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THE NATURAL PARTIAL ORDER ON
AN ABUNDANT SEMIGROUP

by MARK V. LAWSON

(Received 19th February 1985)

In this paper we will study the properties of a natural partial order which may be
defined on an arbitrary abundant semigroup: in the case of regular semigroups we
recapture the order introduced by Nambooripad [24]. For abelian PP rings our order
coincides with a relation introduced by Sussman [25], Abian [1, 2] and further studied
by Chacron [7]. Burmistrovic [6] investigated Sussman's order on separative
semigroups. In the abundant case his order coincides with ours: some order theoretic
properties of such semigroups may be found in a paper by Burgess [5].

Many properties and constructions on abundant semigroups may be described in
terms of its natural partial order: one of the main results of Section 2 is the connection
we establish between idempotent connectedness and the partial order being, in some
sense, self-dual. In Section 3 we extend Nambooripad's Theorem 3.3 [24] and show that
the order is compatible with the multiplication on a concordant semigroup just when
the semigroup is locally type A. In Section 4 we obtain a description of the finest 0-
restricted primitive good congruence on a concordant semigroup. Section 1 is a
preliminary section in which we consider, in particular, the behaviour of good
homomorphisms between abundant semigroups and obtain a generalisation of
Lallement's Lemma.

1. Preliminaries

We will assume some familiarity with the contents of [11] and [15]: the only
divergence from the terminology established there is that we prefer to call *-ideals good
ideals, bringing them in line with the good homomorphisms.

The class of idempotent connected (IC) abundant semigroups was introduced by
El-Qallali and Fountain [11]. We begin this section with an alternative characterisation
of these semigroups due to Fountain, which, for the purposes of this paper, may serve
as an alternative definition.

Proposition 1.1. Let S be abundant, then the following properties are equivalent:

(a) S is IC.

(b) For each element a of S two conditions hold:
(i) For some a* and eeco(a*) there exists an element beS such that ae = ba.
(ii) For some a+ and fea(a+) there exists an element ceS such thatfa=ac.
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(c) For each element a of S two conditions hold:
(i) For some a* and eeco{a*) there exists an idempotent /eco(a+) such that

ae = fa.
(ii) For some a+ and heco(a+) there exists an idempotent geco(a+) such that ha = ag.

Proof, (a) implies (b). Take b = e<x~l and c=/a.
(b) implies (c). Choose idempotents a* and a+ and let fu>a+. Then by (b) there exists

an element c, with fa = ac. Now,

ac=fa=f2a = f(fa) = f(ac) = (fa)c = ace=ac2,

so a* = a*c2. Also,

ac = fa = faa*=aca* so a*c — a*ca*.

So a*c2 = a*c-a*c. Hence a*c = (a*c)2 is an idempotent. Now a*ca* is an idempotent
with a*ca*coa* thus a*ca*e(a*}. Since fa — ac=aca* — aa*ca*, by putting e = a*ca* we
have that there exists an element e with ecu a* and fa = ae.

(c) implies (a). Let x be an element of <a+>. Then x takes the form, x = / t . . . / 1 where
each f is an idempotent with fa>a+. Therefore, xa=fk...f1a = fk...f2ae1 = aek...e1

where each e? = e,aja*. If xa = ayl = ay2 where }>i, y2e<a*> t n e n <J*>'i = «*y2 s o .Vi=y2-
And if Xja = x2a where xt and x2 belong to <a+> then X!a+=x2a+ so xt = x2. This
means that there is a one-to-one map a:<a+>-»<a*> with xa = a(xa). Similarly there is
a one-to-one map /?:<a*>-><a+> with ay = (y(1)a. Now for any ye<a*>, ay = {yff)a =
a(y/?)a. Therefore y = yfa, which entails that a is onto.

The next result, which is Result 2 of Hall [16], establishes a useful link between the
regularity of a product of arbitrary regular elements and that of idempotents. Note that
we denote the set of regular elements of a semigroup S by Reg(S).

Proposition 1.2. Let S be an arbitrary semigroup. Then the following are equivalent:

(i) For all idempotents e and f of S the element ef is regular.
(ii) <£(S)> is a regular subsemigroup.
(iii) Reg(S) is a regular subsemigroup.

Any semigroup satisfying this proposition will be said to satisfy the regularity
condition: not all abundant semigroups satisfy this condition. Example 3.1 of [14]
exhibits an abundant and non-regular semigroup generated by its idempotents. In a
semigroup satisfying the regularity condition, Nambooripad showed that the sandwich
set of e and /, where e and / are idempotents takes the following form:

S(e, f) = {h e E(S): he = h = fh and ehf=ef}.

We refer the reader to [23, Theorem 1.1 (a3)] for a proof, Our results will lean very
heavily on the properties of the sandwich sets: many of which carry over to abundant
semigroups satisfying the regularity condition without too much difficulty, due to the
fact that for regular elements <?* = £? and ^ * = ^ .
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Proposition 13. Let S be an abundant semigroup satisfying the regularity condition.

(i) Let x,yeS and choose idempotents x* and y+ and let h be an element of S{x*,y+)
then, xy=(xh){hy) and xh&*h and hy®*h.

(ii) lfeoff then

S(e,f) = af(f)nE(L*) and S(/, e) = ©(/) n £(HJ);

and if eco1 f then

*) and S(f,e) = a>l(f)nE(R*).

(iii) Let S and T be abundant semigroups satisfying the regularity condition and let
0:S-*T be a homomorphism. Then if e,feE{S) and heS{e,f) then hdeS(e6,fd) in
T.

Proof. We will prove (i) and leave (ii) and (iii) for the interested reader to verify. If
heS(x*,y+), then x*hy+ =x*y+ so that,

Now xh^C*x*h, since &* is a right congruence, furthermore he<ol(x*) therefore x*h£'h.
This gives us xhS£*h. We may similarly show that hy&*h.

To date, the most important class of abundant semigroups arises when we combine
the regularity condition with idempotent connectedness. These are the concordant
semigroups: those with a semilattice of idempotents are just the type A semigroups [14].

Lemma 1.4. Let a:<a+>-»<a*> be a connecting isomorphism in a concordant
semigroup S. Let a,beS and heS{b*,a+) then (/ui+)ae£(L*a)na>(a*).

Proof. By Proposition 1.3, heS(b*,a+) implies that bh^*h. Since if* is a right
congruence baSC*ha. Now ha+ eco(a+) which means that the element (ha+)a is well-
defined. By Lemma 3.3 of El-Qallali and Fountain [11], (ha+)a2'*(ha+)a. thus
ha££*(ha+)a., giving (ha+)a£C*ba. The result follows from the fact that (ha+)<xew{a*).

It will be useful at this point to recall some notation and definitions concerning
ordered sets we will need." If (X, ^ ) is a poset, then a subset A of X is said to be dense
in X, if for each element x of X there exists an element a of A such that aSx. The
subset A is said to be directed if for all elements x and y in A there exists an element z
belonging to A such that z ̂  x and z ̂  y. The set A is said to be an order ideal if for
each element of a of A and any x with x ̂  a then x belongs to A. For each element, a of
X put [a] = {xeX:x | a} , called the principal order ideal generated by a.

In any semigroup S subsemigroups of the form eSe where e is an idempotent are
called local submonoids. If each local submonoid is adequate (type A, inverse) then* S is
said to be locally adequate (type A, inverse): local submonoids may inherit properties
from the oversemigroup. In the following note that E(eSe) is an order ideal of E(S).
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Proposition 1.5. Let S be an abundant semigroup.

(i) Each local submonoid is abundant.
(ii) / / S is IC then each local submonoid is IC.

(iii) / / S satisfies the regularity condition then each local submonoid likewise satisfies the
regularity condition.

Proof, (i) Let a be an element of the local submonoid eSe and let / be an
idempotent of S with f£f*(S)a. Certainly, ae = a so that fe = f. Now, fco^e so that
ef e E(S), efcoe and ef^Cf Since E(eSe) is an order ideal of E(S), the element ef belongs
to E(eSe). Since efSC*(S)a, then ef£C*(eSe)a. This implies that each element of eSe is
j5?*-related in eSe to an idempotent likewise belonging to eSe. A similar result for 3i*
gives us the required abundancy.

(ii) This is straightforward.
(iii) Note that if/ and g belong to E(eSe) then S(f,g)^eSe and apply Proposition

1.2.

The next sequence of results considers the behaviour of various classes of abundant
semigroups under good homomorphisms. We begin with a generalisation of Lallement's
Lemma due to Fountain (unpublished).

Theorem 1.6. Let S be an abundant semigroup satisfying the regularity condition. Let
cc.S-*T be a good homomorphism into a semigroup T and let ace be an idempotent of T for
some element a of S. Then there is an idempotent heS such that ha = act..

Proof. From the fact that S is abundant we can find idempotents e and / in E(S)
with f&*aJif*e. The mapping a is good so foc^*aa£f*aa. All the elements fa, aa and ea.
are idempotents in T, meaning that we may remove the stars from the above expression,
to obtain fa(%aa££ea. In particular, (aa)(fa)=fa. By assumption, S(e,f) is non-empty,
choose an element h belonging to it. By Proposition 1.3(i),

ace = (a2)a = (a • a)a = (a/i)a • (ha)a.

But,

(ah)a=(a(//i))a=(aa)(/a)(/ia) = (fa)(h<x) = ha.

We can similarly show that (ha)a = ha. Therefore,

aa = (ah)a • (ah)a = haha = h2a = ha.

Unfortunately the regularity condition cannot easily be relaxed.

Example 1.7. From Corollary 3.5 of [15], Jf * is a good congruence on primitive
abundant semigroups. Hence S/Jf* is abundant. Let a-.S-tS/Jf* be the corresponding
natural map. We will construct a primitive abundant senadgroiaip S with an Jf *-class,
denoted by H* having the following properties:
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(i) H*

(ii) H*H*SH*.

In fact by Corollary 3.6 of [15], (ii) is implied by the condition that H*H* ^ {0}. In this
case, if a is an element of H* then atx = H*, condition (ii) guarantees that act. is an
idempotent: on the other hand by property (i) there is no corresponding idempotent
h e S with ha. = act.

We use Example 2.6 of [15]. Let T={ak:k^.O} be the cyclic monoid generated by the
symbol a. Let I = J = {a':t^l}. Put,

i,j e {1,2}, x e T if i =j, x e / if i £j

with multiplication (x),j:- (3;)^ = (xpjhy)ik where

p = (Pij) =

Then

•=f:: -'-'
is an ^f*-class not containing an idempotent and H*H*j={0}.

Proposition 1.8. Let <p:S^T be a good homomorphism with S abundant onto a
semigroup T. Then if S satisfies the regularity condition then so does T.

Proof. By Theorem 1.6, for each idempotent a<t> of the image there exists an
idempotent eeS with e<j> = a<j). Let a^.-.a^ be a typical element of <£(S(/>)> where
a,-^££(S0) for each i=l,...,n. Then we can find idempotents eteS for each i, with
ei<)> = ai(f>. It follows that we have a10...an<^> = (c1 ...en)<j). But el ...ene<£(S)>, therefore
regular: hence ( c t . . . en)</> is also regular.

Proposition 1.9. Let 4>:S->T be a good homomorphism from an abundant semigroup S
satisfying the regularity condition onto a semigroup T. Let e',f'eE(S<p) and suppose that
e'ojf and that f(j) = f' for some feE(S). Then there exists an idempotent keE(S) such
that k(p = e' and kcof

Proof. By Theorem 1.6 there exist idempotents e and / in £(S) with e<j> = e' and
f<p=f. Let heS(e,f) and geS{f,e), by Proposition 1.3(iii), h<peS(e',f) and g(peS(f',e').
From the fact that e'cof and by Proposition 1.3(ii), S{e',f') = co(f')nE(L*.). From this
result e'£?*h<p, and so e'f'<£*h<pf', because S£* is a right congruence. Therefore
e'Se*h<pf. But h(pew(f) so we have e'SC*h(f>(of', similarly e'@*g(pa)f'.

Again if keS{hfJg) then k<peS((hf)<p,(fg)(t>) = S(h(p,g(p) = S(e',e') which is simply {e1}.
Consequently k<p = e'. But in addition keS{hf,fg) implies that k(hf) = k=(fg)k so
k(olhf(of and kco'fgcof, giving kcof as required.
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Theorem 1.10. Let <})\S^T be a good homomorphism from a concordant semigroup S
onto a semigroup T then T is also concordant.

Proof. It only remains to show that T is IC. Let a<f>eT and choose an idempotent
a* in S. Since d> is good then a*0J&?*a$ in T. Let e' be an idempotent in co{a*d>). By
Proposition 1.9 there exists an idempotent eea>(a*) with ei> = e'. The semigroup S is
IC and so by Proposition 1.1 there exists an element b of S with ae = ba. Hence
a<pe' = bd>a<t>Ana similar way we can show that the second condition of Proposition 1.1 (b)
holds, and we are home.

Good homomorphisms and concordant semigroups form a category: a detailed study
of which may be found in the thesis by Armstrong [4].

2. The natural partial order

We introduce a partial ordering on the L* and R* classes of a semigroup. For
elements x and y of a semigroup S we say that R*^R* if and only if R*(x) £ R*(y)
where R*(x) is the principal good ideal generated by the element x (consult Lemma 1.6
of [15] for the details). The ordering on the JSf ""-classes is defined in the usual left-right
dual fashion.

Lemma 2.1. For any elements a and x of S, R*x ̂  R*.

Proof. The product ax lies in aS1, which is the smallest right ideal containing a.
Since R*(a) is a right ideal containing the element a we must have, aS1^R*(a) from
which it follows that axeR*(a). On the other hand, R*(ax) is the smallest good right
ideal containing the product ax, since R*(a) is a good right ideal, R*(ax)^R*(a).

In the case of regular elements, however, we have introduced nothing new.

Lemma 2.2. Let S be a semigroup and let a and b be regular elements of S then
Rf^RZ if and only ifRa^Rb.

Proof. Let x and y be the inverses of a and b respectively. Then aRax and bRby and
so R*(a) = axS and R*(b)-^byS. From axS^byS we have that aeb(yS)cbS and so

Conversely, suppose that Ra^Rb then, aebS1. But then a = bx for some element x
belonging to S1. Applying Lemma 2.1 we have that R* = R^X^R^.

We must now turn to our main definition.

Proposition 2.3. Let S be an abundant semigroup. Define two relations on S as follows:
for all elements x and yofS

x ^ r y if and only if R*^R* and there exists an idempotent feR* such that x=fy.
x ^ly if and only if L*^L* and there exists an idempbtent eeL* such that x = ye.

Then ^r(^l) is a partial order on S which coincides with co on E(S).
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Proof. Reflexivity follows from the fact that S is abundant. Suppose that x ^ry ^ r z
where x,y,zeS. Then straightaway R*^R*. Now x=fy and y=gz for idempotents
feR* and geR* hence RJ^R*. By application of Lemma 2.2 this means that R^^Rg,
from which we have fgeE{S), fgcog and fgdtf in the usual way. But x=(/g)z and
/ge£(/?}0 = E(R*). Consequently g r is transitive. If x g r y g r x , then R* = R* and the
equality x = /y for some idempotent feR* implies that x = y. Together with a similar
argument, we have shown that both ^ r and g j are partial orders on S. It is simple to
verify that they both coincide with the order co on E(S).

We define the natural partial order to be ^ ^ n ^ . Note that Proposition 1.2 of
[24] effectively shows that for S regular ^ r = ^ 1 . We may give an alternative
description of the natural partial order entirely in terms of idempotents.

Proposition 2.4. In an abundant semigroup S for elements x and y of S, x^y if and
only if there are idempotents e and f such that x = ey = yf.

Proof. Suppose that x = ey=yf. From x = yf and Lemma 2.1 we have R*^
Choosing an x+,x = x+x = x+ej>, however ex = x so cx+ =x + . This means that x+e is an
idempotent, furthermore x+eeR*, so that x ^ r y . A similar argument shows that x ^ y .

The converse is straightforward.

Proposition 2.5. Let x and y be elements of an abundant semigroup S. Then x ^ry if
and only if for each idempotent y+eR* there exists an idempotent x+eR* such that
x + ojy+ and x = x+y. The dual result holds for <^.

Proof. Suppose that x 5£ry. Then R*^R* and x = ey for some idempotent eeR*.
Let / be an idempotent in R*. Then,R* = R*^R* = RJ and so that e@*e1 = efcof and
ely = efy = ey = x.

Conversely, suppose that x = ey where e is an idempotent in R* and ecof for some
idempotent in R*. Then e=feso that R* = R%^R} by Lemma 2.1.

For regular and type A semigroups ^ x = ^ r this latter result noted by Armstrong
[3]. We will now show that for IC abundant semigroups in general the definition of the
natural partial orders is likewise self-dual, and that this feature actually characterises
this class of abundant semigroups.

Theorem 2.6. Let S be an abundant semigroup. Then S is IC if and only if f£! = ^ r .

Proof. Suppose that S is IC and that x ^ry. By Proposition 2.5, having chosen an
idempotent y+eR* we may choose an idempotent x+eR* such that x+toy+ and
x = x+y. Now x+a>y+ implies that x+e<_y+>, by the definition of the connecting
homomorphism a: <y+>-•<>'*>, x = x+y = y(x+a). The element x+a is evidently an
idempotent, so that by Proposition 2.4 we have, x^y. Thus ^ r = ^ , together with a
similar result for :gj we have ^ p = ^ t .

Now let S be abundant with the property that ^ r = ^ t. Let a be an element of S and
let eea>(a*), we will produce an element fea){a+) such that ae=fa. Let z = ae. Since
ze=z we have z*e = z*. In the usual way ez* is an idempotent, ez*SCz* and ez*coe. Now
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z = zz* = aez*=a(ez*) = ag where g = ez* and g$£*z. Also, Lf = L*e^L*. But ea>a* so
e — ea* thus L*^L*, so we have L*^L*. This shows that z S t a . By assumption, z ^ra
an application of Proposition 2.5 then provides an idempotent fea>(a+) with z=fa.

Proposition 2.7. Let S be abundant then,

(i) / / x ^ r « ( x ^ , e ) where eeE(S) then xeE(S).
(ii) / / b ^ r a (b ^ t a) vv/iere a is regular then b is regular.

(iii) Ifx,yeS with x3l*y (xSC*y) and x g , y ( x ^ 1 j ' ) r/ien x = y.

Proof. We will prove the results in the case of ^ r.
(i) If x ^re then x = fe for some idempotent fM*x. But then R*^i?* is simply

Rf^Re which gives e /=/ , so that fe is an idempotent.
(ii) Let aeReg(S) and suppose that b%ra. Then b=fa where feR% and K?^RJ.

Let xeV(a), then bxb = fa-x-fa=f(ax-f)a. However, ax^a so that RJ = R^R; = R*X

hence RJ^R*X giving Rf^Rax. From this it follows that fofax and so ax-f=f.
Applying the above, bxb = f(ax-f)a = f2a=fa = b and the regularity of b is established.

(iii) We have x0t*y and R* ^ i?* with x = ey where e is an idempotent belonging to
R*. By assumption e3%*y therefore ey = y=x.

Property (iii) may be rephrased by saying that i£* (£%*) are strictly compatible with
respect to ^ . Properties (i) and (ii) may be paraphrased by saying that (E(S), Sr) and
(Reg(S), ^ r ) are order ideals of (S, ^ r ) . Note also that result (ii) is closely related to
Proposition 1.2(d) of [24].

Proposition 2.8. The order :g r and ^ i coincide on Reg(S).

Proof. Let a and b be regular elements with a ^rb. Pick an idempotent / with
f$*b. By Proposition 2.5 there exists an idempotent e with e8/t*a, ecof and a = eb.
Choose an idempotent g with g£f*b. Since b is regular gi£b. But then f2>b and Dg is a
regular ^-class, and so there exists b~leV(b) with b~1b=g. Furthermore, bb~l&kb so
that bb~1@*b. By Proposition 2.5 there exists an idempotent e, with e0t*a and such that
ecobb'1 and a = eb. Put e1=b~ieb, then e1j5?*a, elcob~xb=g and bel=(bb~1)eb = ey = a,
and so a ^ j f>.

A non-zero element of an abundant semigroup is said to be primitive if it is minimal
amongst the non-zero elements of S with respect to ^ . Since the restriction of g to
E(S) is a>, this definition coincides with the usual definition when applied to the
idempotents.

Proposition 2.9. An abundant semigroup is primitive with respect to <o if and only if it
is primitive with respect to ^ .

Proof. Suppose that every non-zero idempotent is minimal in the set of non-zero
idempotents, and let x and y be two non-zero elements of S with x^y. Then for each

https://doi.org/10.1017/S001309150002825X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150002825X


NATURAL PARTIAL ORDER ON AN ABUNDANT SEMIGROUP 177

idempotent /, with f8l*y there exists an idempotent e with e&l*x, ecof and x = ey. But
by the primitivity of the idempotents ecof implies e — f. Hence x — ey=fy = y.

The converse is clear.

The following result is now immediate, by Corollary 5.2 of [15].

Corollary 2.10. An abundant semigroup without zero is primitive, if and only if the
natural partial order is the identity relation. In particular, an abundant semigroup without
a zero and satisfying the regularity condition is completely J*-simple if and only if its
natural partial order is the identity relation.

Note that it can be shown that the minimal elements in an arbitrary IC abundant
semigroup without zero form a primitive subsemigroup and order ideal.

Proposition 2.11. Let S be an abundant semigroup and let U be an abundant
subsemigroup with E(U) an order ideal of E(S). Then:

(i) For x,yeU if x^y in U then xf^y in S.
(ii) For x,yeU if x^y in S then x^y in U.

Proof. Case (i) requires no proof.
Case (ii). By Lemma 1.6 of [11] U has the property that ^(U) = &*(S) n(U x U)

and dually. Suppose that x, ye U with x^y in S. Then for each y+ there is an x+ such
that x+coy+ and x = x+y. Since U is abundant there is an idempotent f in U with
fM*{U)y: by the property above this means that we may take y+ =f in S and so by the
comment above there is an idempotent x+ in S with x+tof and x = x+y. This means in
particular that x+ actually belongs to U, under our assumption. Appealing to the fact
that ®*(U) = 0?*{S)nl(UxU) it is immediate that x+@*(U)x. We have shown that if
x S,y in S then x SLry in U: we may apply a similar argument to the order ^ 1 ; and
our result follows.

Proposition 2.12. Let S be abundant and let U be an abundant subsemigroup. Then
E(U) is an order ideal of E(S) if and only if U is an order ideal of S with respect to the
natural partial order.

Proof. Suppose that E(U) is an order ideal of £(S). Let y be an element of U and let
x be an element of S with x^y. Choose an idempotent f in U with fl%*(U)y, by
Lemma 1.6 [11] again it follows that f&l*(S)y, consequently there exists an idempotent
e with e^*(S)x, ecof and x = ey. But eeE(U), since E(U) is an order ideal of E(S) and so

Let S be a concordant semigroup. Following Armstrong [4] we may define the *-
trace of S to be the partial groupoid tr*(S) equipped with a partial binary operation "•",
defined in the following way,

f ab if L*nRfn E{S)±0
a-b = \

[ undefined otherwise.
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If we extend the multiplication on tr*(S) by setting all undefined products equal to 0,
adjoined in the usual way, then the resulting structure is a primitive concordant
semigroup. The connection with the natural partial order is demonstrated by the next
result.

Theorem 2.13. let S be a concordant semigroup and let x,yeS. Then there exist
elements u and v such that,

(i) M^X and v^y

(ii) xy = uv

and ifx-y exists in tr*(S) and u and v satisfy (i) and {ii) then x = u and y = v.

Proof. Let e and / be idempotents with eJSf*x and f0t*y and let heS(e,f). By
Proposition 1.3(i), xy = (xh)(hy), also xh&*h%*hy so in fact xy = (xh) • (hy). Put u = xh
and v = hy. It is evident that u ̂  x and v ̂  y.

Now suppose that x-y exists in tr*(S). Then the product xy lies in R*nL*. Let u and
v satisfy conditions (i) and (ii). Then uveR*nL* and xy = uv. But then R*nR*^0
implies xR*u, however, since u ^ x w e may apply Proposition 2.7 and so u = x. Similarly
we may show that v = y.

Let (X, ^ ) and (Y, ^ ) be quasi-ordered sets. Then a mapping (/>:X-*Y is said to
reflect quasi-orders if and only if for all pairs of elements y, y'eX<$> with y'^y and xeX
with x(j) = y then there exists an x 'eX such that x'^x and x'4> = y'.

Proposition 2.14. Let 4>:S-*T be a good homomorphism between abundant semigroups,
each of which satisfies the regularity condition. Then the mapping <f> preserves and reflects
the natural partial orders of S and T.

Proof. That <p preserves the natural partial orders presents no problems.
Now let u, veS<f> with u^v and let yeS with y<j> = v. If / is an idempotent with f&*y

then if f<t>=f we have f'@*v, since the mapping is good. From the fact that u^v there
exists an idempotent e' with e'3t*u such that e'cof and u = e'v. By Proposition 1.9 there
exists an idempotent eeco{f) such that e<j> = e'. Now put x = ey, then x<p = e<j> • y(f> =
e'v = u. From f&*y and the fact that 01* is a left congruence ef3&*ey, that is e@*x.
Therefore, we have,

and so

We will conclude this section by applying some of the preceding ideas to semiheredi-
tary monoids. Recall by Theorem 1 of Dorofeeva [9] that isemihereditary monoids are
just the abundant monoids in which incomparable principal right (left) ideals are
disjoint. By Theorem 2 of Fountain [12] semihereditary monoids with central idempo-
tents have the property that the images of non-minimal elements under the connecting
homomorphisms are regular: we may generalise this result to arbitrary semihereditary
monoids.
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Proposition 2.16. Let S be a semihereditary monoid and let a be an element of S then
either a is minimal or [a~]\{a} consists entirely of regular elements.

Proof. Let a be a non-minimal element of S: then there exists at least one element z
with z^a and a±z. Choose an idempotent a+, by Proposition 2.5 there exists an
idempotent z+ such that z+a>a+ and z = z+a. Note that z+^x+, for otherwise z =
z+a = a+a = a. Furthermore, from z^owe have that z = az* for some z*. In particular,
z = z+a = az*ez+SnaS. By the comment preceding this theorem we must have either,
z+ScaS or aS^z+S: that is, either z+=as or a = z+t for some elements s and t of S.
Suppose that a = z+t, then z+a = z+(z+t) = z+t = a, but this implies that z = a, contradict-
ing our assumption. This means that we must have z+ =as, but then, z+a = z+a-s-z+a
and so z = zsz, implying that z is regular.

Corollary 2.17. In a semihereditary monoid without minimal elements, the regular
elements are dense.

3. Locally type A semigroups

A partial order ^ on a semigroup S is said to be compatible with the multiplication if
whenever a^b and c^d then ac^bd. The first result of this section establishes a
necessary condition for the natural partial order ^ = ^ t n ^ r to be compatible with the
multiplication on an abundant semigroup. Recall first that by Proposition 1.5(i) that
each local submonoid is abundant.

Proposition 3.1. / / the natural partial order of an abundant semigroup is compatible
with the multiplication then the semigroup is locally adequate.

Proof. Let e be an idempotent of an abundant semigroup S and let /, h e co(e). Since
both f^e and h^e, and under the assumption that g is compatible with the
multiplication, fh^e2 = e. By Proposition 2.7(i) the element fh is therefore an
idempotent and so fhcoe. This shows that the idempotents of each local submonoid
form bands.

Let u and v be any two idempotents in the local submonoid eSe, and suppose that in
addition u&l*v in eSe. From the fact that ucoe and vcoe, both u^e and v^e. Since
idempotents are regular uSfrv and so uv = v and vu = u. But then applying the
compatibility of ^ ,

v = uv ̂  ue = u and u = vu ^ ve = v.

Hence u = v. We have shown that each local submonoid is an abundant semigroup in
which each i?*-class and each ^*-class contains a unique idempotent and which
satisfies the regularity condition. By Proposition 1.3 of [14] the local submonoid is
adequate.

Since idempotent-connectedness is inherited by local submonoids the following is
immediate by Proposition 1.5.
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Corollary 3.2. Every IC abundant semigroup with a natural partial order compatible
with the multiplication is locally type A.

Example 3.3. Let S be the eight element semigroup whose multiplication table is
given below: this semigroup is taken from Example 2.2 of [14].

e f g h z a b c

efgzzabc

ffzzzbbz

gzgzzczc

zzzhzzzz.

zzzzzzzz

zzza-zzzz

zzzbzzzz

zzzczzzz

It can be verified that S is an adequate semigroup with semilattice of idempotents
E = {e, f,g, h, z}. In fact each local submonoid of S is a semilattice, so S is an adequate
locally inverse semigroup. If S were type A then for each idempotent e in S and each
element a in S we would have eS1 n aS1 = eaS1—see Proposition 1.5 of [14]. Now, fa = b
and fS1 = {fz,b} and aSl = {a,z) and so fSlr>aSl = {z). But faSl=bSl = {z,b) which
means that fSlnaSl ^faS1. So S is not type A, which implies that S is not IC.

We will show that the partial order on S is not compatible with the multiplication. It
is clear that f^e and a^a. Now fa = b and ea=a however b is not a restriction of a:
for aE = {z,a], and evidently b does not belong to the set on the right-hand side, but
b ̂  a would imply the existence of an idempotent e' such that b = ae'.

This example shows that in general the condition in Proposition 3.1 is not sufficient,
we need to assume that the semigroup is IC. On the other hand the regularity condition
is not necessary, for on every primitive abundant semigroup without zero the natural
partial order is the identity and consequently it is trivially compatible with the
multiplication. We have so far only been able to prove the converse of Corollary 3.2
under the assumption that the semigroup satisfies the regularity condition.

Theorem 3.4. The natural partial order on a concordant semigroup is compatible with
the multiplication if and only if the semigroup is locally type A.

Proof. It remains to be shown that in a locally type A concordant semigroup the
partial order is compatible with the multiplication. Let x, y,u,veS with x^u and y^v.
Choosing idempotents u* and v+ there are idempotents e and / with ee<o(u*)nE(L*)
and x = ue, and f eco(v+)r>E(R*) with y=fy. Let keS(e,f), since ewu* and fcov+ we
have fceco^M^na/^). From this we may deduce,

(i) u*keE, u*kau* and
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(ii) ek e E, ekwe and ekSfk,
(iii) kv+ eE and kv+a>v+.

From (i) and (ii), u*k, ekea>(u*) and u*k$£ek from which it is easy to see that u*k=ek.
Now, xk=(ue)k = u{ek) = u(u*k) = uk, similarly ky = kv. We have, xy=(xk)(ky)=(uk)(kv) =

ukv.
Now, kv = (kv*)v and from (iii) kv+ sco(v+), applying Proposition 1.1 there exists an

idempotent e^ecoiv*) such that (kv+)v = vel. This gives us, xy = ukv = u[(kv+)v~\ = uvel.
Similarly uk = u(u*k), by (i) u*kcou* so applying Proposition 1.1 once again there exists
an idempotent /1eco(M+) such that u{u*k)=f1u. Hence, xy = ukv = [u(u*k)~\v=fluv.
From Proposition 2.4 this yields the required inequality, xy g uv.

The behaviour of subsemigroups, homomorphic images and direct products of locally
type A concordant semigroups is summarised below.

Proposition 3.5. Let S be a concordant locally type A semigroup. Then it has the
following properties:

(i) / / T is an abundant subsemigroup which is an order ideal of S and which satisfies
the regularity condition then it is a concordant and locally type A subsemigroup.

(ii) / / 6:S->T is a good homomorphism onto a semigroup T then T is also concordant
and locally type A.

(iii) The direct product of a family of concordant locally type A semigroups is locally
type A.

Proof, (i) is by Proposition 2.12, (ii) is by Theorem 1.10 and Proposition 1.9 and (iii)
is straightforward.

If we dispense with the regularity condition on the semigroup T in case (i) above,
then T is still an IC abundant and locally type A subsemigroup, furthermore since it is
an order ideal of S the natural partial order on T is just the restriction of the order on
S, this means that the partial order on T is compatible with the multiplication on T.
However T need not be concordant as the following example shows.

• G 3Example 3.6. Let S = M(Q*;{1,2},{1,2};P) where P = \ then S is completely

simple and so regular with all its idempotents primitive. Any subset of S is an order
ideal. Consider

Then T is abundant with primitive idempotents and

HP. 3G I-
In fact T=M(X;{1,2},{1,2};P), where X = {xeQ*:x^l}. The idempotents of T do not
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generate a regular subsemigroup because the entries 2 in P are not units in X—see
Theorem 5.1 of [15].

The structure theory of locally type A semigroups is discussed in detail in [19] and
[20]. Type A semigroups are the subject of [21].

4. Primitive good congruences on abundant semigroups

In this section S will be assumed to be concordant. A semigroup S is said to be
categorical at zero if and only if for all elements a, b and c of S, ab =/= 0 and be =/= 0 implies
that abc =fc 0. It is easy to see that the intersection of any family of good congruences on
an abundant semigroup is again good: this enables us to define the smallest good
congruence containing a relation R which we denote by RBC. A congruence p is said to
be 0-restricted if and only if {0} is a p-class. Define a relation P(S) on S as follows:

P(S)={(x,y):there exists zeS\{0} s.t. zgx and z^

Proposition 4.1. Let S be categorical at zero and suppose that P(S) = P is a good
congruence, then /? is the finest 0-restricted, primitive good congruence on S.

Proof. It is clear that under the conditions of the theorem, /? will be 0-restricted. We
will show first that S/P is primitive. Let x',y'eS/P, where we write x' = xP, with x'^y'
and x'^=0. By Proposition 2.15 we may assume that x^y. If x=0 then x'=0. On the
other hand if x^O then (x, y)e/9 and so x' = y'.

Now let a be any 0-restricted, primitive good congruence on S and let (x, y) e p. Then
x = 0 if and only if y = 0, so if x = 0 then (x,y)efi. If on the other hand x=/=0 then y^O
and so there exists a non-zero element z with z^x and z^y. Since a is 0-restricted, z =/= 0
implies that za is a non-zero element in S/o. Since z^x we have za^xa, likewise
za ^ ya. But by assumption S/a is primitive and so za = xa = ya. Hence (x, y) e a, that is

Proposition 4.2. For a semigroup S which is categorical at zero, the following
conditions are equivalent:

(i) For each ee£(S)\{0} <o(e)\{0} is a directed set.

(ii) /?(S) is an equivalence relation.

(Hi)

Proof, (i) implies (ii). Suppose that for each ee£(S)\{0} the set o)(e)\{0} is directed
under the natural partial order. We need only show that /?(S) is transitive. To this end
let (x, y), (y, z) e p. Then either x=y = z = 0 or none of them is zero. In the first case
(x, z) e /? and the result follows. On the other hand, suppose that none of them is zero.
Then there exist non-zero elements ut and u2 such that u t ^x , ut^y and u2^y, u2^z.
Choose an idempotent / with f0t*y. Then there exist idempotents et for i = l , 2
satisfying: et8t*uh e&of and u{ = e(y. Now e,3P*u, and so eiiit = uf, furthermore, u,̂ =0 so it
follows that e,=/=0. This means that e,GO)(/)\{0} for i= l ,2 . By assumption this set is
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directed, so there is an element geco(f)\{0} with ga>e, for i = l, 2. Now, f&*y and so
gf@*fy since {%* is a left congruence. But then g&*gy also gy=gfy, gf=g±0 and
fy=y¥:Q s o by the fact that S is categorical at zero gy=£0. Furthermore,

gy=geiy=gui and gy=ge2y=gu2.

From gy^*^ajrc,^*Wi and the fact that geE(R*y) it follows that gu.^U; for i= 1,2. With
the result above this means that we have, gy=gu1^ul£x and gy=gu2^u2^z, which
gives us (x, z) e P as required.

(iii) implies (i). Assume that /? is a good congruence. Let eeE(S)\{0} and let
f,gea>(e)\{0}. Then (f,e)y(e,g)efi and by transitivity we obtain (f,g)ep. But by
definition there exists a non-zero element z such that z g / and z^g. By Proposition 2.7
this means that z must be idempotent, giving the desired result.

(ii) implies (iii). We need to show that ft is compatible with the multiplication and
good, we will proceed in a number of steps.

Let x,y,ceS with x^y and x =/=0. Then ex = 0 if and only if cy = 0: for choosing an
idempotent y+ there exists an idempotent e belonging to co(y+)nR* such that x = ey,
and so y+x = y+ey = ey=x. Now suppose that cy = 0 then cy+=0, from the above
cx = cy+x = 0. Conversely, if cx=0 then cy+x = O. We have shown that y+x=x=fc0, if
cy+ were non-zero too we would have cy+x=/=0 by the fact that S is categorical at zero.
This forces cy+ = 0 and hence cy=0 as required.

Following on from the previous step we will now show that (ex, cy) e p. If one of ex
or cy is zero, then so is the other by the result above, immediately giving (ex, cy) e p.

Therefore we may assume that cx^O^cy. Choose idempotents y+ and y*. From the
fact that x^y we may pick an idempotent x+ with x+coy+ such that x = x+y. Now
x+e<_y+> and so x+y = y(x+<x) where a:<.y+>-><j>*> is the connecting isomorphism.
Note that by Lemma 3.3 of [11] eaif*x, so we may put x* = ea and we have, x = ey = yx*
with x*eeo(y*).

Now pick an element c* and let heS(c*,y+) and keS(c*,x+). By applying Lemma
1.4 there exist idempotents with,

and fci

But from the fact that x*coy* we also have,

k, e E(L?x)n co(y*).

This means that x*, hu kx ea>{y*)\{0}—furthermore every element of this set is /J-related
to y*, so that x*phipkl. We now use the assumption that /? is an equivalence to obtain,

<o(x*)nco(hl)nco(kl)\{O}^0.

Let / belong to this set and define the element z by,

z = cy\ = cy(x*I) = c(yx*)l=ex • /.
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Note that z^=0: by assumption the product cyj=0, also yl cannot be zero, for if it were
we would have y*l=0 which means that x*y*l=O but from x*coy* and Icox* this would
give / = 0, which contradicts our choice of /. We now use the fact that S is categorical at
zero.

We will now show that z^cy and z^cx. First of all leE(Lf): since I easily) and
hl eE(L*y)nco(y*), it follows that h1£'*cy and because if* is a right congruence,
hJSe*cyl that is l^C*z. From the fact that,

we obtain Lf^L*y. This means that z^cy, similarly we may show that z^cx. We have
demonstrated that (ex, cy) e /?.

We may now complete the proof that /? is a congruence. Suppose that (u, t>)e/J where
c is an arbitrary element of S. Then if u = v=0 it is immediate that (cu,cv)e/i. Suppose
now that u, v±0. Then there exists a non-zero element z such that z^u and z^t>. Hence
by the above arguments both (cz, cu) e /? and (cz, cv) e /?. But /? is an equivalence relation
therefore (cu, cv) e p.

Lastly, we will show that /? is a good congruence. Let (ax, ay)eft, if ax = 0 and ay=0
then a*x = 0 and a*y = 0 so that (a*x, a*y) e /?. We may assume therefore that ax, ay =/= 0.
Then there exists a non-zero element z such that z^ax and z^ay. From the definition
of the natural partial order there are idempotents / and g with f0l*z and g£f*z and
such that,

z=f-ax,R*£R*x and z = axg,L*^L*x.

In particular z=fax = axg: we may likewise find idempotents /x and gt with z =
/j • ay = ay • g1 from the fact that z^ay. Since 0x^=03/^! we have a*xg=a*yg1=z1.
Clearly zt^*z so that g£'*zl and it follows that zt^a*x. A similar argument shows
that zl-^a*y—which means that (a*x,a*y)e/?. Together with a dual argument this gives
the result.

Corollary 4.3. In a concordant locally type A semigroup which is categorical at zero /?
is the finest O-restricted primitive good congruence.

Proof. Let e be a non-zero idempotent and let f,geco{e). If fg=0 then feg=0, but
since the semigroup is categorical at zero either / = / e = 0 or g=eg=0. Consequently
from the fact that co(e) is a semilattice, it follows that a>(e)\{0} is directed.

Now let S be any concordant semigroup not containing a zero and in which each
subset of the form co(e) is directed under the natural partial order. The semigroup
S° = S u {0} is clearly categorical at zero. The set of non-zero elements of S°/p\S°) forms
a completely Jr*-simple semigroup, and the restriction of p(S°) to S is the finest
completely ./*-simple congruence on S.

Theorem 4.4. Let S be a concordant semigroup without zero in which each subset of
the form co(e) is directed and define
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P(S) = {(x,y):there exists zeS such that z^x and z^y}.

Then )3 is the finest good congruence on S such that S/P is completely ./"-simple.
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