ON ALMOST REGULAR HOMEOMORPHISMS

S. K. KAUL

1. Let (X, d) be a metric space with metric d, and h be a homeomorphism of X onto itself. Any point y in X is called a regular point (2) under h if for any given $\epsilon>0$ there exists a $\delta>0$ such that $d(x, y)<\delta$ implies that $d\left(h^{n}(x), h^{n}(y)\right)<\epsilon$ for all integers n, where h^{n} is the composition of h or h^{-1} with itself $|n|$ times, depending upon whether n is positive or negative, and h^{0} is the identity on X. If y is not regular under h, then y is called irregular. We shall denote the set of regular points by $R(h)$ and the set of irregular points by $I(h)$. The homeomorphism h is called almost regular if $I(h)$ is zero dimensional and compact. Note that $I(h)$ is therefore non-empty. We use the terms Lim sup and Lim inf as defined in (5).

One of the aims of this paper is to prove the following:
Main Theorem. Let X be a locally compact, locally connected and connected space, and h be an almost regular homeomorphism of X onto itself. If $R(h)$ is connected, then $I(h)$ consists of at most two points, both of which are fixed under h.

This result is related to Theorem 1 of (4), where $I(h)$ was assumed to be finite and X connected and compact. The case $I(h)=\emptyset$ is considered in (4).

I wish to express my thanks to Professor S. Kinoshita for suggesting the problem and for many helpful discussions.

Lemma 1. Let (X, d) be a locally compact metric space and h be an almost regular homeomorphism of X onto itself. If $p \in I(h)$ and X is locally connected at p, then there exists a $y \in R(h)$ such that

$$
p \in \operatorname{Limsup}_{n \rightarrow \pm \infty} h^{n}(y) .
$$

Proof. Since p is an irregular point under h, there exists an $\epsilon>0$ such that for any open set V containing p, diam $h^{n}(V)>\epsilon$ for infinitely many integers n.

Let

$$
Q=\operatorname{Limsup}_{n \rightarrow \pm \infty} h^{n}(p)
$$

It is easy to see that $h^{n}[I(h)]=I(h)$ for each integer n. This together with the fact that $I(h)$ is compact implies that Q is a non-empty compact subset of $I(h)$. Since $I(h)$ is zero dimensional and X is locally compact, there exists a finite open covering $\left\{U_{i}\right\}(i=1, \ldots, m)$ of Q such that for each i, $\operatorname{diam} U_{i}<\epsilon$, \bar{U}_{i} is compact, and boundary of $U_{i} \cap I(h)$ is \emptyset. Since

$$
Q=\underset{n \rightarrow \pm \infty}{\operatorname{Lim} \sup } h^{n}(p)
$$

Received April 22, 1966.
there exists a natural number N such that for all $|n| \geqslant N$,

$$
h^{n}(p) \in \bigcup_{i=1}^{m} U_{i} .
$$

Since X is locally connected at p, there exists a sequence $\left\{V_{i}\right\}$ of connected open sets containing p, such that $V_{i+1} \subset V_{i}$ for $i=1,2, \ldots$, and diam $\left[V_{i}\right] \rightarrow 0$ as $i \rightarrow \infty$. Let $\left\{n_{i j}: j=1,2, \ldots\right\}$ be the set of all the integers such that $\operatorname{diam} h^{n_{i j}}\left[V_{i}\right]>\epsilon$. Since $V_{i+1} \subset V_{i}$, we have $\left\{n_{i+1, j}\right\} \subset\left\{n_{i j}\right\}$ for each i. It is easy to see then that there exists a member U of U_{1}, \ldots, U_{m} and a subsequence $\left\{i_{k}: k=1,2, \ldots\right\}$ of the natural numbers i such that for each member i_{k} of this infinite set, $U \cap h^{n_{i_{k} j}}\left[V_{i_{k}}\right] \neq 0$ for infinitely many values of j. For each k let m_{k} denote an element of $\left\{n_{i_{k} j}: j=1,2, \ldots\right\}$ such that $h^{m_{k}}\left[V_{i_{k}}\right] \cap U \neq \emptyset$, and $\left|m_{k+1}\right|>\left|m_{k}\right|(k=1,2, \ldots)$. Since diam $h^{m_{k}}\left[V_{i_{k}}\right]>\epsilon$, $h^{m_{k}}\left[V_{i_{k}}\right]$ is connected, and $\operatorname{diam} U<\epsilon, h^{m_{k}}\left[V_{i k}\right] \cap$ bdry $U \neq \emptyset$. Let

$$
y_{k} \in h^{m_{k}}\left[V_{i_{k}}\right] \cap \text { bdry } U(k=1,2, \ldots)
$$

The sequence of points $\left\{y_{k}\right\} \subset$ bdry U has a limit point y in it. Let us assume for convenience that $\left\{y_{i}\right\}$ converges to y (or we work with a subsequence converging to y). We shall show that

$$
p \in \operatorname{Lim}_{n \rightarrow \pm \infty} \sup ^{n}(y)
$$

Let $\eta>0$ be arbitrary. Since $y \in$ bdry $U \subset R(h)$, there exists a $\gamma>0$, such that, for $d(x, y)<\gamma, d\left(h^{n}(x), h^{n}(y)\right)<\eta / 2$ for all integers n. Let K be large enough so that $d\left(y, y_{k}\right)<\gamma$ for $k \geqslant K$. Hence (i) $d\left(h^{-m_{k}}(y)\right.$, $\left.h^{-m_{k}}\left(y_{k}\right)\right)<\eta / 2$ for $k \geqslant K$. Let N be large enough so that diam $V_{i_{k}}<\eta / 2$ for $k \geqslant N$. Hence (ii) $d\left(h^{-m_{k}}\left(y_{k}\right), p\right)<\eta / 2$ for $k \geqslant N$. Thus

$$
d\left(h^{-m_{k}}(y), p\right) \leqslant d\left(h^{-m_{k}}(y), h^{-m_{k}}\left(y_{k}\right)\right)+d\left(h^{-m_{k}}\left(y_{k}\right), p\right)<\frac{1}{2} \eta+\frac{1}{2} \eta=\eta
$$

for $k \geqslant \max (K, N)$ from (i) and (ii). Hence

$$
p=\operatorname{Lim}_{k \rightarrow \infty} h^{-m k}(y)
$$

which completes the proof.
Theorem 1. Let X be a locally connected, connected and locally compact metric space, and h be an almost regular homeomorphism of X onto itself. If $R(h)$ is connected, then for any $y \in R(h)$,

$$
\operatorname{Limsup}_{n \rightarrow \pm \infty} h^{n}(y) \cap R(h)=\emptyset
$$

Proof. The proof follows immediately from Theorems 1 and 2 of (4) and Lemma 1 above.

Henceforth we assume in this paper that (X, d) is a locally connected, connected and locally compact space, h is an almost regular homeomorphism
of X onto itself and $R(h)$ is connected. Note that under these conditions the above results are true.
2. For the purposes of this article let U be an open set in X such that \bar{U} is compact and bdry $U \cap I(h)=\emptyset$. Let $\left\{m_{i}\right\}$ be any sequence of integers, and

$$
F=\liminf _{i \rightarrow \infty} h^{m_{i}}[U] \quad\left(m_{i}, i=1,2, \ldots, \text { distinct }\right) .
$$

Lemma 2. Let $y \in F \cap R(h)$. Then $y \in h^{m_{i}}[U]$ for all except finitely many i.
Proof. Suppose there is a subsequence $\left\{n_{i}\right\} \subset\left\{m_{i}\right\}$ such that $y \notin h^{n_{i}}[U]$. Let $\left\{\epsilon_{k}\right\}$ be a sequence of positive numbers converging to zero. Since $y \in R(h)$, for each integer k there exists a $\delta_{k}>0$ such that for $d(x, y)<\delta_{k}, d\left(h^{n}(x)\right.$, $\left.h^{n}(y)\right)<\epsilon_{k}$ for all integers n. Again since $y \in F$ and $\left\{n_{i}\right\}$ is a subsequence of $\left\{m_{i}\right\}$ there exists for each k an integer n_{k} in $\left\{n_{i}\right\}$ such that for $\left|n_{i}\right| \geqslant n_{k}$, $h^{n_{i}}[U] \cap U_{k} \neq \emptyset$ where U_{k} is the δ_{k}-neighbourhood of y. Let $y_{k} \in h^{n_{k}}(U) \cap U_{k}$ for $k=1,2, \ldots$. Since $d\left(y, y_{k}\right)<\delta_{k}, d\left(h^{-n_{k}}\left(y_{k}\right), h^{-n_{k}}(y)\right)<\epsilon_{k}, h^{-n_{k}}\left(y_{k}\right) \in U$, and $h^{-n_{k}}(y) \notin U(k=1,2, \ldots)$. But, since $\epsilon_{k} \rightarrow 0$ as $k \rightarrow \infty$,

$$
\operatorname{Lim}_{k \rightarrow \infty} \sup ^{h^{-n k}}\left(y_{k}\right)=\underset{k \rightarrow \infty}{\operatorname{Lim} \sup } h^{-n k}(y) .
$$

Clearly,

$$
\operatorname{Lim}_{k \rightarrow \infty} \sup ^{-n k}\left(y_{k}\right) \neq \emptyset
$$

for $h^{-n_{k}}\left(y_{k}\right) \in \bar{U}$ and \bar{U} is compact; hence

$$
\operatorname{Lim}_{k \rightarrow \infty} \sup ^{--n k}(y) \neq \emptyset
$$

and is contained in the boundary of U. This contradicts Theorem 1 above and completes the proof.

Lemma 3. If $y \in h^{m_{i}}[U] \cap R(h)$ for all values of i, then there exists an open set V in X containing y such that $V \subset h^{m_{i}}[U]$ for all but a finite number of values of i.

Proof. Suppose the lemma is false; that is for any open set V containing y there exist infinitely many values of i for which $V-h^{m i}[U] \neq \emptyset$. Let $\left\{\epsilon_{k}\right\}$ be a sequence of real positive numbers converging to zero. Since $y \in R(h)$, for every integer k there exists a $\delta_{k}>0$ such that for $d(x, y)<\delta_{k}, d\left(h^{n}(y)\right.$, $\left.h^{n}(x)\right)<\epsilon_{k}$ for all integers n. But for each integer $k(k=1,2, \ldots)$ there exists. an n_{k} in $\left\{m_{i}\right\}$ such that $U_{k}-h^{n_{k}}[U] \neq \emptyset$ and $\left|n_{k}\right|<\left|n_{k+1}\right|$, where U_{k} is the δ_{k}-neighbourhood of y in X. Let y_{k} be any point in $U_{k}-h^{n_{k}}[U]$. Then $d\left(y, y_{k}\right)<\delta_{k}$ implies that $d\left(h^{-n_{k}}(y), h^{-n_{k}}\left(y_{k}\right)\right)<\epsilon_{k}$ where $h^{-n_{k}}(y) \in U$ and $h^{-n_{k}}\left(y_{k}\right) \notin U$. Since $\epsilon_{k} \rightarrow 0$ as $k \rightarrow \infty$.

$$
\underset{k \rightarrow \infty}{\operatorname{Lim} \sup } h^{-n k}\left(y_{k}\right)=\underset{k \rightarrow \infty}{\operatorname{Lim} \sup } h^{-n k}(y) \subset \text { bdry } U \subset R(h)
$$

This, as in Lemma 2, leads to a contradiction and completes the proof.

From Lemmas 2 and 3, we have immediately
Theorem 2. If $y \in F \cap R(h)$, then there exists an open set V in X containing y such that $V \subset h^{m_{i}}[U]$ for all but a finite number of values of i, i.e.

$$
V \subset F=\operatorname{Lim}_{i \rightarrow \infty} \inf h^{m i}[U]
$$

Theorem 3. If $F \cap R(h) \neq \emptyset$, then $R(h) \subset F$.
Proof. From Theorem 2 it follows that $F \cap R(h)$ is open in $R(h)$. Since F is closed in $X, F \cap R(h)$ is closed in $R(h)$. Since $R(h)$ is connected and $F \cap R(h) \neq \emptyset$, the result follows.
3. Theorem 4. If $p \in I(h)$, then for any open set U containing p there exists a sequence of integers $\left\{m_{i}\right\}$ such that

$$
\underset{i \rightarrow \infty}{\operatorname{Lim} \inf } h^{m i}[U]=X
$$

Proof. Since Lemma 1 is true, there exists a point $y \in R(h)$ and a sequence of integers $\left\{m_{i}\right\}$ such that

$$
\operatorname{Lim}_{i \rightarrow \infty} h^{-m i}(y)=p
$$

Let V be an open set such that $p \in V \subset U, \bar{V}$ is compact, and

$$
\text { bdry } V \cap I(h)=\emptyset
$$

Now $h^{-m_{i}}(y) \epsilon V$ for all but a finite number of values of i; hence $y \in h^{m_{i}}[V]$ for all but a finite number of values of i, that is,

$$
y \in \underset{i \rightarrow \infty}{\operatorname{Lim} \inf } h^{m_{i}}[V] .
$$

Since

$$
R(h) \cap \operatorname{Liminf}_{i \rightarrow \infty} h^{m_{i}}[V] \neq \emptyset,
$$

it follows from Theorem 3 that

$$
R(h) \subset \operatorname{Liminf}_{i \rightarrow \infty} h^{m i}[V] .
$$

But since

$$
\underset{i \rightarrow \infty}{\operatorname{Lim} \inf } h^{m_{i}}[V]
$$

is closed in X, it contains $\overline{R(h)}$. Finally, since $R(h)$ is dense in X and $V \subset U$, the theorem follows.

Lemma 4. Let $p \in I(h)$ and V be any open set containing p. Then there exists a sequence of integers $\left\{m_{i}\right\}$ such that given any $y \in R(h), h^{m_{i}}(y) \in V$ for $i \geqslant j$ for some positive integer j.

Proof. Let U be an open set containing p such that \bar{U} is compact,

$$
\text { bdry } U \cap I(h)=\emptyset
$$

and $U \subset V$. From Theorem 4 there exists a sequence of integers $\left\{m_{i}\right\}$ such that

$$
\operatorname{Liminf}_{i \rightarrow \infty} h^{-m i}[U]=X
$$

If $y \in R(h)$, then

$$
y \in R(h) \cap \operatorname{Liminf}_{i \rightarrow \infty} h^{-m i}[U] .
$$

Hence, from Lemma 2, $y \in h^{-m_{i}}[U]$ for all $i \geqslant j$ for some integer j. Thus $h^{m_{i}}(y) \in U \subset V$ for $i \geqslant j$. This completes the proof.

Theorem 5. If $p \in I(h)$, then $h(p)=p$.
Proof. Suppose $h(p) \neq p$. Then there exists an open set U containing p such that $U \cap h[U]=\emptyset$. From Lemma 4 there exists a sequence of integers $\left\{m_{i}\right\}$ such that for any $y \in R(h), h^{m_{i}}(y) \in U$ for $i \geqslant j$ for some integer j.

Consider y and $y_{1}=h^{-1}(y)$ in $R(h)$. Then there exists an integer j such that for $i \geqslant j, h^{m_{i}}(y)$ and $h^{m_{i}}\left(y_{1}\right)$ are both in U. But $h^{m_{i}}\left(y_{1}\right)=h^{-1}\left(h^{m_{i}}(y)\right)$ gives $h^{m_{i}}(y) \in h[U]$ for $i \geqslant j$. Hence $U \cap h[U] \neq \emptyset$. This contradiction completes the proof.

Proof of the Main Theorem. Suppose $I(h)$ consists of more than two points. We shall establish a contradiction.

It is not difficult to see that every point of $I(h)$ is a non-cut point of X since $R(h)$ is connected and dense in X. Hence for any $p \in I(h)$ there exists an arbitrarily small open set in X containing p such that its complement is connected (5, (4.15), p. 50). Let V be an open set containing some point $p \in I(h)$ such that $X-V$ is connected and contains at least two points, say p_{1} and p_{2}, of $I(h)$. Since every point of $I(h)$ is fixed under h (Theorem 5) and $h[I(h)]=I(h), p_{1}$ and p_{2} do not belong to $h^{n}[V]$ for any integer n. Note also that for any integer $n, X-h^{n}[V]$ is a connected set, and also for any two integers $m, n,\left(X-h^{n}[V]\right) \cap\left(X-h^{m}[V]\right) \neq \emptyset$.

Let U be an open set containing p such that $p \in U \subset V, \bar{U}$ is compact, and bdry $U \cap I(h)=\emptyset$. Let n_{i} denote the sequence of integers such that

$$
\operatorname{Liminf}_{i \rightarrow \infty} h^{n_{i}}[U]=X
$$

(see Theorem 4).
Consider

$$
B_{j}=X-\bigcap_{i=j}^{\infty} h^{n_{i}}[V]=\bigcup_{i=j}^{\infty} h^{n_{i}}[X-V] .
$$

Then B_{j} is a connected set, and $B_{j} \supset B_{j+1}(j=1,2, \ldots)$. Set

$$
B=\bigcap_{j=1}^{\infty} B_{j}=X-\bigcup_{j=1}^{\infty} \bigcap_{i=j} h^{n_{i}}[V] .
$$

Then B contains at least two points, p_{1} and p_{2}.
Let W be an open set containing p_{1} but not p_{2}, \bar{W} be compact, and bdry $W \cap I(h)=\emptyset$. Since $B_{j} \supset B$, and B_{j} is connected, $B_{j} \cap$ bdry $W \neq \emptyset$.

Let $y_{i} \in B_{j} \cap \operatorname{bdry} W(j=1,2, \ldots)$. Since $y_{j} \in B_{j}$,

$$
y_{j} \notin \bigcap_{i=j}^{\infty} h^{n_{i}}[V], \quad \text { that is } y_{j} \notin \bigcap_{i=j}^{\infty} h^{n_{i}}[U 1
$$

since $U \subset V$. Hence there exists, for each j, an $i_{j} \geqslant j$ such that $y_{j} \notin h^{n_{i j}[U] .}$ The sequence of points $\left\{y_{j}\right\}$ contained in the boundary of W must have at least one limit point y in it. Let us suppose for convenience that it converges to y.

Let Z be an open set containing y. Since

$$
\operatorname{Lim}_{j \rightarrow \infty} y_{j}=y
$$

there exists an integer k such that, for $j \geqslant k, y_{j} \in Z$. But, since $y_{j} \notin h^{n_{i j}}[U]$, there exist infinitely many values of i for which $h^{n_{i}}[U]$ does not contain Z. Since Z is arbitrary, this contradicts Theorem 2. Hence for any arbitrarily small open set containing p its complement contains at most one point of $I(h)$. Thus $I(h)$ consists of at most two points. That these points are fixed is a consequence of Theorem 5 above. This completes the proof.

An immediate consequence of the Main Theorem and Theorems 6 and 7 of (3) is the following:

Theorem 6. If X is a closed connected topological n-manifold and there exists an almost regular homeomorphism h of X onto itself such that $R(h)$ is connected, then X is an n-sphere.

Remark. If, in Theorem $6, n \geqslant 2$, then the condition that $R(h)$ be connected is redundant.

References

1. P. Erdös and A. M. Stone, Some remarks on almost periodic transformations, Bull. Amer. Math. Soc., 51 (1945), 126-130.
2. B. v. Kerekjarto, Topologische Charakterisierung der linearen Abbildungun, Acta. litt. acad. Sci., Szeged, 6 (1934), 235-262.
3. S. Kinoshita, On quasi-translations in 3-space, Fund. Math., 56 (1964), 69-79.
4. T. Homma and S. Kinoshita, On homeomorphisms which are regular except for a finite number of points, Osaka. Math. J., 7 (1955), 29-38.
5. G. T. Whyburn, Analytic topology (Amer. Math. Soc. Coll. Pub., 1942).

University of Calgary,
Calgary, Alberta

