ON ALMOST REGULAR HOMEOMORPHISMS

S. K. KAUL

1. Let (X, d) be a metric space with metric d, and h be a homeomorphism of X onto itself. Any point y in X is called a *regular* point (2) under h if for any given $\epsilon > 0$ there exists a $\delta > 0$ such that $d(x, y) < \delta$ implies that $d(h^n(x), h^n(y)) < \epsilon$ for all integers n, where h^n is the composition of h or h^{-1} with itself |n| times, depending upon whether n is positive or negative, and h^0 is the identity on X. If y is not regular under h, then y is called *irregular*. We shall denote the set of regular points by R(h) and the set of irregular points by I(h). The homeomorphism h is called *almost regular* if I(h) is zero dimensional and compact. Note that I(h) is therefore non-empty. We use the terms Lim sup and Lim inf as defined in (5).

One of the aims of this paper is to prove the following:

MAIN THEOREM. Let X be a locally compact, locally connected and connected space, and h be an almost regular homeomorphism of X onto itself. If R(h) is connected, then I(h) consists of at most two points, both of which are fixed under h.

This result is related to Theorem 1 of (4), where I(h) was assumed to be finite and X connected and compact. The case $I(h) = \emptyset$ is considered in (4).

I wish to express my thanks to Professor S. Kinoshita for suggesting the problem and for many helpful discussions.

LEMMA 1. Let (X, d) be a locally compact metric space and h be an almost regular homeomorphism of X onto itself. If $p \in I(h)$ and X is locally connected at p, then there exists a $y \in R(h)$ such that

$$p \in \lim_{n \to \pm \infty} \sup h^n(y).$$

Proof. Since p is an irregular point under h, there exists an $\epsilon > 0$ such that for any open set V containing p, diam $h^n(V) > \epsilon$ for infinitely many integers n. Let

$$Q = \lim_{n \to \pm \infty} \sup h^n(p).$$

It is easy to see that $h^n[I(h)] = I(h)$ for each integer *n*. This together with the fact that I(h) is compact implies that Q is a non-empty compact subset of I(h). Since I(h) is zero dimensional and X is locally compact, there exists a finite open covering $\{U_i\}$ (i = 1, ..., m) of Q such that for each *i*, diam $U_i < \epsilon$, \overline{U}_i is compact, and boundary of $U_i \cap I(h)$ is Ø. Since

$$Q = \lim_{n \to \pm \infty} \sup h^n(p),$$

Received April 22, 1966.

there exists a natural number N such that for all $|n| \ge N$,

$$h^n(p) \in \bigcup_{i=1}^m U_i.$$

Since X is locally connected at p, there exists a sequence $\{V_i\}$ of connected open sets containing p, such that $V_{i+1} \subset V_i$ for $i = 1, 2, \ldots$, and diam $[V_i] \to 0$ as $i \to \infty$. Let $\{n_{ij}: j = 1, 2, \ldots\}$ be the set of all the integers such that diam $h^{n_{ij}}[V_i] > \epsilon$. Since $V_{i+1} \subset V_i$, we have $\{n_{i+1,j}\} \subset \{n_{ij}\}$ for each i. It is easy to see then that there exists a member U of U_1, \ldots, U_m and a subsequence $\{i_k: k = 1, 2, \ldots\}$ of the natural numbers i such that for each member i_k of this infinite set, $U \cap h^{n_{ikj}}[V_{ik}] \neq 0$ for infinitely many values of j. For each k let m_k denote an element of $\{n_{ikj}: j = 1, 2, \ldots\}$ such that $h^{m_k}[V_{ik}] \cap U \neq \emptyset$, and $|m_{k+1}| > |m_k|$ $(k = 1, 2, \ldots)$. Since diam $h^{m_k}[V_{ik}] > \epsilon$, $h^{m_k}[V_{ik}]$ is connected, and diam $U < \epsilon$, $h^{m_k}[V_{ik}] \cap$ bdry $U \neq \emptyset$. Let

$$y_k \in h^{m_k}[V_{i_k}] \cap \text{bdry } U \ (k = 1, 2, \ldots).$$

The sequence of points $\{y_k\} \subset$ bdry U has a limit point y in it. Let us assume for convenience that $\{y_i\}$ converges to y (or we work with a subsequence converging to y). We shall show that

$$p\in \lim_{n o\pm\infty}\sup h^n(y).$$

Let $\eta > 0$ be arbitrary. Since $y \in bdry \ U \subset R(h)$, there exists a $\gamma > 0$, such that, for $d(x, y) < \gamma$, $d(h^n(x), h^n(y)) < \eta/2$ for all integers *n*. Let *K* be large enough so that $d(y, y_k) < \gamma$ for $k \ge K$. Hence (i) $d(h^{-m_k}(y), h^{-m_k}(y_k)) < \eta/2$ for $k \ge K$. Let *N* be large enough so that diam $V_{ik} < \eta/2$ for $k \ge N$. Hence (ii) $d(h^{-m_k}(y_k), p) < \eta/2$ for $k \ge N$. Thus

$$d(h^{-m_k}(y), p) \leqslant d(h^{-m_k}(y), h^{-m_k}(y_k)) + d(h^{-m_k}(y_k), p) < \frac{1}{2}\eta + \frac{1}{2}\eta = \eta$$

for $k \ge \max(K, N)$ from (i) and (ii). Hence

$$p = \lim_{k\to\infty} h^{-m_k}(y),$$

which completes the proof.

THEOREM 1. Let X be a locally connected, connected and locally compact metric space, and h be an almost regular homeomorphism of X onto itself. If R(h) is connected, then for any $y \in R(h)$,

$$\limsup_{n\to\pm\infty} h^n(y)\cap R(h)=\emptyset.$$

Proof. The proof follows immediately from Theorems 1 and 2 of (4) and Lemma 1 above.

Henceforth we assume in this paper that (X, d) is a locally connected, connected and locally compact space, h is an almost regular homeomorphism

of X onto itself and R(h) is connected. Note that under these conditions the above results are true.

2. For the purposes of this article let U be an open set in X such that \overline{U} is compact and bdry $U \cap I(h) = \emptyset$. Let $\{m_i\}$ be any sequence of integers, and

$$F = \liminf_{i \to \infty} h^{m_i}[U] \qquad (m_i, i = 1, 2, \dots, \text{distinct}).$$

LEMMA 2. Let $y \in F \cap R(h)$. Then $y \in h^{m_i}[U]$ for all except finitely many *i*.

Proof. Suppose there is a subsequence $\{n_i\} \subset \{m_i\}$ such that $y \notin h^{n_i}[U]$. Let $\{\epsilon_k\}$ be a sequence of positive numbers converging to zero. Since $y \in R(h)$, for each integer k there exists a $\delta_k > 0$ such that for $d(x, y) < \delta_k$, $d(h^n(x), h^n(y)) < \epsilon_k$ for all integers n. Again since $y \in F$ and $\{n_i\}$ is a subsequence of $\{m_i\}$ there exists for each k an integer n_k in $\{n_i\}$ such that for $|n_i| \ge n_k$, $h^{n_i}[U] \cap U_k \neq \emptyset$ where U_k is the δ_k -neighbourhood of y. Let $y_k \in h^{n_k}(U) \cap U_k$ for $k = 1, 2, \ldots$. Since $d(y, y_k) < \delta_k$, $d(h^{-n_k}(y_k), h^{-n_k}(y)) < \epsilon_k$, $h^{-n_k}(y_k) \in U$, and $h^{-n_k}(y) \notin U$ ($k = 1, 2, \ldots$). But, since $\epsilon_k \to 0$ as $k \to \infty$,

$$\limsup_{k\to\infty} h^{-n_k}(y_k) = \limsup_{k\to\infty} h^{-n_k}(y).$$

Clearly,

$$\lim_{k \to \infty} \sup h^{-n_k}(y_k) \neq \emptyset$$

for $h^{-n_k}(y_k) \in \overline{U}$ and \overline{U} is compact; hence

$$\limsup_{k \to \infty} h^{-nk}(y) \neq \emptyset$$

and is contained in the boundary of U. This contradicts Theorem 1 above and completes the proof.

LEMMA 3. If $y \in h^{m_i}[U] \cap R(h)$ for all values of *i*, then there exists an open set *V* in *X* containing *y* such that $V \subset h^{m_i}[U]$ for all but a finite number of values of *i*.

Proof. Suppose the lemma is false; that is for any open set V containing y there exist infinitely many values of i for which $V - h^{m_i}[U] \neq \emptyset$. Let $\{\epsilon_k\}$ be a sequence of real positive numbers converging to zero. Since $y \in R(h)$, for every integer k there exists a $\delta_k > 0$ such that for $d(x, y) < \delta_k$, $d(h^n(y),$ $h^n(x)) < \epsilon_k$ for all integers n. But for each integer k (k = 1, 2, ...) there exists an n_k in $\{m_i\}$ such that $U_k - h^{n_k}[U] \neq \emptyset$ and $|n_k| < |n_{k+1}|$, where U_k is the δ_k -neighbourhood of y in X. Let y_k be any point in $U_k - h^{n_k}[U]$. Then $d(y, y_k) < \delta_k$ implies that $d(h^{-n_k}(y), h^{-n_k}(y_k)) < \epsilon_k$ where $h^{-n_k}(y) \in U$ and $h^{-n_k}(y_k) \notin U$. Since $\epsilon_k \to 0$ as $k \to \infty$.

$$\lim_{k\to\infty}\sup h^{-n_k}(y_k) = \limsup_{k\to\infty}h^{-n_k}(y) \subset \text{bdry } U \subset R(h).$$

This, as in Lemma 2, leads to a contradiction and completes the proof.

S. K. KAUL

From Lemmas 2 and 3, we have immediately

THEOREM 2. If $y \in F \cap R(h)$, then there exists an open set V in X containing y such that $V \subset h^{m_i}[U]$ for all but a finite number of values of i, i.e.

$$V \subset F = \liminf_{i \to \infty} h^{m_i}[U].$$

THEOREM 3. If $F \cap R(h) \neq \emptyset$, then $R(h) \subset F$.

Proof. From Theorem 2 it follows that $F \cap R(h)$ is open in R(h). Since F is closed in X, $F \cap R(h)$ is closed in R(h). Since R(h) is connected and $F \cap R(h) \neq \emptyset$, the result follows.

3. THEOREM 4. If $p \in I(h)$, then for any open set U containing p there exists a sequence of integers $\{m_i\}$ such that

$$\liminf_{i\to\infty} h^{m_i}[U] = X.$$

Proof. Since Lemma 1 is true, there exists a point $y \in R(h)$ and a sequence of integers $\{m_i\}$ such that

$$\lim_{i\to\infty} h^{-m_i}(y) = p.$$

Let V be an open set such that $p \in V \subset U$, \overline{V} is compact, and

bdry $V \cap I(h) = \emptyset$.

Now $h^{-m_i}(y) \in V$ for all but a finite number of values of *i*; hence $y \in h^{m_i}[V]$ for all but a finite number of values of *i*, that is,

$$y \in \lim_{i \to \infty} \inf h^{m_i}[V].$$

Since

$$R(h) \cap \liminf_{i \to \infty} h^{m_i}[V] \neq \emptyset,$$

it follows from Theorem 3 that

$$R(h) \subset \liminf_{i \to \infty} h^{m_i}[V].$$

But since

$$\liminf_{i\to\infty} h^{m_i}[V]$$

is closed in X, it contains $\overline{R(h)}$. Finally, since R(h) is dense in X and $V \subset U$, the theorem follows.

LEMMA 4. Let $p \in I(h)$ and V be any open set containing p. Then there exists a sequence of integers $\{m_i\}$ such that given any $y \in R(h)$, $h^{m_i}(y) \in V$ for $i \ge j$ for some positive integer j.

Proof. Let U be an open set containing p such that \overline{U} is compact,

$$\mathrm{bdry}\ U \cap I(h) = \emptyset,$$

and $U \subset V$. From Theorem 4 there exists a sequence of integers $\{m_i\}$ such that

$$\liminf_{i\to\infty} h^{-m_i}[U] = X.$$

If $y \in R(h)$, then

$$y \in R(h) \cap \liminf_{i \to \infty} h^{-mi}[U].$$

Hence, from Lemma 2, $y \in h^{-m_i}[U]$ for all $i \ge j$ for some integer j. Thus $h^{m_i}(y) \in U \subset V$ for $i \ge j$. This completes the proof.

THEOREM 5. If $p \in I(h)$, then h(p) = p.

Proof. Suppose $h(p) \neq p$. Then there exists an open set U containing p such that $U \cap h[U] = \emptyset$. From Lemma 4 there exists a sequence of integers $\{m_i\}$ such that for any $y \in R(h)$, $h^{m_i}(y) \in U$ for $i \ge j$ for some integer j.

Consider y and $y_1 = h^{-1}(y)$ in R(h). Then there exists an integer j such that for $i \ge j$, $h^{m_i}(y)$ and $h^{m_i}(y_1)$ are both in U. But $h^{m_i}(y_1) = h^{-1}(h^{m_i}(y))$ gives $h^{m_i}(y) \in h[U]$ for $i \ge j$. Hence $U \cap h[U] \ne \emptyset$. This contradiction completes the proof.

Proof of the Main Theorem. Suppose I(h) consists of more than two points. We shall establish a contradiction.

It is not difficult to see that every point of I(h) is a non-cut point of X since R(h) is connected and dense in X. Hence for any $p \in I(h)$ there exists an arbitrarily small open set in X containing p such that its complement is connected (5, (4.15), p. 50). Let V be an open set containing some point $p \in I(h)$ such that X - V is connected and contains at least two points, say p_1 and p_2 , of I(h). Since every point of I(h) is fixed under h (Theorem 5) and h[I(h)] = I(h), p_1 and p_2 do not belong to $h^n[V]$ for any integer n. Note also that for any integer n, $X - h^n[V]$ is a connected set, and also for any two integers m, n, $(X - h^n[V]) \cap (X - h^m[V]) \neq \emptyset$.

Let U be an open set containing p such that $p \in U \subset V$, \overline{U} is compact, and bdry $U \cap I(h) = \emptyset$. Let n_i denote the sequence of integers such that

$$\liminf_{i \to \infty} h^{ni}[U] = X$$

(see Theorem 4).

Consider

$$B_j = X - \bigcap_{i=j}^{\infty} h^{ni}[V] = \bigcup_{i=j}^{\infty} h^{ni}[X - V].$$

Then B_j is a connected set, and $B_j \supset B_{j+1}$ (j = 1, 2, ...). Set

$$B = \bigcap_{j=1}^{\infty} B_j = X - \bigcup_{j=1}^{\infty} \bigcap_{i=j} h^{n_i}[V].$$

Then B contains at least two points, p_1 and p_2 .

Let W be an open set containing p_1 but not p_2 , \overline{W} be compact, and bdry $W \cap I(h) = \emptyset$. Since $B_j \supset B$, and B_j is connected, $B_j \cap$ bdry $W \neq \emptyset$. Let $y_i \in B_j \cap \text{bdry } W$ (j = 1, 2, ...). Since $y_j \in B_j$,

$$y_j \notin \bigcap_{i=j}^{\infty} h^{n_i}[V],$$
 that is $y_j \notin \bigcap_{i=j}^{\infty} h^{n_i}[U]$

since $U \subset V$. Hence there exists, for each j, an $i_j \ge j$ such that $y_j \notin h^{n_{ij}}[U]$. The sequence of points $\{y_j\}$ contained in the boundary of W must have at least one limit point y in it. Let us suppose for convenience that it converges to y.

Let Z be an open set containing y. Since

$$\lim_{j\to\infty} y_j = y,$$

there exists an integer k such that, for $j \ge k$, $y_j \in Z$. But, since $y_j \notin h^{n_{ij}}[U]$, there exist infinitely many values of *i* for which $h^{n_i}[U]$ does not contain Z. Since Z is arbitrary, this contradicts Theorem 2. Hence for any arbitrarily small open set containing p its complement contains at most one point of I(h). Thus I(h) consists of at most two points. That these points are fixed is a consequence of Theorem 5 above. This completes the proof.

An immediate consequence of the Main Theorem and Theorems 6 and 7 of (3) is the following:

THEOREM 6. If X is a closed connected topological n-manifold and there exists an almost regular homeomorphism h of X onto itself such that R(h) is connected, then X is an n-sphere.

Remark. If, in Theorem 6, $n \ge 2$, then the condition that R(h) be connected is redundant.

References

- P. Erdös and A. M. Stone, Some remarks on almost periodic transformations, Bull. Amer. Math. Soc., 51 (1945), 126-130.
- B. v. Kerekjarto, Topologische Charakterisierung der linearen Abbildungun, Acta. litt. acad. Sci., Szeged, 6 (1934), 235–262.
- 3. S. Kinoshita, On quasi-translations in 3-space, Fund. Math., 56 (1964), 69-79.
- 4. T. Homma and S. Kinoshita, On homeomorphisms which are regular except for a finite number of points, Osaka. Math. J., 7 (1955), 29-38.
- 5. G. T. Whyburn, Analytic topology (Amer. Math. Soc. Coll. Pub., 1942).

University of Calgary, Calgary, Alberta