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HIGH LEVEL OCCUPATION TIMES FOR GAUSSIAN 
STOCHASTIC PROCESSES WITH SAMPLE PATHS IN 

ORLICZ SPACES 

ANNA T. LAWNICZAK 

Let X be a complete separable metric space, and {P€} a family of 
probability measures on the Borel subsets of X. We say that {Pe} obeys the 
large deviation principle (LDP) with a rate function /(•) if there exists a 
function /(•) from X into [0, oo] satisfying: 

(i) 0 ^ I(x) ^ oo for all x <= X. 
(ii) /(•) is lower semicontinuous. 

(iii) For each / < oo the set {x:I(x) ^ /} is a compact set in X. 
(iv) For each closed set C c X 

lim supelog P€(C) ^ - i n f J(x). 

(v) For each open set G c X 

lim infclog P€(G) ^ - i n f / ( A : ) . 
€^0 x^G 

It is easy to see that if A is a Borel set such that 

inf I(x) = inf I(x) = inf I(x) 
x^A° x^A X<EA 

then 

lim e log Pe(A) = - in f /(JC) 

where A0 and v4 are respectively the interior and the closure of the Borel 
set A. 

1. PROPOSITION [12]. Let P€ satisfy the large deviation principle with a 
rate function /(•). Let F be a continuous map from X —> L where L is 
another complete separable metric space. Then if we define Q€ on L by 
Qe = P€ o F~ , then Qe satisfies the large deviation principle with a rate 

function J*{') defined by 

f(y) = inf / (* ) . 
x:F(x)=y 
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2. PROPOSITION [3, 11]. Let (B, &(B), /x) be a real separable Banach space 
with a mean-zero Gaussian measure fi defined on the Borel o-algebra &(B). 
Let H^ be the closure in L2(/x) of the set {x*(-):x* e B*}; and, for 
h e H let us define 

S (h) = I xh{x)[i{dx). 

Let {Xi}
(^=] be a sequence of independent B-valued random elements, each 

with distribution fi. Set 

n 

Sn = 2J Xm 
1 

and let \in be the distribution of Sn/n9 then {/xw:w = 1} satisfies the large 
deviation principle with the rate function I„(•) defined as follows 

[ OO ifx G 5 \ S „ ( f y , 

and for any closed set F: 

lim sup e log ii(e~V2F) ^ — inf IJx), 
e-^0 x^F 

for any open set G: 

lim inf e log /x(e_1/2G) ^ - i n f I (x). 
e-M) x^G 

In this paper we are going to show that Proposition 2 is true for Orlicz 
spaces L^ such that <HVÔ *S equivalent to $(/) concave. It is easy to see 
that this class of Orlicz spaces includes some non-locally convex vector 
spaces. By applying the L.D.P. for Orlicz spaces we extend Kallianpur's 
and Oodaira's (1978), Marlow's (1973) results concerning some asymptot­
ic estimates for the probabilities of high level occupation times for 
continuous Gaussian stochastic processes to the class of Gaussian 
stochastic processes with sample paths in Orlicz spaces. 

Let (T, J^ m) be an arbitrary a-finite measure space with a-algebra J** 
and a separable measure m. Let S be the space of equivalence classes in 
measure m of all real valued J^measurable functions. By cj> let us denote a 
continuous, non-negative, non-decreasing function defined for u ^ 0 such 
that <j>(u) = 0 if and only if u = 0. We assume additionally that the 
function <f>(u) satisfies the so-called A2 condition, i.e., there is a positive 
constant k such that for any u 

<j>(2u) ^ k(j>(u). 

For x G S let us define 
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**(*) = JT^\x(t)\)m(dt) 
and let L^ be the set of all x e S such that R^ax) < oo for some positive 
scalar a. The set L^ is a linear space under the usual addition and scalar 
multiplication. Moreover it becomes a complete, separable metric space 
under the (usually non-homogeneous) seminorm ||||^: 

IW|^ = inf{c:c > 0, i^(c_1%) < c}. 

The space (L^, ||-||^) is called an Orlicz space. It is easy to see that 
convergence in the L^ seminorm implies convergence in measure. In the 
case that 4> is a convex function L^ is a Banach space [10]. We say that 
<K\A) is equivalent to a concave function $(w) if for all u = 0 

A^y/u) ^ $(w) ^ B&C2VVL) 

for some cl5 c2, ^4, i? positive constants. In this case Theorem 7.2.5 [5] 
implies that <j>(u) satisfies A2-condition. The best known examples of the 
Orlicz spaces are L (T,^9 m) spaces for 0 ^ p < oo [10]. 

For convenience let us recall some necessary facts concerning probabil­
ity measures on (L^, ^(L^) ) spaces. 

A. For each probability measure fi on (L^, ^(L^) ) can be constructed a 
measurable stochastic process £ = {£(t):t e T} on 

(0, 2 , P) = L^ @{L^ M) 

with sample paths in L^ such that £(x) = x JU, a.e.; induced measure ^ is 
equal to /A, and for every pair (s, u) of real numbers 

!(/; sx =b wy) = s£(t9 x) ± ui-(t, y) m X jn X /A a.e. 

Conversely, each jointly measurable stochastic process £(V, co), defined on 
T, with almost all its sample paths in L^ induces an L^(T, ^ m) valued 
random element [1]. 

B. An L^-valued r.e. £ (or p.m. /i on (L^, ^(L^) ) is Gaussian if for any 
pair of independent copies of £, Xx and X2, the random elements Xx + X2 

and Xx — X2 are independent; this is equivalent to: the process £ with 
sample paths in L^ is Gaussian if and only if there exists a measurable 
subset T0, m(T0) = 0 such that for all finite sets {^, . . . , tk} c T\T0 the 
random vector (£(/j),. . . , £(tk) > is Gaussian [1]. 

C. Let £ = {£(0-* G T} be a measurable Gaussian stochastic process 
and let 

0(0 = Eè(tX K(s, t) = £(«*) - fl(5))(«/) - 0(0). 

Then for almost every u, £(•, co) e L. if and only if d(t) e L^ and 
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KVl(t, t) G LQ. If almost all sample paths of the process £ belong to the 
space L^ then the measure /x̂  induced by £ on (L^, ^(L^) ) is Gaussian 

D. Let /A be a mean-zero non-degenerate Gaussian measure on 
(L^, ^(L^) ) and let £ = {£(t):t G T} be a measurable stochastic process, 
such as in A, inducing the measure xi. By A there exists a measurable 
subset T0, m(r 0 ) = 0 such that for any t <E T\T0 

£(/, x ± y) = £(r, x) ± £(*, .y) ju X it a.e. 

Let 

Hp = ]m{&t):t G r \ r 0 } L ^ . 

From [7] it follows that the space H^ does not depend on the version of the 
stochastic process inducing the measure /x and consists of quasi-additive 
measurable functionals (q.m.f.) F [7], i.e., 

H^ = [F:F:LQ —> R, measurable, 

F(x ± y) = F(x) zb F(y) /x X /x a.e.}. 

For each F e H„ let 

(AF)(0 = [f fr9x)F(x)tidx)\ = [ A ^ ( ) ] 

where [•] denotes the class of functions equivalent m a.e. In [7] it was 
shown that A is a one-to-one map which embeds continuously the space 
Hp into L^, and this embedding does not depend on the version of the 
stochastic process inducing the measure xi. When L^ is a Banach space 
from [7] it follows that S defined in Proposition 2 equals A and the rate 
function 1^) is expressed as follows: 

( 1 

hW = 
JA - 1 *!^ if* G A(HJ 

oo if x £ A ( ^ ) . 

Let {Ej} be a C.O.N.S. in H^ and fyt) = <£(/), Ej), then by [1, 2] 

oo 

«/, *) = 2 */*)£;•(*) 
y = l 

/x a.e. in the seminorm of L.. 

3. PROPOSITION [8]. ^4«y mean-zero, non-degenerate Gaussian measure /x 
defined on (L^, ^(L^) ) swc/z £/ztf/ <HVÔ " equivalent to $(7) concave is the 
image under a continuous linear map of a centered Gaussian measure on a 
separable real Hilbert space. 
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Sketch of the proof. Let b > 0 be an arbitrary constant such that 

1 

then 

RilLbK\t, t)) < oo, 

"*(*) = j A Wc2
 2K(t, t) )m(dt), i 6 5 

defines a non-negative, finite measure on J^ Let 

L2<> = L2(T, ^ v£ 

be a real, separable Hilbert space and M be a map defined on L2^ as 
follows: 

L24 3 f(t) M. (ufXO = f(f)K\t, t) 

then u is a linear, continuous map with values in L,. Let 

m = 
then 

xPj(t)K~V2(t, t) ]iK(t9 0 ^ 0 

0 otherwise 

s = 2 #/)£;• 

is a mean-zero Gaussian random element with values in L2 ^ such that 
uS = £ a.e. 

4. THEOREM. Le/ \i be a mean-zero, non-degenerate Gaussian measure 
defined on (L^, ^(L^) ) swc/z //za/: 

(i) <£>(/) is a convex function, 

or 

(ii) < H V 0 ^ equivalent to $(/) concave function. Let {Xi}°Zl be a 
sequence of independent L,-valued random elements, each with distribution /A. 
Set 

n 

Sn = 2a Xt 
i = 1 

and let jin be the distribution of Sn/n, then {iin:n i? 1} satisfies the large 
deviation principle with the rate function IJ^x), defined as follows: 

/„(*) = 
- j F2{x)ii{dx) ifx = AF 

ifx* Aff„. 

Proof In the case that <j>(t) is a convex function L^ is a Banach space 
and the theorem follows from Remark D. We have to prove only the case 
where <H VÔ *s equivalent to $(/) concave function. 
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In the proof we use the same notation as in the sketch of the proof of 
Proposition 3. Let 

"<f>,0 {/('):/(') e L^f(t) = 0 on the set {t:K(t, t) = 0} }. 

It is easy to see that L, 0 is a closed linear subspace of L^, such that 
u(L2^) Q L^Q. Since the measures ^ and m are absolutely continuous 
with respect to each other on the set {t:K(t, t) ¥= 0}, then u is a one-to-one 

- l map with u 

(«_1/xo = 

defined as follows: 

K~v\t, 0 / ( 0 if AT(/, 0 # 0 

0 if #( / , 0 = 0 

for a n y / G L^0. 
Proposition 3 implies that the measure JU, is concentrated on the 

subspace L^0 and }i(A) = txs(u~lA) for any measurable subset A, where 
[xs denotes the distribution of the random element S. 

Since u is a continuous linear map [8], /x = jis o u~ , [is is a mean-zero 
Gaussian measure defined on the Hilbert space L2^, then by Propositions 
1 and 2 {/xn:« â 1} satisfies the L.D.P. with the rate function 

/M(x) = inf / 5 ( ^ ) 
y : « ( > > ) = * 

where Is is a rate function for the measures /x5 „. We will prove that 

w = 
\u- lx\\2 i f i G A//„ 

if x £ AH 

where | | | | denotes the norm in the Hilbert space H . 
Let us denote by £ = {£(t):t e T}, rç = {??(/):/ e 7} a measurable 

stochastic processes such as in A, inducing the measures fi and fis 

respectively. Since 

77(7, x) e x for JU,£ a.e. x; 

£(/, i ) G i for /x a.e. x 

then 

WT?(-, x) = £(•, wx) m a.e. for ju5 a.e. x 

w~ £(% •*) == *?(•> w x) ^ a - e - f°r /* a e - x-

Let i / be the space of quasi-additive measurable functional defined on 
(L^, âS(L^), fi) and / / 5 the space of quasi-additive measurable functional 
defined on (L2^ &(L2<i>), /x5). Since 
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|AgF(/) | =i ( /e( tw) V l ( j "F^Y = JfV.OHFH 

then 

If F is a q.m.f. on the space (L^, ^(L^), ju) then F o w i s a q.m.f. on the 
space (L2^ &(L2<})), ns) and if G is a q.m.f. on the space (L2(f>, &(L2<i), /x$) 
then G o u~ is a q.m.f. on the space (L^, ^(L^), /x). These follow from 

0 = jLt X K { (JC, y):F(x ± y) * F(x) ± F(y) } ) 

= Ms X Ms( { {u~Xx, u-ly):F(x ± y) * F(x) ± F(y) } ) 

= Ms X Ms( { (*, s):F(u(z ± s)) * F(uz) ± F(us) } ). 

/i X ju( { (*, 3;):G(M_ ,(JC ± J>) ) * G(«_1ac) ± G(«" V) } ) 

= fis X jus( { (w x, u y):G{u (x ± y) ) ^ G(w x) 

G(«"V)}) 
= M5 X Ms( { (z, s):G(z ±s)* G(z) ± G(s) } ) = 0. 

Let G be fis q.m.f., then 

M(A„G)(0 = u(j y(t, x)G(x),xs(dx)) 

= j K\t, tyq(t, x)G{x)iis(dx) 

= Jè(t, ux)G(x)ns(dx) = J t(t,y)G(u~\)ti(dy)ma.e. 

Since G o t / - 1 is /u. q.m.f., then i/(A^G) e A// , which implies u(AvHs) 
Q AHp. We use the same notation for a function and the corresponding 
equivalence class in measure. 

Let F be ju q.m.f., then 

«"'(AjFXO = ""MJ £0, x)F(xMJx)J 

= / K~v\t, t)£(t, x)F(xMdx) 

= j 7](t, u~ x)F(x)n(dx) 

i r)(t, y)F(uy)iis(dy) v^ a.e. 
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Since F o u is fis q.m.f., then 

«"'(AfF) e A„i/S, and M
_ , ( A ^ ) £ A„tf5, 

this implies that 

M(A„/7S) = A// , Q L^. 

From Propositions 1, 2 and Remark D it follows that 

/„(*) = inf Is(y) 
y:u(y)=x 

where Is() is the rate function for the sequence {Hsn
:n = 0 -

If x e A/ / then there exists a q.m.f. F such that x = AF. Since « is a 
one-to-one map, 

IJx) =Is(u-\AF)) 

\j\F(u (z))]2,xs(dz) =l- f F2(yMdy). i 
If x £ AH then there is no y e A Hs such that u(y) = x and this implies 
that I^(x) = oo. This finishes the proof of the theorem that 

V*) 
-HA"1*!!2 if x e A//M 

if x <£ AH„. 
r 

5. COROLLARY. Let fx be a mean-zero, non-degenerate Gaussian measure 
defined on (L^, &(LQ) ), such that <t>(\ft) is equivalent to §(t) concave, then 
for any closed subset E 

lim sup € log fi(e~/2E) ^ —inf IJx) 

and for any open subset D 

lim inf € log ju(e~1/2Z)) ^ - i n f I(x). 

Proof The proof of this corollary is an immediate consequence of 
Theorem 4 and Theorem 3.48 in [11], namely for any closed subset E and 
an open subset D 

lim sup € log ii(e~V2E) = lim sup c log ns(c~V2u~lE) 
€ ^ 0 e-H) 

^ - i n f 7,(x) = - i n f / ( j ) , 
x^u lE yGE 
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lim inf e log JU(€ VlD) = lim inf e log iis(e
 Vlu lD) 

inf Is(x) = - i n f I (y), 
u ]D y&D 

because for any subset B 

inf f inf Is(x) ifBnAHp** 
x^u B ^oo iîB n AHfl = <(> 

( inf /5(w~V) ifBnAH^<f> 

loo if B n A / ^ = <£> 

( inf J ( j ) ÏÎB n AH^<t> 
- hefinA//,, 

I oo if 5 n A//M = (j> 

= inf / . ( J ) . 
yeB 

6. PROPOSITION. Le/ (Z^, ^(L^), JLI) Z?e AH Or liez space with mean-zero, 
non-de generate Gaussian measure JX and a rate function I J')'. 

( 
^lA"1*!!2 ifx e AH 
2 

oo //JC £ AH 

//ze« 
(i) the set Kr = {AF:I (AF) ^ r2}, 0 < r < oo w compact in L^. 

(ii) /„(>>) W lower-semicontinuous on AH^ with respect to \\'\\^-norm 
convergence, i.e., if\\AFn — AF\\^ —* 0 as n —» oo, Fn, F e / / //ze« 

/ / A F ) ^ lim inf / (AF„). 
«—>CX) 

Proof. First we show that Kr, for any 0 < r < oo is a compact subset of 
Lç. Let {AFn} c ATr be an arbitrary sequence. By the Banach-Alaoglu 
Theorem {Fn} contains a subsequence {Fn} which is weakly convergent to 
F from A ~ Kr Remark D implies that there exists a measurable subset T0, 
m(T0) = 0, such that for any t e T\T0, £(/) e H^ and 

Since 

lÂ iyCO | ^ #V, 0 \\FJ g V ^ C /) 
for m a.e. /, and AT*2 (7, /) G L^ then by the Lebesgue Dominated 
Convergence Theorem, Aiy M> AF in L^, which proves that Kr is a 
compact subset of L^. 
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Proof of part (ii). By {Fn} let us denote a subsequence such that 

lim inf I^AF») = lim I^AF^). 
n n' 

Since 

\\AFn, - AF\\+ h-> 0 as n' -> oo, 

then there exists a subsequence {«"} c {«'} and a measurable subset T0, 
m(T0) = 0 such that for any t e r \ r 0 , £(0 is a q.m.f. and 

<«/), />> = A^FAO H> A ^ ( 0 = ( « 0 , ^> 

where (•, •) denotes the inner product in H. Let 

G = lin{^(0:/ e 7 \ r 0 } 

then G is a dense subset of H [7] and for any g e G 

<& fy) >-+<8> F) a s « " ^ o o . 

Since 

| | i> | | = sup{ <g, F„.):g e G, ||g|| = 1}, 

then for any g ^ G, \\g\\ = 1 

lim ||F„.|| i= lim <g, Fn„) = (g, F). 
n" n" 

This implies that 

lim \\Fn,\\ i= sup{ <g, F ) :g e G, ||g|| = 1} = | |F| | 

which proves part (ii), because 

lim inf HFJI = lim ||F„„|| g ||F||. 
n n" 

7. Remark. In the case that <£(/) satisfies additionally 

lim inf inf{c > 0:2<j>(ct) > <K0 } > 0 
t—*oo 

the space Z^ is locally bounded (i.e., contains a bounded neighbourhood 
of zero) and for certain /?, 0 < p ^ 1, there exists a /^-homogeneous 
F-norm 11-111 equivalent to the original ||-||^ [10]. 

8. PROPOSITION. Let JX be a mean-zero, non-degenerate Gaussian measure 
defined on (Z^, ^(L^) ) such that 

(i) <j>(t) is a convex function, 
or 

(ii) <£(VÔ *S equivalent to a (p(t) concave function and 

lim inf inf{c > 0:2<t>(ct) â <j>(t) } > 0. 
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Let a = inf{/ (JC):11JC||j = 1} where \\'\\x isp-homogeneous, 0 < p = 1, 
F-norm equivalent to ||*||^, then 0 < a < oo, and 

lim #~2log/x({*:|l#_1*lli > 0 ) = ~a-
R^oo 

Proof. Let € = R~2 and 5 = {xilM^ < 1}, then by Corollary 5 

ïïm~ ^ " 2 l o g / i ( { ^ : | l ^ " ^ l l i ^ 1}) 
R^oo 

= nSclogJ l l({x:| |£' /2x||1 ^ 1}) 
c-»0 

= IhS£l0giU(£~' /!5') 
e-»0 

S - i n f / ( * ) = -influx). 

lim .R - 2 log ju.( {JC:||JR^1JC|!I > 1}) 
R—>oo 

= lime log/^{jcrlltNli > 1}) 
*-*o 

= lime log ju(e~'/2^') 

â - i n f / „ (x ) = - i n f / ( * ) . 
i e » f IWI,>1 

Therefore 

- i n f IJx) =§ Jim_ R~2 log M {*:||/l~'JCH, > 1} ) 
NI, >1 #-*oo 

ë BE / i -Mogr t ^ r l l / i - ' j c l l , > 1}) 

^ - i n f / ( x ) . 
IWI,̂ l 

Since 

a = inf{/,/*):llxll, > l , x e Atf„} 

= inf{c2/M(x):|UI|, = 1, c > 1, x G A//,,} 

= infiJlpixy.WxWt = 1, c s 1, x G A / y 

= inf^OcMMI, i? 1, JC e Aff„} 

then 

lim R~2 log/x({^:|l^_1^lli > 1}) = -a. 
R-*oo 
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If a = 0, then there exists a sequence {Ffl} of q.m.f.'s such that 
IIA^FJI, > 1 and ||FJ| ^ \/n. This implies that 

| A ^ ( 0 | ^ K\t, t) \\Fn\\ ^ - KV2(t, t). 
n 

Since KVl(t, t) e L^, then by the Lebesgue Dominated Convergence 
Theorem | | A ^ | | ^ —» 0 as n —» oo, which implies that HA^FJIJ —» 0 
as « —-> oo contradicting the assumption that HA^FJIJ > 1, therefore 
0 < a < oo. 

LEMMA 1. Le/ (T, ̂ , m) be a measurable space with a o-finite measure m, 
and L^(T, ̂  m) an Or liez space, then for any fi > 0 

Dp = {/( /) : /( /) e L^, m( {*:/(*) > 1} ) > fi) 

z's a/7 o/?e« set in L.. 

Proof. It is enough to prove that for some fi > 0 

Dcp = {fit):fit) e L^, m( {*:/(/) > 1} ) fk 0} 

is a closed set in L,. 
^ e t {fn} c ^/? an<^ fn ^ / m Af> a s n ~* °°> t n e n there exists a 

subsequence {AI^} such that/„ (/) —» / ( / ) m a.e. By Egoroff s theorem [4], 
there exists an increasing sequence of measurable subsets {Ef} such that 
the sequence {fn } converges uniformly on each Ei / = 1, 2, . . . , and 

m ( 7 V U £ , ) = 0 . 

Let 

T„ = [t:fit)> 1 + ^ J , 

then 7^ is an increasing sequence of subsets and 

oo 

5 = {f.fit) > 1} = U T„. 
n = 1 

Therefore 

m(S) = lim m(Tn) 
n 

and we finish the proof by showing that m(Tn) â fi for each A?. 
Let n be an arbitrary but fixed, then 

V/ 3 W/ V nk > ntyt Œ Et f(t) - - <fn(t). 
n k 
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This implies that 

[v.f(t) > l + - } n Ei c n {t-.f (0 > 1} n E, = A, 

Since {£",} is an increasing sequence of sets then {nt} is a non-decreasing 
sequence implying that {A;} is an increasing sequence of sets. Since 

m ( r \ .U £ , ) = 0, 

then 

m({t:f(t)>l+±})=m(ui {':/(')> 1 +;;} n *,.) 
/ o o \ 

^ ml U A A = lim m{Ai). 

Since 

m(^z) = ra( n {t:fn(t) > 1} n £,) ^ /? for each /, 

then 

™( I t:f(t) > 1 + - M ^ j8 for each n, 

which proves the lemma. 

LEMMA 2. Let (T, J^ m) be a measurable space with a o-finite measure m, 
and L^(T, J^ m) an Or liez space, then for any ft > 0 the L ̂ -closure of Dp, 
Dp is contained in Dp where 

D% = { / ( 0 = / ( 0 e L^, 

V£ = 1,2 m(|/:/(0 > 1 — ^ J ) = ^ j 

Proof. Let {/„ } c D and /„ —» / in L^ as « —» oo, then /„ —» / in 
measure m as « —» oo, i.e., 

VfcV£3/iAi« V « > nfci€ m( [ r : | / „ ( 0 - / (*) | ê | } ) < £ 

which implies that 

m({t:f„(t)> l , l / „ (0 - / (0 l<^}) >/*-£. 

Therefore 
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m ( I t\f(t) > l - - } j > j 8 - € for each k and e 

and 

™( { t:f(t) > 1 - - 1 J ^ P for each k, 

which proves t h a t / e Dp. 

LEMMA. 3. Let (L., ^?(LA /x) be an Or liez space with a mean-zero, 
non-degenerate Gaussian measure /x and a rate function I J')'. 

I | I A - l - l l 2 

/ / * ) = 21 -U~{x\\l ifx e AHp 

oo ifx £ KH . 

Let 

ap = in f^C*) :* e Dp], 

*fi = inf{/M(jc):x e 5 ^ } , 

^ = inf^Cx) :* e £>£}, 

//ze« 0 < a^ ^ âp = a p. If the coy ariance function K(s, t) of a measurable 
stochastic process £ = {£(0:* e ^ } inducing the measure /i w swe/z //za/1 

(*) Vj8 > 0 m( {s:m( {* :AXs, 0 > 0} ) > 0} ) > 0 

then ap < oo for every (3 > 0. 

Proof If a$ = 0 then there exists a sequence {Ai^} c Z)^ such that 
\\Fn\\ < 1/ft and for almost every t 

\AFn(t)\ ^K\t,t)\\Fn\\ <-K\,t). 
n 

This implies that for each k 

\t:\F„(t) > 1 - i J c {*:^V 0 > 1 - ^} , 

and for each k and n 

m({t:K\t, t) > (l ~^)«}) = £• 

Let k be an arbitrary but fixed and 

A„ = [t:K\t,t)> (l ~l)n} 
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for every n, since Kv\t, t) e L^ then there exists a > 0 such that 

m(An)<t>ya{\ - -)n) ^ J 4>(aKv\t, t))m(dt) < oo 

which implies that m(An) < oo for every n. 
Since {An} is a decreasing sequence then 

/ °° \ lim m(An) = m\ n An\ and 

« ( £ A.) â /J 

implying that 

m( {*:*>, /) = 00} ) ^ j8 

which is impossible. Therefore 0 < a* ^ âp ^ ^ . 
Let £ = {£(0:^ G T} be a measurable stochastic process such as in A, 

inducing the measure /x with the covariance function K(s, t) satisfying (*). 
There exists a measurable subset T0, m(T0) = 0 such that for every 
s e T\T0, £(s) is a q.m.f. Let /? > 0 be an arbitrary but fixed, then there 
exists a q.m.f. £(s) such that 

m{ {t:Aè(s)(t) > 0} ) > j8. 

Let 

^ = {;:A^)(0>^}, 

{fM(s)(t) > 0} = u ^w. 

Since {An} is an increasing sequence, then there exists n such that 
m(An) > fi implying that for a q.m.f. 

F = n£(j), m( {/:AF(0 > 1} ) > 0 and ap ^ ^\\F\\2. 

9. THEOREM. Let £ = {£(0:* e T) be a mean-zero Gaussian stochastic 
process with almost all sample paths in an Orlicz space L^ such that 

(i) <i>(t) is a convex function, 
or 

(ii) <KVÔ *S equivalent to $(/) concave function. Let for any fi > 0 

Dp = {/(/):/(/) e L+, m( {t:f(t) > ! } ) > / ? } , 
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ap = in f^Cx) :* <= Dp}, ap = i n f ^ x ) : * e Dp], 

then 

-ap ^ jim_ a~2 log P( {u:m( {*:£(*, w) > a} ) > /?} ) 
a—»oo 

g Ûm a - 2 log P( {co:m( {r.&t, a) > a} ) > £} ) S â̂ ,. 
a^oo 

If T is a metric space with the measure m such that for any open set 
U, m(U) > 0, the covariance function K(s, t) of the process 
£ = {è(t):t G T} is continuous and for each /? > 0 

m( {s:m( {t:K(s, t) > 0} ) > £} ) > 0 

then 0 < ao < oo and 

lim a - 2 log P( {co:m( {/:£(/, <o) > a} ) > £} ) = - ^ . 
a—>oo 

Proof. Let /x denote Gaussian measure generated by the stochastic 
process £ = {£(t)\t e T). By Lemma 1 Dp is an open set. Since 

itaD) = i>( {co:m( {*:#/, <o) > «} ) > £} ) 

and fx(aD) ^ fi(aD) then by Corollary 5 

— ap = lim a log /x(aZ)) ^ lim a log/x(a/)) ^ — a^. 
a—»oo a—>oo 

Under the additional assumptions by Lemma 3,0 < âp ^ ap < oo. Since 
the covariance function K(s, t) is continuous the space A/ / consists of 
continuous functions. 

To finish the proof of the theorem, by Lemma 3 it is sufficient to show 
that ap = ap. Let F be an arbitrary q.m.f. such that for each k 

m ({/:VW>1 -£})*/>. 
Let 

Gk ( I + - L ) J 
V k-\f 

then for any /c 

m ( { / : A ^ ( 0 > 1}) ^ j8. 

Since for any open set U, m(U) > Q, and for each k A^Gk(t) is a 
continuous function, then for any k and « 

m( I t: 1 - - < Afik(t) < 1 } j > 0. 
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Let 

then 

m({t:AiHnk(t)> \})>fi. 

Since for each n, k Hnk e Dp, \\Hnk\\ M> ||F|| when n —> oo, k —> oo this 
implies that 

inf{/M(x):x <E Dfi, x e A / y = inf{/M(x):x ^ D% x ^ AHJ 

and ap = ap = âp. 

10. COROLLARY. Le/ (T, ^ m) be a real line with Borel o-algebra & and 
Lebesgue measure m. Let £ = {è(t):t e T} be a mean-zero Gaussian 
stochastic process, continuous in probability with almost all its sample paths 
in Lp = L (T, J^ ra), 0 < p < oo, such that for any ft > 0 

m( {s:m( {t:K{s, t) > 0} ) > £} ) > 0 

//z£/7 /or <2«y /? > 0 //zere exists 0 < ÛO < oo swc/z //z<2/ 

lim a~2 log P( {co:ra( {/:£(/, w) > a} ) > /?} ) = - Û ^ . 
a—*oo 
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