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Mixing describes the process by which solutes evolve from an initial heterogeneous
state to uniformity under the stirring action of a fluid flow. Fluid stretching forms
thin scalar lamellae that coalesce due to molecular diffusion. Owing to the linearity
of the advection–diffusion equation, coalescence can be envisioned as an aggregation
process. Here, we demonstrate that in smooth two-dimensional chaotic flows, mixing
obeys a correlated aggregation process, where the spatial distribution of the number of
lamellae in aggregates is highly correlated with their elongation, and is set by the fractal
properties of the advected material lines. We show that the presence of correlations makes
mixing less efficient than a completely random aggregation process because lamellae with
similar elongations and scalar levels tend to remain isolated from each other. We show
that correlated aggregation is uniquely determined by a single exponent that quantifies
the effective number of random aggregation events. These findings expand aggregation
theories to a larger class of systems, which have relevance to various fundamental and
applied mixing problems.
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1. Introduction

Mixing of solutes by the stirring action of a fluid flow is ubiquitous to many natural
and industrial processes (Ottino 1990). The evolution of the solute concentration c in an
incompressible velocity field v is governed by the conservation equation

∂tc + v · ∇c = κ ∇2c, (1.1)
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Figure 1. (a) Mixing of a diffusive scalar by a random stirring protocol (time sequence top to bottom),
evidencing the apparition of stretched scalar filaments (adapted from Villermaux 2012). (b) Blow-up on the
coalescence of neighbouring filaments under the action of compression (adapted from Duplat & Villermaux
2008). (c) Concentration profile of a scalar field showing the coexistence of solitary filaments and bundles of
filaments. The scalar concentration c is obtained by the superposition of individual lamellae in a bundle of size
sa. All lamellae have a Gaussian shape with decaying maximum concentration θi (see (2.14)) and width tending
to sB.

with κ the molecular diffusivity. While advected by the flow, the solute also mixes with its
surrounding due to the irreversible effect of molecular diffusion, and concentration tends
to homogenize.

Although fully linear, (1.1) is characterized by rich spatio-temporal behaviours that
have garnered considerable attention over the years (Rothstein, Henry & Gollub 1999;
Warhaft 2000; Falkovich, Gaweȩdzki & Vergassola 2001). As illustrated in figure 1(a), an
initial blob of passive solute repeatedly stirred in a chaotic flow produces scalar filaments
that stretch exponentially in time (Aref 1984). Their thickness is blocked at the so-called
Batchelor scale, at which molecular diffusion compensates the effect of stretching on
scalar gradients (Batchelor 1959). Owing to flow incompressibility, these filaments are
also exponentially compressed onto each other, leading to their diffusive coalescence
(figure 1b). These three processes – stretching, diffusion and coalescence – are key to
quantifying and predicting the statistics of c in the homogenizing mixture.

Filament stretching and diffusion can be quantified effectively in a Lagrangian frame
aligned with the local directions of elongation and compression of the flow field (Ranz
1979; Balkovsky & Fouxon 1999). Such an approach, referred to as Lagrangian stretching
or lamellar theory, provides a theoretical link between the stretching statistics of the flow
(its advective properties) and the evolution of concentration in isolated lamellae. It yields
good estimates of the decay of the scalar concentration variance (Haynes & Vanneste 2005;
Tsang, Antonsen & Ott 2005) and of the shape of the scalar probability density function
(p.d.f.) in a range of chaotic flows (Meunier & Villermaux 2010). However, it is a priori
limited to the early stage of mixing, when scalar filaments evolve far from each other, well
before coalescence (Fereday et al. 2002; Villermaux & Duplat 2003).
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Interestingly, the Lagrangian stretching framework has been shown (Haynes & Vanneste
2005; Tsang et al. 2005) to provide correct mixing rate predictions even at asymptotic
time, for smooth flow in the so-called Batchelor regime, that is, when scalar gradients
persist only at small scales. Indeed, in periodic domains, asymptotic mixing rates have
been shown to be controlled either ‘locally’ by the stretching of material lines, or
‘globally’ by macro-dispersive flow properties, depending on the domain size with
respect to the velocity correlation length. In the ‘local’ case, it is still unknown why the
Lagrangian stretching framework would remain accurate after coalescence time, when
stretched filaments are not isolated from each other. In addition, it is unknown how
stretching statistics control the shape of the asymptotic scalar p.d.f. Some theoretical
results exist on the limiting shape of the scalar p.d.f. (Sinai & Yakhot 1989), but owing
to closures that are not trivial to relate to physical properties of the flow (Sukhatme
2004). In turn, Pierrehumbert (1994) and followers (Rothstein et al. 1999; Sukhatme
& Pierrehumbert 2002) have documented the self-similarity of asymptotic scalar p.d.f.s
through the emergence of a ‘strange eigenmode’, but a physically based modelling of the
shape of the scalar p.d.f. is still an open question.

Recognizing the additive nature of scalar coalescence in bounded domains, Villermaux
& Duplat (2003) have proposed describing the late-time evolution of concentration p.d.f.s
by a random aggregation mechanism, whereby the concentration field results from a sum
of independent filaments that individually obey Lagrangian stretching dynamics, and that
overlap by diffusion. This random aggregation scenario accurately captures the shape of
asymptotic scalar p.d.f.s (Duplat & Villermaux 2008; Meunier & Villermaux 2010) if
one uses the rate of filament aggregation as a fitting parameter. However, no independent
measure of filament aggregation in chaotic flows has been obtained so far to validate the
random aggregation hypothesis. In addition, it is still unclear if aggregation processes tend
to accelerate or decelerate mixing compared to stretching.

Recently, Heyman, Lester & Le Borgne (2021) have proposed that scalar aggregation
could obey a correlated process, where poorly stretched regions of the flow containing
weakly mixed solutes remain weakly aggregated in proportion. Such intimate correlation
between stretching and aggregation has the advantage of explaining the persistent role of
Lagrangian stretching statistics on asymptotic scalar mixing that is largely observed in the
Batchelor regime (Tsang et al. 2005).

Here, we develop a general aggregation theory for scalar mixing in smooth,
two-dimensional and fully chaotic flows in the Batchelor regime. The theory is based
on the description of the spatial clustering of advected material lines, and its correlation
with local elongation rates. The theory allows us to describe the asymptotic evolution of
the scalar p.d.f. and its moments at any Péclet number based on the sole knowledge of
Lagrangian stretching statistics and fractal dimensions of the advective material lines. It
may be generalized to a wider range of flows and boundary conditions.

The paper is organized as follows. In § 2, we recall important concepts and variables
pertaining to Lagrangian stretching and aggregation frameworks. In § 3, we present the
two-dimensional incompressible chaotic flows used to illustrate and validate the general
aggregation theory, and their numerical resolution. In § 4, we focus on the geometry of
material lines advected by a chaotic flow, and we derive the evolution of the p.d.f. of
the number of advective filaments in aggregates, as well as the statistics of elongation in
aggregates. In § 5, we describe how the scalar concentration p.d.f. and its moment can
be obtained from the knowledge of both the distribution of aggregate size and filaments
statistics in aggregates.
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2. Lagrangian stretching and aggregation

2.1. Stretching and dilution
We focus on smooth, two-dimensional, incompressible and time-varying flows, for which
there exist two Lyapunov exponents of opposite signs. Advection thus creates elongated
one-dimensional structures, called lamellae or filaments, that are the backbone of scalar
mixing.

The temporal evolution of single scalar filaments is trackable in a Lagrangian frame
with a coordinate system (x, y) advected with the flow and aligned with the directions
of compression (x) and elongation (y) (Ranz 1979; Villermaux 2019). Because of their
elongated shape, the concentration of lamellae is approximately constant in the y direction.
Thus ∂yc is negligible compared to ∂xc, and the two-dimensional advection–diffusion
problem (1.1) simplifies to a one-dimensional advection–diffusion equation

∂tc + u(x) ∂xc = κ ∂2
x c, (2.1)

with u = −x λ(t) the velocity at which solute particles are compressed in the x direction,
and λ(t) ≥ 0 the stretching rate. In two-dimensional incompressible flows, the stretching
rate λ(t) in the y direction leads to a compression rate −λ(t) in the x direction. In chaotic
flows, the mean stretching rate μλ is positive and equal to the Lyapunov exponent. Note
that the notation

μ• = 〈 •〉 (2.2)

is used throughout the paper for a mean quantity. We define the total lamellar elongation
as

ρ(t) = exp
(∫ t

0
λ(t′) dt′

)
. (2.3)

Ranz (1979) showed that (2.1) transforms to the simple diffusion equation

∂τ c = ∂2
ξ c (2.4)

if time is rescaled by

τ(t) = κ

s2
0

∫ t

0
ρ(t′)2 dt′, (2.5)

and space is rescaled by ξ = xρ/s0, with s0 the initial lamellar width. For a Gaussian
initial condition c(ξ, 0) = θ0 exp(−ξ2), the solution of (2.3) is

c(ξ, τ ) = θ0√
1 + 4τ

exp(−(ξ/√1 + 4τ)2). (2.6)

Equivalently, in the original Lagrangian coordinate system (x, y),

Θ(x, t) = θ(t) exp(−(x/s(t))2), (2.7)

where θ is the maximum concentration of the lamella, following

θ(t) = θ0√
1 + 4τ(t)

, (2.8)

and s is the unit lamellar thickness, following

s(t) = s0
√

1 + 4τ(t)
ρ(t)

. (2.9)
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Note that the scalar mass per unit length under a lamella simplifies to

m(t) = √
π θ s(t) = √

π s0θ0 ρ
−1(t). (2.10)

Since in random flows the stretching rate is a random variable of time, the elongation
of lamellae and the rescaled time are also randomly distributed. An approximation of the
statistics of τ was proposed (Meunier & Villermaux 2010; Lester, Dentz & Le Borgne
2016) as

τ ≈ κ

2s2
0

t
log ρ

(ρ2 − 1), (2.11)

recognizing the fact that the last stretching events have a predominant weight in the
stochastic integral (2.4). At large times, ρ 	 1 and log ρ/t → μλ. Thus

τ → κ

2μλs2
0
ρ2 = 1

4

(
sB

s0
ρ

)2

, (2.12)

with the so-called Batchelor scale

sB =
√

2κ/μλ. (2.13)

Note that in his seminal paper, Batchelor (1959) uses the mean turbulent strain rate instead
of the Lyapunov exponent μλ to quantify fluid stretching. Thus filaments dilute at large
times, with a peak concentration following

θ(t) → θ0s0

sB
ρ−1(t), (2.14)

while their thickness tends to the Batchelor scale s → sB. In contrast, the length of
filaments grows as

L(t) = 	0 μρ(t), (2.15)

where 	0 is the initial filament length. Equation (2.14) shows that the concentration of
single diffusing filaments is inversely proportional to their elongation. Thus describing
the advective stretching statistics is sufficient to describe the mixing of passive scalars.
Indeed, the spatial variance of an elongated material line in a flow domain of area A can
be obtained by integration of the lamellar concentration (2.14) squared along the filament
path (Meunier & Villermaux 2010), giving

σ 2
c ∼ 1

A L(t) μ−2
ρ = 1

A μ−1
ρ . (2.16)

Assuming a normal distribution of stretching with mean μλt and variance σ 2
λ t, the scalar

variance decays can be estimated from the stretching statistics. For flows with moderate
stretching variability, where σ 2

λ ≤ μλ, we have

σ 2
c ∼ exp(−(μλ − σ 2

λ /2)t). (2.17)

In contrast, for flows with larger stretching variability where σ 2
λ ≥ μλ, the value of μ−1

ρ is
entirely controlled by small elongations with ρ ≤ 1 (Balkovsky & Fouxon 1999). In that
case, μ−1

ρ ∼ exp(−μ2
λ/(2σ

2
λ )t).

It is important to note that the Lagrangian stretching approximation is correct in the
limit of one-dimensional filaments, that is, when the curvature radius is much larger
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than the diffusing filament width sB. In bounded flow domains, there exist regions where
high curvatures develop (Tang & Boozer 1996), which are known (Thiffeault 2004) to
be associated with weak stretching rates (low elongations) and thus low mixing (high
concentrations). This questions the ability of the Lagrangian stretching framework to
capture the tails of the scalar concentration p.d.f. However, at small sB (small κ), the
impact of these regions on global mixing rates should remain limited. This is confirmed
by the good agreement of the Lagrangian stretching theory with observed mixing rates
(Haynes & Vanneste 2005).

2.2. Aggregation
The production of curvature tends to produce folds in the material line (figure 1b).
The distance between separated parts of the elongated material line is thus reduced
exponentially via fluid compression. This mechanism creates a highly foliated structure
at late time (figure 1a). Individual filaments are thus no longer isolated, and start to
coalesce on length scales comparable to their width sB. This so-called aggregation regime
(Villermaux & Duplat 2003) has two properties.

First, filaments tend to accumulate locally due to exponential flow compression. Bundles
of aggregated lamellae are thus formed by individual filaments sharing the same diffusive
neighbourhood of size ∼sB. The time at which aggregation initiates is when the total area
of a lamella of length L(t) and width sB is greater than the available area of the flow
domain A (Garrett 1983), e.g.

L(t) sB � A. (2.18)

The mean number of lamellae n in each bundle is thus

μn(t) ∼ L(t) sB

A . (2.19)

Assuming a constant stretching rate λ, the length of the lamella is L(t) = 	0 exp(λt), and
the coalescence time tc at which (2.18) is first fulfilled is

tc ∼ 1
λ

log
( A
	0sB

)
. (2.20)

Second, the linearity of the advection–diffusion equation implies that scalar
concentration fields can be decomposed into a sum over the concentration profiles of
solitary lamellae (Le Borgne et al. 2017). The scalar concentration c at a given position
can be constructed as the sum of concentrations θi of individual lamellae i (and defined by
(2.14)) present in a small neighbourhood around this position, of size sa comparable to the
asymptotical size of the lamellae, sB, that is,

c(t) ∼
n(t)∑
i=1

θi(t) ∼
n(t)∑
i=1

ρ−1
i (t), (2.21)

where the asymptotic relation (2.14) between θ and ρ was used. Through (2.21),
the aggregation process offers an appealing way to model the statistics of the scalar
concentration field c via knowledge of the aggregated number of filaments n at the
aggregation scale sa, their elongations ρi, and the possible correlations between these two
variables.
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Mixing as a correlated aggregation process

Assuming no correlations between n and ρi, and among ρi, leads to a random
aggregation scenario. The scalar concentration c in a bundle is thus formed by the
sum of independent and identically distributed random variables, following the solitary
filament concentration p.d.f. The scalar concentration p.d.f. Pc(c, t) thus results from the
n-convolution of the isolated lamella concentration p.d.f. P1/ρ(ρ

−1, t), with the mean
number of aggregations μn given by (2.19) (Duplat & Villermaux 2008). If P1/ρ is
exponential or gamma distributed, then Pc is a gamma distribution. Note that if P1/ρ is
log-normal, then the n-convolution p.d.f. is not explicit, although its moments are given
by the central limit theorem (Schwartz & Yeh 1982). This random conjecture was shown
(Duplat & Villermaux 2008) to correctly describe mixing in turbulent flows, for which the
velocity cascade over a large range of scales favours the decorrelation of filament stretching
histories.

Below the characteristic velocity length scale (the Batchelor regime), however, filament
aggregation seems not to obey completely random dynamics. To see that, it is useful
to consider the decay of scalar variance. In the random hypothesis, by the central limit
theorem, scalar variance decays as the inverse of the aggregation number, that is, the
inverse of the material length (2.19):

σ 2
c = μ2

c

μn
∼ 1/L(t). (2.22)

Assuming a normal distribution of stretching rates, L ∼ exp((μλ + σ 2
λ /2)t) and thus the

asymptotic scalar variance decay exponent is μλ + σ 2
λ /2, larger than the decay exponent

of solitary strips (μλ − σ 2
λ /2, (2.17)). This result contradicts observations suggesting the

same decay exponent before and after aggregation time in the Batchelor regime (Fereday
et al. 2002; Tsang et al. 2005).

We attribute this failure to the existence of correlations in the aggregation process
below the characteristic velocity length scale. Indeed, in incompressible flows, lamellar
elongation is always balanced with transverse compression (figure 1b), which attracts
neighbouring lamellae onto each other. Thus highly stretched lamellae tend to be
highly aggregated. Conversely, weakly stretched lamellae have also experienced little
compression, thus remaining isolated from the bulk, and their evolution well described by
the isolated lamellar theory. Since these lamellae bear high concentration levels, they must
dominate the statistics of scalar fluctuations at late time. Such correlations may explain
why the Lagrangian stretching prediction for the scalar dissipation remains accurate long
after aggregation time.

Evidence of correlated aggregation was also observed experimentally during the chaotic
mixing of two dye blobs (Duplat, Jouary & Villermaux 2010). If injected in a concentric
manner, the blobs locally experience similar stretching rates and aggregate in a correlated
manner. In contrast, when placed at a certain distance from each other (larger than
the characteristic length scale of the velocity field), their concentrations obey random
aggregation rules. This observation suggests that stretching and aggregation are strongly
correlated below the characteristic velocity length scale, while they become uncorrelated
above this scale.

The remainder of the paper aims to establish the laws governing correlated aggregation
for scalar mixing by smooth chaotic flows, and to deduce their impact on the evolution of
scalar concentration p.d.f.
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Figure 2. (a) Transformations operated by the incompressible baker map with parameter a. First, the domain
is cut horizontally at y = a, where a is a constant between 0 and 0.5. Uniform fluid compression operates on
the domain parts y < a and y > a with a and 1 − a, respectively. Then vertical stretching occurs with a factor
1 − a and a in these two regions, preserving the total area. (b) Transformations operated by the sine flow with
amplitude A. The flow is an alternation of horizontal and vertical sinusoidal velocity waves with amplitude A
and period 2π. Random phases are chosen at each time period so that the flow is fully chaotic.

3. Numerical simulation of synthetic chaotic flows

We focus on scalar mixing in the so-called Batchelor regime (Haynes & Vanneste 2005)
where the velocity field is smooth, and present a single length scale, much greater than
the typical scalar fluctuation scale. The domain size and the velocity length scale are of
comparable magnitude, L ∼ Lv ∼ 1 – the so-called ‘local’ mixing regime described in
Haynes & Vanneste (2005). Thus no scalar gradients can persist at scales larger than the
velocity scale.

To illustrate the geometrical features of aggregation, we use two synthetic chaotic
transformations that comply with these conditions, namely the baker map and the random
sine flow (figure 2). These are simple sequential advective maps that have been widely
used to investigate the properties of chaos (Finn & Ott 1988; Ott & Antonsen 1989; Giona,
Cerbelli & Adrover 2001; Tsang et al. 2005; Meunier & Villermaux 2010, 2022). We recall
their definitions below.

3.1. Incompressible baker map
The incompressible baker map (Ott & Antonsen 1989; Wonhas & Vassilicos 2002) is a
discontinuous transformation that operates on a two-dimensional periodic domain [0, 1] ×
[0, 1]. The transformation is

xt+1 =
{

axt if yt < a,
1 − (1 − a)xt if yt > a,

yt+1 =
{

yt/a if yt < a,
(1 − yt)/(1 − a) if yt > a,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.1)

where a ∈ [0, 0.5] is a parameter controlling the heterogeneity of the map. A visual sketch
of the map operation is shown in figure 2a.

An advantage of the baker map is that purely vertical scalar patterns (for which c(x, y) =
f (x)) remain one-dimensional after application of the map, thus simplifying the problem
to a single dimension. This simplicity allows for the analytical derivation of many features
of the map, as we will show later. Another advantage is that it is possible to explore a
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wide range of stretching heterogeneity by varying a between 0 and 0.5. Indeed, the first
two moments of stretching rate in the baker map are

μλ/t = −a log(a)− (1 − a) log(1 − a), (3.2)

σ 2
λ /t = a(1 − a)(log(1 − a)− log(a))2. (3.3)

Thus for a = 0.01, σ 2
λ /μλ = 3.7, while for a = 0.49, σ 2

λ /μλ = 5.7 × 10−4. It is important
to note that this map involves discontinuous transformations, or ‘cuts’, that are absent
in continuous flows such as turbulence but are common in flows through porous media
(Lester, Metcalfe & Trefry 2013). This map also prevents the formation of folds and cusps,
where the one-dimensional hypothesis of the Lagrangian stretching framework is violated.
The correspondence between (1.1) and (2.1) is thus exact in this map.

3.2. Random sine flow
The random sine flow (Pierrehumbert 1994; Haynes & Vanneste 2005) is a continuous
transformation operating on a periodic domain [0, 1] × [0, 1] (figure 2b). The flow is
periodic in time and space, and reads for a given time period t as

yt′+δt = yt′ + A δt
{

sin(2πx′
t + φt) for t < t′ < t + 1/2,

0 for t + 1/2 < t′ < t + 1,

xt′+δt = xt′ + A δt
{

0 for t < t′ < t + 1/2,
sin(2πy′

t + ψt) for t + 1/2 < t′ < t + 1,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.4)

where the amplitude A is a positive constant, φt, ψt are random phases that change at
each time period t, and δt is the time step. The flow velocity having a single component,
incompressibility is enforced. Scalar transport is continuous and considered on a periodic
domain [0, 1] × [0, 1], ensuring a local control of mixing rates (Haynes & Vanneste 2005).

As most random chaotic flows, the elongation of material lines in sine flows
approximately follows a log-normal distribution with parameters μλt and σ 2

λ t that depend
on the amplitude A. The stretching heterogeneity is much less variable than in the baker
map, with ratio σ 2

λ /μλ ranging from 1 when A → 0 to σ 2
λ /μλ ≈ 0.6 for A = 1.8. The

stretching statistics of random sine flows can be found in Meunier & Villermaux (2022).
In Appendix A, we recall useful results concerning the distribution of filament elongation
and its moments in the sine flow and the baker map.

3.3. Numerical methods
The hypothesis used throughout the paper is that the concentration field obeying (1.1) is
well approximated by a local summation over elementary lamellar concentrations, each
of them individually following (2.1). This implies that the statistics of concentrations
and their temporal evolution can in principle be inferred from the statistics of lamellar
elongation and aggregation. Thus instead of directly solving the two-dimensional
advection–diffusion equation (1.1), our approach consists in computing elongation of a
deforming Lagrangian support, advected by the flow (figure 3).

Numerically, we advect a material line of initial length 	0 in the velocity field. In
practice, the material line is defined by a series of particles xi linked by segments. In
the alternated random sine wave, the positions of particles are tracked through time t via
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Figure 3. Advection of a material filament in the sine flow with A = 0.8, for (a) t = 3, (b) t = 5 and
(c) t = 10.

an explicit Euler scheme (figure 3). The particles have constant velocities during a time
step dt = 1/2, so this scheme is exact. The local elongation of segments is estimated as

ρi(t) = ρi(t − dt)
‖xi(t + dt)− xi+1(t + dt)‖

‖xi(t)− xi+1(t)‖ . (3.5)

The material line is refined after each time step to maintain a maximum local distance
between points of dx ≤ 10−3.

In the baker map, we start with a single filament aligned with the y direction, so that
we need to track only its coordinate x. Each operation of the map doubles the number of
filaments, with the first half being elongated by a factor 1/a, and the second half by a
factor 1/(1 − a). We thus keep track of the growing number of filament positions xi and
their elongations ρi.

The elongated and folded filament is tracked up to the advection time where the total
length is L = 107	0, a limit corresponding to our computer memory. Local elongation of
the advected material line can then be used to compute its local concentration, via (2.14).
Aggregated scalar fields can then be estimated by a local summation of individual lamellar
concentrations, via (2.21).

3.4. Reconstruction of scalar fields
As shown by Meunier & Villermaux (2010), it is possible to reconstruct the aggregated
scalar field via the superposition of elementary lamellae, represented as Gaussian
ellipsoids of short axis s, that swipe along the advected material line. This reconstruction
is exact in the baker map since no cusps are forming. In the sine flow, it is only approximate
in the regions of high curvature, where diffusion is genuinely two-dimensional.

Here, we take an alternative reconstruction approach, which has the advantage of
allowing analytical treatment. At late time, lamella widths tend to sB (2.13), which is the
minimum scale of fluctuations of the scalar field (Batchelor 1959). Thus we construct the
aggregated scalar field by binning lamellar concentrations on a regular grid of size sa ∼ sB.
Consider a box of surface s2

a centred in position x. The aggregated concentration level in
this box can be constructed from the sum of the masses per unit length mi of the n(x)
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individual lamellae of length 	i present in this box:

c(x) ≈ 1
s2

a

n(x)∑
i=1

sami =
√

π θ0s0

sa

n(x)∑
i=1

ρ−1
i , (3.6)

where we used (2.9) for the evolution of the solute mass per unit length carried by an
individual lamella at a given location. Equation (3.6) forms the base of the statistical
description of aggregation intended in this paper.

In practice, we choose

sa =
√

2π sB (3.7)

for the variance of the regular grid reconstruction to match the variance of the true field
(i.e. the one obtained by aggregating Gaussian lamellae). The factor

√
2π is obtained so

that both reconstruction methods provide the same mean-squared concentration in the case
of a single lamella.

Note that the aggregated concentration field can be deduced at various Péclet numbers
by varying the aggregation scale sa (3.7), without recomputing the advective filament
position. We define the Péclet number as the ratio of diffusive to stretching time scales,
e.g.

Pe = μλL2
v/κ. (3.8)

Through (2.13), sB = Lv
√

2/Pe and thus sa = 2
√

πLv/Pe.
This regular grid approximation of the aggregated scalar field disregards the exact

Gaussian shape of lamellar concentrations and the variations of their width s (2.5).
However, classical box counting methods and fractal dimensions can be used to describe
the geometrical and statistical features of the aggregated scalar field. Our goal is to
describe the joint statistics of the variables ρi and n arising in (3.6), to infer the statistics
of c.

The approximation (3.6) is compared to direct numerical simulations (DNS) of the
advection–diffusion equation for different Péclet numbers in figure 4. The DNS are
obtained with the spectral method described in Meunier & Villermaux (2022), with a
20482 grid, and time step 0.1. There is a good qualitative match between the aggregated
field and the DNS, a match confirmed by comparing the distributions of concentrations.
Thus we conclude that the construction of the aggregated scalar field via (3.6) is able
to capture the essential statistical features of the two-dimensional advection–diffusion
problem, and offers a convenient way to explore its statistics.

4. Clustering properties of advected material lines

In incompressible flows, the stretching of material elements by velocity gradients
is compensated by transverse compression, which causes distances between lamellar
elements to decrease exponentially over time. Smaller and smaller scales are thus produced
continuously by flow compression. Furthermore, in smooth chaotic flows, the typical
scale of variation of velocity gradients is fixed and produces a heterogeneous stretching
field for material lines. Dense (black) or diluted (white) regions of material lines are
thus created at large scale in the chaotic flow (figure 5). Such heterogeneous structures
then cascade to smaller scales under the action of net compression, thus creating a
fractal set of one-dimensional objects (lines) clustered around their transverse direction.
In two-dimensional incompressible flows, the Hausdorff dimension of this fractal set
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Figure 4. Comparison of log-concentration fields obtained at time t = 10 (fully aggregated regime): (i) with
the aggregation framework (3.6), (ii) with direct numerical simulations (DNS) of (1.1), and (ii) with their p.d.f.
The comparison is made for the sine flow (A = 0.8) for two Péclet numbers, corresponding to (a) sa = 1/150
and (b) sa = 1/50.

is necessarily D0 = 2, as per the Kaplan–Yorke result (Farmer, Ott & Yorke 1983).
Higher-order dimensions can be smaller than 2 if stretching is heterogeneous. To illustrate
this, let us define a normalized measure pk with k = 1, . . . ,N defining a regular grid of
bin size ε = L/N, where L is the domain size. For instance, pk may be defined as the local
density of lamellae in the bin, e.g. pk = nk/n, where n is the total number of lamellae.

The fractal dimension of order q of the measure p is obtained with (Grassberger 1983)

Dq − 1 = lim
ε→0

1
q − 1

log Iq(ε)

log ε
, Iq(ε) ≡

N=L/ε∑
k

pq
k, (4.1a,b)

where the subtraction of 1 on the left-hand side accounts for the counting of
one-dimensional structures (lamellae) in a two-dimensional domain. This definition
implies the following spatial scaling of the integral of the measure:

Iq(ε) ∼ ε(q−1)(Dq−1). (4.2)

In simple flows such as the baker map, Dq can be obtained (Finn & Ott 1988) by observing
the similarity properties of the map, which transfer at small scales the heterogeneity of
the measure produced at large scales by a single operation of the map. Characterizing the
result of one elementary operation of the map on the measure thus also informs us about
the spectrum of fractal dimensions.
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Figure 5. Fractal geometry of material lines in (a–c) the sine flow (A = 0.8) and (d–f ) the baker map
(a = 0.1), observed at different scales. The red square indicates the area selected for zooming.

We consider the measure of the local number of lamellae in bin k, pk = nk/n. As shown
in figure 2(a), an operation of the baker map doubles the total number of these lamellae,
while maintaining the same local distribution of lamellae on smaller bins of sizes aε
for x < a, and (1 − a)ε for x > a. This similarity allows one to compute the first fractal
dimension explicitly (see Appendix B and Finn & Ott 1988):

D0 = 2, D1 = 1 + 2 log 2
log(a−1 + (1 − a)−1)

. (4.3a,b)

For random flows such as the sine flow, Ott & Antonsen (1989) argue that there exists
a general relationship between stretching rate statistics and fractal dimensions as Dq =
fq(σ 2

λ , μλ), although a closed-form solution is not always as trivial as for the baker map.
We show in figure 6 that the ratio σ 2

λ /μλ is directly related to the fractal dimension D1.
This suggests that the fractal clustering of material lines is closely linked to the large-scale
heterogeneity of stretching rates. Since the flow is smooth, the heterogeneity created at
large scales cascades to smaller scales, conserving its geometrical structure and creating a
fractal geometry.

As suggested by figure 6, the function f1 is different for the baker map and the sine flow.
Indeed, the ratio σ 2

λ /μλ tends to a positive constant in the sine flow when A → ∞, while
σ 2
λ /μλ → 0 in the baker map when a → 0.5. This finite limit comes from the fact that the

sine flow is a continuous transformation with no cutting, thus does not tend to a uniform
stretching rate. On the contrary, when A → 0, σ 2

λ /μλ → 1, which is a maximum bound for
the ratio in the sine flow (Meunier & Villermaux 2022), thus limiting the possible range
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Figure 6. Relation between stretching rate mean μλ and variance σ 2
λ , and fractal dimension D1, in the baker

map and sine flow with varying parameters a and A.
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Figure 7. Spatial distribution of the number n of lamellae in bundles defined by a regular grid of size
(a) sa = 1/200 and (b) sa = 1/50, in the sine flow with parameter A = 0.5.

of fractal dimensions produced by continuous chaotic flows, compared to discontinuous
maps.

4.1. Spatial distribution of n
The spatial distribution of the number n of lamella per bin size A (figure 7) can be obtained
as follows. Comparing the mean area occupied by a filament of length L(t) and aggregation
scale sa to the domain surface A, we get an estimate of the mean number of lamellae μn
in bundles:

μn ∼ L(t) sa/A. (4.4)

Higher moments can be obtained from a study of the fractal structure of material lines. To
this end, we consider the spatial measure corresponding to the local number of lamellae in
each bundle:

pk ≡ nk∑
k

nk
(4.5)
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Figure 8. (a) Scaling of the spatial variance of log n as a function of a in the baker map and theoretical
prediction, (4.10). (b) First two moments of Pn through time compared to theoretical predictions, (4.4) and
(4.11) in the baker map (A = 1).

The Renyi definition (Grassberger 1983) of the fractal dimension of order 2 of this measure
is

D2 − 1 ≈
log

∑
k

p2
k

log sa
, (4.6)

assuming sa → 0. Replacing (4.5) in the last expression provides

∑
k

⎛
⎝ nk∑

k

nk

⎞
⎠

2

= sD2−1
a . (4.7)

Since
∑

k nk = Nμn, we have

∑
i

⎛
⎝ nk∑

k

nk

⎞
⎠

2

= 1
N

〈(n/μn)
2〉, (4.8)

with N ≈ √A/sa the number of bundles in the flow domain. Since

σ 2
n/μn

= 〈(n/μn)
2〉 − 〈n/μn〉2, (4.9)

we have

σ 2
n/μn

=
√
A sD2−2

a − 1. (4.10)

Thus the variance of n/μn reaches a constant at asymptotic times, which is given by the
fractal dimension of order 2. The spatial variance of n is then

σ 2
n = μ2

n

(√
A sD2−2

a − 1
)
. (4.11)

The predictions of (4.4)–(4.11) are plotted against time in figures 8 and 9 showing
good agreement with simulations for a large range of aggregation scales sa and flow
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Figure 9. First two moments of Pn through time compared to theoretical predictions, (4.4) and (4.11) in the

sine flow (A = 1).
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Figure 10. Plots of P(n, t) for the baker map and sine flow for sa = 1/100. Solid lines stand for the gamma
p.d.f. with theoretical moments given by (4.14), and symbols stand for numerical simulations. (a) Baker map
a = 0.3 and variable t. (b) Baker map for t = 20 and variable a. (c) Sine flow for sa = 1/100 and A = 0.4.

heterogeneity, characterized by the parameters a for the baker map, and A for the sine
flow. Higher moments of n can be obtained with similar scaling arguments and linked to
fractal dimension of higher order. This is, however, out of the scope of the present study.

Instead, we observed that the p.d.f. of lamellar aggregation number Pn(n) is well fitted
by a gamma distribution (figure 10)

Pn(n) = 1
Γ (kn) θk

n
nkn−1 exp(−n/θn), (4.12)

with n ≥ 0, and kn, θn defined by the moments of the distribution of n:

kn =
(√

A sD2−2
a − 1

)−1
, (4.13)

θn = μn(t)
(√

A sD2−2
a − 1

)
, (4.14)
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Figure 11. Simulation of aggregation statistics in the baker map (a = 0.3) and sine flow (A = 0.5) for sa =
1/50: (i) number of lamellae n in bundles, (ii) mean of log-elongation in bundles, and (iii) sum of lamellar
concentrations in bundles.

where μn = L(t)A/sa. Note that the gamma distribution yields a power-law distribution
at small n, with exponent kn − 1 going from −1 to infinity with increasing D2. For small
D2 (strong stretching heterogeneity), a significant part of the probability is concentrated at
small n, thus in non-aggregated regions of the flow. We will show later that this can affects
the value of negative moments of n.

4.2. Local correlations between n and ρ
Having given a precis of the statistics of the bundle size n, we now explore the local
statistics of lamellar elongations in these bundles. To this end, we define the conditional
averaging operator acting in lamellae located in the local neighbourhood of size sa by

μX | n = 1
n

n∑
i=1

Xi, (4.15)

where X is a Lagrangian variable transported by lamellae and n is the number of lamellae
aggregated in the bundle. The spatial variability of averaged variables is shown in figure 11
for simulations in the baker map and sine flow. The remainder of this section is dedicated
to uncovering the behaviour of conditional moments of elongation conditioned to n (e.g.
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Figure 12. Joint p.d.f. (grey scale) of the number of lamellae in a bundle of size sa = 1/200, and (i) their
mean inverse elongation, (ii) their mean log-elongation, for (a) baker map (a = 0.1, t = 24, D1 = 1.57) and
(b) sine flow (A = 0.8, t = 10, D1 = 1.74). The theoretical scalings of the measures (i) and (ii), given by (4.16)
and (4.18), respectively, are plotted as solid red lines with the slope indicated in the legend. Dashed red lines
are guides for the eye.

μρ−q | n). Section 5 will then be dedicated to deriving unconditional probabilities by
averaging on the distribution of n.

We plot in figure 12 the joint probability P(n, μX | n) obtained in the baker map and the
sine flow for X = ρ−1 and X = log ρ, the inverse of elongation and the log-elongation of
lamella, respectively. Figure 12 suggests that the following scaling holds in both flows:

log n ∼ − logμρ−1 | n, (4.16)

which confirms the strong correlation between the number of lamellae in aggregates and
their elongation. Indeed, for large times, c must tend to the conserved average scalar
concentration c → μc. Thus, owing to (3.6), we must have

n ∼ 1/μρ−1 | n, (4.17)

a scaling that we confirm numerically (figure 12).
Figure 12 also suggests that

log n ∼ (D1 − 1) μlog ρ | n, (4.18)

where D1 is the information dimension (Ott & Antonsen 1989) of the measure n,
given by (4.3a,b) for the baker map. Equation (4.18) can be derived analytically in
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the case of the baker map. Indeed, by the action of the map, the total number of
lamellae increases as log n = t log 2, while the mean log-elongation of these lamellae is
μlog ρ = t(− log a − log(1 − a))/2, leading to a constant ratio

log n
μlog ρ

= 2 log 2
log a + log(1 − a)

, (4.19)

which is exactly the value of D1 − 1 (4.3a,b). Assuming that the partition between log n
and μlog ρ is preserved at small scales in each bundle, we have

log n = (D1 − 1)(μlog ρ | n − μlog ρc), (4.20)

with μlog ρc a constant standing for the mean elongation at coalescence time.
The constant μlog ρc can be estimated by comparing the surface covered by the filament

at the aggregation scale, S = saρcL0, with the domain area A. The first aggregation event
occurs when S ≈ A, that is, when the elongation is ρc ≈ A/(sa	0). Equation (4.20) is
indeed verified for the baker map and sine flow with various parameters a and A, with
μlog ρc = − log sa.

4.3. Distribution of log ρ in a bundle of size n
The two scaling laws n ∼ μρ−1 | n and log n ∼ (D1 − 1) μlog ρ | n provide key information
about the heterogeneity of lamellar elongations inside bundles. Since the ensemble
distribution of elongation Pρ(ρ) has a log-normal shape, we assume that the distribution
of elongations inside bundles, denoted Pρ | n, is also log-normally distributed. This implies
that log ρ is normally distributed in bundles, with mean

μlog ρ | n ∼ (D1 − 1)−1 log n. (4.21)

Since logμρ−1 | n = −μlog ρ | n + σ 2
log ρ | n/2 ∼ − log n(x), the variance of log-elongation

in bundles at large n must be

σ 2
log ρ | n ∼ 2(2 − D1)

D1 − 1
log n. (4.22)

We report in figure 13 the simulated scaling μlog ρ | n/ log n and σ 2
log ρ | n/ log n

obtained asymptotically at large times. When D1 → 2, μlog ρ | n/ log n → 1 while
σ 2

log ρ | n/ log n → 0, meaning that bundles are formed by lamellae of identical elongations.
In contrast, when D1 → 1, both μlog ρ | n/ log n and σ 2

B/ log n become infinite, while their
ratio is σ 2

log ρ | n/μlog ρ | n = 2(2 − D1) → 0.5. This limit suggests that the aggregation
of lamellae remains correlated to their average elongation, although a fixed amount of
stretching variability arises in bundles. Good agreement is found between theoretical
prediction (4.21)–(4.22) and numerical simulations of aggregation in the baker map
(figure 13). In contrast, the theory captures only qualitatively the behaviour of the random
sine flow. This may be due to the continuity of the sine flow, which produces curved
lamellar structures that are not exactly one-dimensional.

The stretching variability in bundles is directly linked to the heterogeneity of the
chaotic flow, because of the intimate relationship existing between the fractal geometry
of the material line and the stretching statistics of fluid elements (Ott & Antonsen 1989).
As such, it is impossible to have a single stretching rate per bundle as soon as the
chaotic flow is heterogeneous and exhibits a distribution of stretching rates. The absence
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Figure 13. Scaling of the (a) mean and (b) variance of log-elongation in bundles as a function of the
information dimension D1. Circles stands for numerical simulations in baker maps (open circles) and sine
flow (filled circles). Solid lines stand for theoretical prediction of the mean (4.21) and variance (4.22). Dashed
and dotted lines are plotted to compare the mean with fractal dimensions of other orders.

of stretching variability in bundles (σ 2
log ρ | n = 0) implies the uniformity of stretching at

large scale (σ 2
ρ = 0). This uniform case is reached when D1 → D0 = 2, for instance, in

the baker map when a → 0.5. In continuous flow maps such as the sine flow, regions of
high and low stretching always coexist, and σ 2

log ρ | n > 0.

4.4. Moments of 1/ρ in a bundle of size n
Having described the first two moments of the distribution of lamella elongation in bundles
(4.21)–(4.22), we now assume that the distribution is of log-normal shape. This choice is
justified by the fact that elongation is a multiplicative process, thus usually leading to
log-normal distributions (Le Borgne, Dentz & Villermaux 2015; Souzy et al. 2020). This
allows us to compute the scaling of the q moments of lamella concentrations in bundles,
θ | n. Owing to (2.14), we have

μθq | n ∼ μρ−q | n

=
∫ ∞

1
ρ−q Pρ | n(ρ) dρ

≈
∫ ∞

1
exp(−(log ρ − μlog ρ | n)

2/(2σ 2
log ρ | n)− q log ρ) dρ. (4.23)

The minimum bound for the integral is taken at ρ = 1 and not 0, taking into account
the fact that lamellar structures cannot be compressed in their longitudinal direction.
As a consequence, Pρ | n(ρ) is truncated for ρ < 1. Denoting Λ = log ρ/ log n, μ̃ =
μlog ρ | n/ log n and σ̃ 2 = σ 2

log ρ | n/ log n, this expression becomes

μρ−q | n ≈
∫ ∞

1
exp(H(Λ) log n) dρ, (4.24)

with H(Λ) = −(Λ− μ̃)2/(2σ̃ 2)− qΛ. For large n, the value of this integral tends to
exp(H(Λ∗) log n), where Λ∗ is the value where H takes a maximum, that is, either at
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Figure 14. (a) Scaling exponents of the q lamellar concentration moments in bundles (4.23). Numerical
estimates are plotted with symbols: red diamonds for q = 2, and black circles for q = 1. Unfilled and filled
symbols represent simulations in the baker map and sine flow, respectively. Theoretical predictions (4.27)
are represented by lines. (b) Intercept ω̃ of the scaling exponent of the q lamellar concentration moments
in bundles (4.23) in the baker map (empty squares) and sine flow (filled squares), and theoretical prediction
(line, (4.28)).

Λ∗ = μ̃− qσ̃ 2 if μ̃− qσ̃ 2 > 0, or at Λ∗ = 0 otherwise. Thus

logμρ−q | n ≈ −(γq,ρ−1 | n log n + ωq,ρ−1 | n), (4.25)

with

γq,ρ−1 | n = qμ̃− q2σ̃ 2/2 if μ̃ > qσ̃ 2,

γq,ρ−1 | n = μ̃2/(2σ̃ 2) if μ̃ ≤ qσ̃ 2,

}
(4.26)

and ωq,ρ−1 | n = q log(A/(sa	0)) a constant. In particular, we are interested in the exponent
q = 2, which is useful to describe fluctuations around the mean. We have

γ̃ ≡ γ2,ρ−1 | n =
{

2μ̃λ − 2σ̃ 2
λ if μ̃ > 2σ̃ 2,

μ̃2/(2σ̃ 2) if μ̃ ≤ 2σ̃ 2.
(4.27)

The predicted dependence of γ̃ upon D1 is reproduced in figure 14. Here, γ̃ is bounded
between 2 (for D1 → 2) and 1 for D1 ≈ 1.5. The prediction agrees reasonably well with
numerical simulations of the baker map and sine flow (figure 14). The small discrepancies
can be attributed to deviations from log-normally distributed elongation in bundles. We
also verify numerically that ω̃ ≡ ω2,ρ−1 | n is independent of D1 (figure 14b). In figure 15,
we verify that γ̃ is independent of the aggregation scale sa. In contrast,

ω̃ ≈ 2 log(A/(l0sa)) (4.28)

is a function of the aggregation scale only, independent of time and fractal dimension
(figure 14b). Having determined both the elongation statistics inside aggregates of size n
and the spatial distribution of n, we will deduce in the following section the statistics of
aggregated scalar levels c.
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Figure 15. Dependence of γ̃ and ω̃ with the aggregation scale in simulations of the baker map (empty
symbols, a = 0.2) and the sine flow (filled symbols, A = 1.2), and comparison to theoretical prediction (4.28).

5. Aggregated scalar concentrations

In the preceding section, we have shown that the moments of lamellar compression inside
a bundle of size n follow

μρ−1 | n = sa	0

A n−1, (5.1)

μρ−2 | n = (sa	0)
2

A2 n−γ̃ , (5.2)

with γ̃ ≡ γ2,ρ−1 | n a flow-dependent exponent varying with the fractal dimension D1 and
taking value between 1 and 2 (figure 14a). The variance of lamellar concentrations inside
bundles thus follows:

σ 2
ρ−1 | n = (sa	0)

2

A2 (n−γ̃ − n−2). (5.3)

We first assume that the aggregated scalar concentration of a bundle c | n can be obtained
by a sum of independent and identically distributed random variables (2.21), whose
statistics have been described previously. In doing so, we make two hypotheses. First,
we assume that the elongation statistics of lamellae inside a bundle of size n or among
all bundles of size n are comparable, which is true for large n (see Appendix C). Second,
we assume that variability in bundle aggregated concentrations arises from independent
realizations of the sum. In other words, we assume that the chaotic flow is sufficiently
random to shuffle lamellar elongations between each bundles. We will show later that
independence is not ensured in the deterministic baker map.

With these hypotheses, the mean aggregated concentration is

μc | n = n ×
√

π θ0s0

sa
μρ−1 | n =

√
π θ0	0s0

A , (5.4)

992 A6-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

53
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.537


Mixing as a correlated aggregation process

1.2 1.4 1.6 1.8 2.0

D1

0

0.5

1.0

1.5

2.0

2.5

γ
2

,c
 | 

n

Baker map

Sine f low

γ2,ρ−1 | n

γ2,ρ−1 | n − 1

Figure 16. Scaling exponent ξ (5.8) of the variance of bundle concentrations knowing n estimated from
simulations (dots) and theoretical predictions with the independent realization hypothesis for the sine flow
(solid lines, ξ = γ̃ − 1, (5.6)) and baker map (dashed lines, ξ = γ̃ , (5.7)).

which is also the mean concentration μc. The variance of aggregated concentrations over
bundles of similar size is

σ 2
c | n ≈ n

(√
π θ0s0

sa

)2

σ 2
ρ−1 | n = (

√
π θ0	0s0)

2

A2 (n1−γ̃ − n−1). (5.5)

When n is large, this expression further simplifies to

σ 2
c | n ∼ n1−γ̃ , (5.6)

with γ̃ ∈ [1, 2] given by (4.27).
The scaling obtained with the independent realization hypothesis compares well with

numerical simulations of aggregation in random sine flows of various heterogeneity
(figure 16). However, it largely underestimates the scaling observed in the deterministic
baker map. Indeed, the simplicity and regularity of the deterministic baker map make
bundles of similar size not statistically independent. While bundle concentration still
results from the addition of variable lamellar concentrations, independent realizations of
the sum are not achieved due to the deterministic nature of the map, the same combinations
being repeated identically in most bundles, as in the case of a unique realization. In that
case, the variance of the sum is the variance of the random variable, and (5.5) transforms
into

σ 2
c | n ∼ σ 2

ρ−1,n ∼ n−γ̃ . (5.7)

This scaling indeed fits more accurately the deterministic baker map simulations
(figure 16).

To summarize, the addition of lamellar concentration levels in a bundle yields a
concentration whose deviation from the mean decays algebraically with the number of
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Figure 17. Distributions of aggregated scalar concentrations in the sine flow depending on (a) the sine wave
amplitude A (sa = 1/50), and (b) the aggregation scale sa (A = 0.9). Symbols stand for numerical simulations,
solid lines are the aggregation model (5.9), and dashed lines are the isolated strip prediction (2.6). Simulations
are all taken at the time when the total filament length reaches L = 107	0.

lamellae in the bundle:

σ 2
c | n ≈ (θ0	0s0)

2

A2 n−ξ , (5.8)

with ξ = γ̃ for purely deterministic flows (baker map), and ξ = γ̃ − 1 for random flows
(sine flow). We call ξ the correlation exponent, which can take values between 0 and 2
depending on the flow heterogeneity and randomness.

5.1. Distribution of c
We now focus on deriving the expression of the p.d.f. of aggregated scalar concentration
Pc over the flow domain. The later can be obtained from the conditional p.d.f. of bundle
aggregated concentrations knowing their size Pc | n and the p.d.f. of bundle size Pn by the
weighted summation

Pc(c) =
∫

n
dn Pc | n(c)Pn(n). (5.9)

Here, Pn was found to be well approximated by a Gamma distribution, with moments
given by the fractal characteristics of advected material lines (4.14). In turn, we have
determined the scaling of the first two moments of bundle aggregated concentration c | n
(5.8), without specifying the precise shape of the p.d.f. A natural choice for Pc | n is
the log-normal distribution, since the sum of log-normally distributed random variables
is known (Schwartz & Yeh 1982) to be well approximated by log-normal distributions.
Adopting the log-normal shape, the parameters of the distribution are

μlog c | n = logμc | n − log(σ 2
c | n/μ

2
c | n + 1)/2, (5.10)

σ 2
log c | n = log(σ 2

c | n/μ
2
c | n + 1). (5.11)

In figure 17, we plot the simulated distribution of aggregated concentration levels
compared to the prediction (5.9) for the baker map and sine flow. The agreement is fair in
the region near μc, but deviates for large c. Indeed, this corresponds to lamellae with weak
aggregation for which n ≈ 1. In this region, the solitary strip p.d.f. Pρ−1 describes well the
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Figure 18. Plots of Pc in sine flows at several times (A = 0.8, sa = 1/50) (symbols) compared with the
random aggregation (dashed lines) and correlated aggregation (solid lines, (5.9)) models.

tail of Pc because such high concentration excursions are essentially supported by isolated
lamellae, while the correlated aggregation model assumes n 	 1. The presence of these
weakly aggregated, high concentration levels is particularly evident at high Péclet number
(figure 17b). The scalar concentration p.d.f. is thus the combination of an aggregated core
around the mean following (5.9) and tails following the isolated strip concentration p.d.f.

In figure 18, we compare the correlated aggregation model with the random aggregation
model where μn ∼ L(t) (2.19). The random aggregation assumption yields gamma p.d.f.s
that are narrowing much faster than the simulated p.d.f.s in the sine flow. In contrast, the
correlated model better captures the p.d.f.

From the p.d.f. of aggregated scalar concentration, we now derive its moments. They
are directly related to the p.d.f. of n, since

μc =
∫

dc
∑

n

c P(c | n)P(n) =
∑

n

μc | n P(n) = θ0	0s0

A (5.12)

and

μc2 =
∫

c
dc
∫

n
dn c2 P(c | n)P(n) =

∫
n

dnμc2 | n P(n) = (θ0	0s0)
2

A2 (μn−ξ + 1). (5.13)

Thus the scalar variance is

σ 2
c = (θ0	0s0)

2

A2 μn−ξ . (5.14)

Note that because we chose a gamma distribution for n with parameters θn and kn defined
in (4.14), μn−ξ is not defined for all D2. Indeed, the gamma distribution admits a power law
tail at small n with exponent kn − 1, which affects the value of negative moments: when
kn(D2) < ξ(D2),μ

−ξ
n does not exist. However, because fully chaotic flows are space-filling

(D0 = 2), we must have n ≥ 1 at late time. Thus we restrict the p.d.f. of n to n ≥ 1 and get

μn−ξ ∼ (θn)
− min(kn,ξ). (5.15)

An intuitive understanding of this equation can be formulated as follows. If the spatial
heterogeneity of n is moderate (ξ < kn), then the average of n−ξ is affected by all values
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Figure 19. Evolution of the exponent min(kn, ξ) (contours) in the sine flow for various Péclet numbers
(aggregation scale sA) and sine amplitude A (fractal dimension D2). Here, kn is obtained with (4.13) and
ξ = γ̃ − 1 with (4.27).

of n in the distribution. In contrast, if the heterogeneity is stronger (ξ > kn), then the
probability of having low aggregation regions (n ≈ 1) is high and controls the value of
μn−ξ . In that case, the average no longer scales with ξ , but rather scales with the parameter
kn, explaining the minimum in the exponent. The value of the exponent depending on
Péclet number and fractal dimension is plotted in figure 19 for the sine flow. In such
random flow, the exponent takes values between 0 and 1. For high Péclet numbers and low
fractal dimension, μn−ξ is governed by weakly aggregated regions and min(kn, ξ) = kn.
In contrast, for low Péclet number and large fractal dimension, the whole distribution of n
plays a role in the determination of μn−ξ , and min(kn, ξ) = ξ .

Combining (5.15) and (4.14) provides the asymptotic scalar variance decay as a function
of the domain area A, the elongation of material lines L(t), and the aggregation scale
sa = √

2π sB:

σ 2
c (t) =

(
L(t) sa(

√A sD2−2
a − 1)

A

)− min(kn,ξ)

∼ L(t)− min(kn,ξ). (5.16)

Thus in a correlated aggregation scenario, the decay exponent of scalar variance is found
to be a fraction of the growth exponent of material lines, respectively log 2 and μλ + σ 2

λ /2
in the baker map and sine flow.

Equation (5.16) suggests that the existence of correlations in the aggregation process
may be envisioned as a retardation of the purely random aggregation scenario (2.22). From
this perspective, the effective number of random aggregation events L(t)min(kn,ξ) is smaller
than the total number of aggregation L(t), because the correlation exponent min(kn, ξ) is
generally smaller than 1 (see figure 19).

In contrast, the random aggregation model (2.22) clearly overestimates the variance
decay rate in the sine flow. This is explained by the correlated nature of aggregation, which
is less efficient at homogenizing concentration levels than a completely random addition.
In other words, small concentration levels have a higher probability of coalescing with
other small concentrations than with high concentrations, retarding the homogenization of
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Figure 20. Decay exponent γ2 of the variance of aggregated scalar levels with time, as a function of fractal
dimension D1 for (a) the baker map and (b) the random sine flow. Dots stand for numerical simulations, and
lines from theoretical predictions for isolated lamellae ((2.17) and exponents of μρ−1 in tables 1 and 2), random
aggregation ((2.22) and exponents of 1/μρ in tables 1 and 2) and correlated aggregation (5.14).

the mixture. Indeed, the correlated aggregation model proposed herein (5.16) shows decay
rates closer to the numerical observations. The solitary lamella model still outperforms
the correlated aggregation framework in predicting scalar decay rate, because the latter is
dominated by weakly aggregated regions of the flow. These regions are poorly described
by statistics obtained in the large-n limit (e.g. (5.5)).

A different picture is observed for scalar decay rates obtained in the baker map
(figure 20b), because of the deterministic nature of the map. The solitary lamella model
is accurate for fractal dimensions D1 < 1.6, where stretching heterogeneity is important
and weakly aggregated regions of the flow dominate scalar fluctuations. For D1 > 1.6, the
isolated lamella model underpredicts scalar decay due to aggregation effects, as explained
in the following. The random aggregation scenario predicts an invariant scalar decay rate
(γ2,c = log 2) equal to the growth rate of material lines. It thus overpredicts the observed
decay rates for D1 < 1.8, and underpredicts them at larger values of D1. Interestingly,
when the flow tends to the uniform case a → 0.5 (D1 → 2), simulations yield scalar
decay rate 2 log 2, larger than the decay rate of isolated lamellae. This acceleration of
mixing by aggregation is a pure consequence of the determinism nature of the map,
and is well captured by the correlated aggregation scenario (5.7). However, for all baker
maps with D1 < 1.9 (a < 0.2), kn < ξ and scalar fluctuations are mainly governed by the
regions where n ∼ 1 for which the correlated aggregation theory is not expected to be
accurate. This explains the limited range of validity of the correlated aggregation theory
for describing scalar decay rates in the deterministic baker map.

Finally, note that the simulations do not show the super-exponential decay of scalar
fluctuations classically observed for the uniform stretching rate at a = 0.5. In fact, the
reconstruction of the scalar field by a summation of lamellar maximum concentrations
on a fixed grid (3.6) impedes the apparition of the super-exponential mode. As a → 0.5,
all lamellae are subjected to similar stretching rates around log 2, thus yielding a scalar
variance decaying as 2 log 2.
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6. Conclusions

Scalar mixing by incompressible smooth two-dimensional chaotic flows leads to the
emergence of two coupled phenomena that are the elongation of interfaces by stretching,
and their aggregation and coalescence at the Batchelor scale by compression. In turbulent
scalar mixing, aggregation was well captured by random addition rules (Duplat &
Villermaux 2008). Here, we show that for smooth chaotic flows in the Batchelor range,
aggregation is highly correlated. This correlated aggregation process significantly reduces
the flow mixing efficiency compared to a random hypothesis, maintaining it close to the
mixing efficiency obtained for solitary lamellae, and explaining the observed monotonic
exponential decay of scalar variance before and after coalescence time (Fereday et al.
2002).

Using two-dimensional chaotic flows as a reference, we measured the aggregation rate
of exponentially stretched material lines across a broad range of chaotic flow regimes. We
showed that the most elongated lamellae are also the most aggregated ones, due to the fact
that larger compression rates attract larger flow regions. The link between elongation and
compression, induced by incompressibility, hence generates a direct correlation between
elongation and aggregation. The heterogeneity in stretching rates therefore controls the
heterogeneity of the number of lamellae in bundles.

We showed that the statistics of aggregated lamella numbers can be predicted exactly
from the fractal dimensions of the elongated material line. We then derived a general
theoretical framework that captures the effect of correlated aggregation, where lamellae
of similar stretching aggregate preferentially, and predict the p.d.f.s of aggregated scalar
levels. We find that correlated aggregation can be uniquely characterized by single
correlation exponent ξ ∈ [0, 1], which provides a measure of the effective number of
aggregation events, compared to the total number. In that sense, correlated aggregation
delays the route to uniformity compared to a fully random hypothesis, although it does not
alter the fundamental nature of the aggregation process (Villermaux & Duplat 2003).

Our results apply for two-dimensional fully chaotic flows in the Batchelor regime, that
is, for smooth velocity fields below the integral scale. These flow fields are representative
of a large class of flows, including notably porous media flows (Heyman et al. 2020;
Souzy et al. 2020), geophysical flows, and turbulent flows at high Schmidt number. We
have also considered small periodic flow domains where no large-scale scalar gradients
can appear. When scalar length scales can develop beyond the integral velocity scale in
smooth flows, mixing is controlled globally by the slowest dispersing modes (Haynes
& Vanneste 2005; Tsang et al. 2005). The aggregation rules determined herein are not
supposed to change above the velocity scale. Thus it is possible in principle to obtain
the statistics of larger-scale scalar fields by the summation of individual lamellae. To
do so, one may consider the mean density of aggregation μn(t) (4.4) to vary spatially
through macro-dispersion, while microscale fluctuations would remain governed by (4.11).
Note that similar ideas were used to predict the evolution of a dispersing scalar plume in
two-dimensional porous media (Le Borgne et al. 2015).

It should also be possible to extend the correlated aggregation theory to
three-dimensional flows that produce two-dimensional sheets (Ngan & Vanneste 2011;
Martínez-Ruiz et al. 2018; Meunier & Villermaux 2022) that aggregate at late times due
to folding. These flows have a unique negative Lyapunov exponent, the mean compression
rate normal to the sheets, and thus also simplify to the one-dimensional Lagrangian
stretching framework on which aggregation models are framed.
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Appendix A. Stretching statistics and averaging

In random chaotic flows, varying stretching rates are experienced by fluid elements
(Lester et al. 2013). Because of the multiplicative nature of stretching, the log-elongation
of material elements log ρ is well approximated in ergodic chaotic flows by a sum
of independent and identically distributed random variables that converges towards the
normal distribution with mean μλt and variance σ 2

λ t (Meunier & Villermaux 2022).
Thus the elongation ρ of material elements may be expected to follow the log-normal

distribution

Pρ,0(ρ) ≈ 1

ρ

√
2πσ 2

λ t
exp

(
−(log ρ − μλt)2

2σ 2
λ t

)
. (A1)

Non-asymptotic stretching statistics can differ substantially from this limiting behaviour.
For instance, the baker map has a binomial distribution of elongations

Pρ,0(ρ = (1 − a)kat−k) =
(

t
k

)
(1 − a)kat−k, for k = 0, . . . , t, (A2)

which tends to a log-normal distribution with μλ/t = −a log(a)− (1 − a) log(1 − a) and
σ 2
λ /t = a(1 − a)(log(1 − a)− log(a))2.
Note also that because of the multiplicative nature of elongation (Redner 1990), the p.d.f.

of ρ (and ρ−1) is highly sensitive to the tails of Plog ρ , which may converge only slowly
to the Gaussian prediction, depending on the flow heterogeneity. However, for the range
of sine flow amplitudes used in this study (A ∈ [0.4, 1.8]), such limitations are relatively
weak.

Statistics of lamellar concentrations in the material line can then be obtained by suitable
ensemble averaging (denoted by angle brackets) over this distribution. Depending on how
sampling is performed through the material line, different moments are obtained. Uniform
sampling on the initial filament prior elongation leads to the distribution Pρ(ρ) in (A1),
with main moments summarized in table 1. In contrast, uniform sampling on a the final
elongated material line of length L, denoted by μ•,L leads to the weighted p.d.f. Pρ,L ∼
ρPρ . Thus Pρ,L is also log-normal, but with different mean, (μλ + σ 2

λ )t. Uniform sampling
on the final material line gives a stronger weight to highly elongated part of the material
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log ρ ρ ρ−1

μ• μλt exp((μλ + σ 2
λ /2)t)

{
exp(−(μλ − σ 2

λ /2)t) if μλ ≥ σ 2
λ

exp(−μ2
λ/(2σ

2
λ )t) if μλ ≤ σ 2

λ

μ•2 σ 2
λ t exp((2μλ + 2σ 2

λ )t)

{
exp(−2(μλ − σ 2

λ )t) if μλ ≥ 2σ 2
λ

exp(−μ2
λ/(2σ

2
λ )t) if μλ ≤ 2σ 2

λ

μ•,L (μλ + σ 2
λ )t exp((μλ + 3σ 2

λ /2)t) exp((−μλ − σ 2
λ /2)t)

μ•2,L σ 2
λ t exp((2μλ + 4σ 2

λ )t)

{
exp(−2μλt) if μλ ≥ σ 2

λ

exp(−(μλ + σ 2
λ )

2/(2σ 2
λ )t) if μλ ≤ σ 2

λ

Table 1. Moments of log-normally distributed stretching sampled over infinitesimal fluid elements (μ•),
material line (μ•,L).

log ρ ρ ρ−1

μ• (−a log(a)− (1 − a) log(1 − a))t 2t (1 − 2a + 2a2)t

μ•2 a(1 − a)(log(1 − a)− log(a))2t — (1 − 3a + 3a2)t

Table 2. Moments of binomial distributed stretching sampled over infinitesimal fluid elements (μ•), material
line (μ•,L).

line than uniform sampling on the initial filaments. Moments of log ρ, ρ and ρ−1 are
summarized in table 1 for sine flow and table 2 for the baker map for initial and final
sampling. Note that we impose ρ ≥ 1 since the one-dimensional lamellar framework is
valid only when a lamella elongates in the y direction. This lower bound creates a particular
scaling of moments of ρ−1 when σ 2

λ is larger than μλ, that is, when weak stretching rates
dominate the ensemble average.

Appendix B. Fractal dimensions in the baker map

The fractal dimension of order q of the measure p is obtained with (Grassberger 1983)

Dq − 1 = lim
ε→0

1
q − 1

log Iq(ε)

log ε
, Iq(ε) ≡

N=L/ε∑
k

pq
k, (B1a,b)

where the subtraction of 1 on the left-hand side accounts for the counting of
one-dimensional structures (lamellae) in a two-dimensional domain. This definition
implies the following spatial scaling of the integral of the measure:

Iq(ε) ∼ ε(q−1)(Dq−1). (B2)

In the baker map, the integral of the measure can then be computed by summing its value
on the two replicates created by the map:

Iq(ε) = Iq,a(ε)+ Iq,1−a(ε). (B3)
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We observe that

Iq,a(aε) = Iq,1−a((1 − a)ε) =
N=1/ε∑

k

(pk

2

)q
, (B4)

where the factor 1/2 comes from the normalization of the measure due to the doubling of
n. Thus

Iq,a(ε) = Iq(ε/a) 2−q and Iq,1−a(ε) = Iq(ε/(1 − a)) 2−q. (B5a,b)

Replacing the last expression in (B3) yields

Iq(ε) = 2−qε(q−1)Dq(a−(q−1)(Dq−1) + (1 − a)−(q−1)(Dq−1)). (B6)

Using the scaling Iq(ε) ∼ ε(q−1)Dq thus provides a transcendental equation for Dq
independently of ε:

2q = a−(q−1)(Dq−1) + (1 − a)−(q−1)(Dq−1), (B7)

the solution of which is explicit for q = 0 and q = 1:

D0 = 2, D1 = 1 + 2 log 2
log(a−1 + (1 − a)−1)

. (B8a,b)

Note that the solution for q = 1 is obtained with Bernoulli’s rule by differentiating (B7)
with respect to q, and taking the limit q → 1.

Appendix C. Single and multiple bundle statistics

The variability of a set of random numbers is always greater than the average variability of
a subset of these numbers. Thus the stretching variance among bundles of similar sizes –
denoted σ 2

ρ−1,n – is always larger than the average stretching variance inside the bundle
(5.3). We have

σ 2
ρ−1,n =

(
n

n − 1

)
σ 2
ρ−1 | n. (C1)

For instance, for bundles made of two lamellae, we expect σ 2
ρ−1,n to be twice as large as

σ 2
ρ−1 | n given by (5.3). The difference between the statistics of the set and its subset tends

to reduce at large n, where σ 2
ρ−1 | n → σ 2

ρ−1,n. For n = 1, both σ 2
ρ−1 | n and n − 1 cancel out,

so the previous equation is undetermined.
Assuming that bundles of similar size have independent stretching histories, the

variability of the aggregated scalar concentration is obtained from independent
realizations of the random sum (3.6). Thus the variance of c | n reads

σ 2
c | n = n

(√
π θ0s0

sa

)2

σ 2
ρ−1,n =

(√
π θ0s0

sa

)2

σ 2
ρ−1 | n

(
n2

n − 1

)

= (
√

π θ0	0s0)
2

A2

(
n2−γ̃ − 1

n − 1

)
. (C2)

When n is large, however, we recover

σ 2
c | n ∼ n−γ̃+1. (C3)
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