(1) > 1}) = B}

is a closed set in L.

Let {f,} € Dgand f, = fin Ly as n — oo, then there exists a
subsequence {n; } such thatfnk(t) — f(t) m a.e. By Egoroff’s theorem [4],
there exists an increasing sequence of measurable subsets {£;} such that
the sequence { fnk} converges uniformly on each £, i = 1,2,..., and

(e e}
m(T\ _U1 Ei) = 0.
i=
Let
1
T,=yt:f(t) >1+—¢,
n
then T, is an increasing sequence of subsets and
n

S =t f(0) > 1) = nf:j] T

Therefore

m(S) = lim m(T,)

and we finish the proof by showing that m(7T,) = B for each n.
Let n be an arbitrary but fixed, then

, o,
Vidn Vo >nViEE f()— - <f ()
n
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This implies that
1
{t:f(t) >1+ —} NE c 0 {ef,t)>1}nNE =4,
n n>n; k

Since {E;} 1s an increasing sequence of sets then {#;} is a non-decreasing
sequence implying that {4;} is an increasing sequence of sets. Since

m(T\ '91 E,-) =0,

then

o(frrm=1+1})

Il

m(l_ikj’ {t:f(t)> 1+ —’l;} N E,.)

= m(_&)1 AI-) = lim m(4,).

—00
Since
m(A;)) =m( 0 {e:f, () > 1}y N E) =B foreachi,
ne>n; k

then
m({t:f(t) > 1+ 1}) = B for each n,
n

which proves the lemma.

LeEMMA 2. Let (T, % m) be a measurable space with a o-finite measure m,
and LT, # m) an Orlicz space, then for any B > 0 the L-closure of Dg,
Dy is contained in D;“; where

Df = {f(t):f(t) € L,

Vk = 1,2,...,m({t:f(t)> 1 — i}) éﬁ}.

Proof. Let {f,} € D and f, — fin Ly as n — oo, then f, — fin
measure m as n — oo, 1.e.,

VkVedn, ¥ n > ny, m( {t:lf,,(t) —f)l = %}) < e

which implies that
m({t'f(t) > L0 — (0] <—1}) >B e
*Jn ’ n k

Therefore
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m({t:f(t) > 1 ~%}> > B — € foreach k and ¢
and

m({t:f(t) >1 - i}) = B for each k,

which proves that f € D},
LEMMA. 3. Let (Ly, #(Ly), p) be an Orlicz space with a mean-zero,

non-degenerate Gaussian measure p. and a rate function 1 u(0):

1,0 — %HA*'XH2 if x € AH,
% if x & AH,.
Let

ag = inf{l (x):x € Dg},

ag = inf{l,(x):x € Dg},

ap = inf{l(x):x € Dz},

then 0 < af = ag = ap. If the covariance function K(s, t) of a measurable
stochastic process § = {£(t):t € T} inducing the measure p is such that

*) VB>0 m({sm({t:K(s,t) >0})>pB})>0
then ag < oo for every § > 0.

Proof. 1f af = 0 then there exists a sequence {AF,} C Dj such that
[|E,|l < 1/n and for almost every ¢

1 1 1,
IAE, ()| = K", ) |E)l < K", 1).
n

This implies that for each &

1 1 4 1

tAF,(t) >1 ——¢ C yt=-K*(t, 1) >1 — —¢,

k n k

and for each k and n

m({t:KVZ(t, 1) > (l - i)n}) = B.

Let k be an arbitrary but fixed and

A, = {t:K'/Z(t, 1) > (1 — %)n}
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for every n, since K"(1, t) € L, then there exists a > 0 such that

m(An)qb(a(l - %)n) = fd)(aK%(t, 1) )m(dt) < oo

which implies that m(4,) < oo for every n.
Since {4, } is a decreasing sequence then

lim m(4,) = m( 0 A") and

n

(S
m( N A") =B

implying that
m({t:K"t, 1) = c0}) = B

which is impossible. Therefore 0 < a* = ag = ap.

Let £ = {&(t):t € T} be a measurable stochastic process such as in A,
inducing the measure p with the covariance function K(s, t) satisfying (*).
There exists a measurable subset T,,, m(T;,) = 0 such that for every
s € T\T,, &s) is a q.m.f. Let B > 0 be an arbitrary but fixed, then there
exists a q.m.f. {(s) such that

m( {t:Aé(s)(t) > 0}) > B.
Let

4, = {t:As(s)(t) > 1},
n

(:A&s)1) > 0} = nf:jl A,

Since {4,} is an increasing sequence, then there exists n such that
m(A,) > B implying that for a q.m.f.

F = nf(s), m({t:AF(t)>1})>p and ap = %upnz.

9. THEOREM. Let £ = {&(¢):t € T} be a mean-zero Gaussian stochastic
process with almost all sample paths in an Orlicz space Ly, such that

(i) ¢(1) is a convex function,
or

(ii) ¢(\/7) is equivalent to §(t) concave function. Let for any B > 0

Dg = {f(t):f(t) € Ly, m({t:f(t) > 1}) > B},
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ag = inf{l(x):x € Dp}, ag = inf{I(x):x € Dg},
then
—ap = lim o ? log P({w:m( {t:&t, ©) > a}) > B})

a—>00

= [im o ? log P({wm( {t:£t, w) > a}) > B}) = @

a—00

If T is a metric space with the measure m such that for any open set
U, m(U) > 0, the covariance function K(s, t) of the process
¢ = {&t¢):t € T} is continuous and for each B > 0

m( {ssm({t:K(s,t) > 0}) > B}) >0
then 0 < ag < oo and

lim a2 log P({w:m( {t:4(t, ©) > a}) > B} ) = —ag

a—00

Proof. Let p denote Gaussian measure generated by the stochastic
process § = {{(t):t € T}. By Lemma 1 Dy is an open set. Since

paD) = P({w:m({r:&(t, w) > a}) > B})
and w(aD) = p(aD) then by Corollary 5
—ag = lim a2 log m(aD) = Tim a? log (aD) = —ag.

a—>o0 a—00

Under the additional assumptions by Lemma 3, 0 < @z = ag < oo. Since
the covariance function K(s, ) is continuous the space AHPL consists of
continuous functions.

To finish the proof of the theorem, by Lemma 3 it is sufficient to show
that af = ap. Let F be an arbitrary q.m.f. such that for each k

m({t:AgF(t) >1 - %}) = B.

Let

then for any k
m({t:AG, (1) > 1}) = B.

Since for any open set U, m(U) > 0, and for each k AG((7) is a
continuous function, then for any k& and n

m({t:l — % < AGL(D) < 1}) > 0.
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Let

1 1 1
’ n—1 n—1 k—1

then
m({t:AH, (1) > 1}) > B.

Since for each n, k H,, € Dy, IlH, ;|| = ||F|| when n — oo, k — oo this
implies that

inf{I,(x):x € Dg, x € AH,} = inf{l(x):x € D}, x € AH,}
and af = ag = ag.

10. CorOLLARY. Let (T, % m) be a real line with Borel o-algebra % and
Lebesgue measure m. Let § = {&(t):t € T} be a mean-zero Gaussian
stochastic process, continuous in probability with almost all its sample paths
in L, = L,(T, % m), 0 < p < oo, such that for any B > 0

m( {sm({t:K(s,t) > 0}) > B}) >0
then for any B > 0O there exists 0 < ag < oo such that

lim a % log P({wm({t:4(t ©) > a}) > B}) = —ag
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