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Abstract

Pi-d2, which encodes a potential serine-threonine receptor-like kinase (RLK) membrane-
spanning protein consisting of 825 amino acids, confers resistance to Magnaporthe oryzae
strain ZBI5 via an unidentified recognition mechanism. In this study, the Pid2 alleles of
303 rice (O. sativa) varieties from China’s Yunnan region were amplified and sequenced in
order to produce 24 haplotypes and 16 translation variants. Six of twenty-four alleles posses-
sing the resistant site at the 441st amino acid were chosen for evaluating blast resistance by
transforming into the blast-vulnerable rice variety Nipponbare. After being infected with
11 strains of M. oryzae, all transgenic lines exhibited resistance to ZB-15, whereas resistance
to other strains varied. Notably, Pi-d2_H23 and Pi-d2_H24 exhibited resistance to all M. ory-
zae strains tested, indicating that these two alleles may have a broader resistance spectrum to
M. oryzae. Alignment of these alleles’ amino acid sequences revealed that the differences in
blast resistance spectra were primarily related to the amino acids present in the PAN domain
at position 363 (valine/alanine). These findings suggested that the two extracellular signal rec-
ognition domains of PI-D2, B-lectin and PAN, may play a role in the identification of M. ory-
zae effectors. The present results provide insight into the mechanism of interaction between
RLKs and M. oryzae.

Rice blast, which is caused by the filamentous ascomycetous (Magnaporthe oryzae, M. oryzae),
is one of the most destructive diseases of rice on a global scale (Dean et al., 2012). Rice plants
utilise a wide variety of disease resistance genes (R genes) to detect the presence of pathogens
and initiate subsequent defence responses. Resistance mediated by the major R gene is effective
at identifying fungal strains that carry the matching avirulence (AVR) gene (Woolhouse et al.,
2002). With the exception of chromosome 3, at least 84 significant blast resistance genes (R
gene) have been found and genetically mapped on 11 rice chromosomes. At least 26 of the
identified blast R genes have been cloned and functionally investigated: Pbl, Pia, Pib, Pi-d2,
Pid3, Pik, Pikh/Pi54, Pikm, Pikp, Pish, Pit, Pita, Pizt, Pil, Pi2, Pi2l, Pi25, Pi36, Pi37, Pi56,
Pi63, PiCO39 (http://www.ricedata.cn), Pi64 (Ma et al., 2015) and Pigm (Deng et al., 2006).
The majority of cloned R genes are members of the nucleotide-binding site leucine-rich repeat
(NBS-LRR) family, with the exception of Pi-d2 and pi21, which encode a receptor-like kinase
and a proline-rich protein, respectively.

Long regarded as the most efficient and successful means of disease control, a deeper com-
prehension of the mechanisms behind the interaction between pathogens and host plants and
the selection of stable, disease-resistant novel types are becoming increasingly important
(Dodds and Rathjen, 2010; Peng et al., 2018). However, AVR genes in M. oryzae are known
to be highly variable and diverse (Selisana et al., 2017), which frequently threatens the efficacy
of resistant cultivars with a single R gene a few years after their release. It is widely documented
that mutations in the AVR gene AVR-Pital in historical and contemporary field isolates over-
come a key R gene-mediated resistance (Dai et al., 2010). Pyramiding more blast resistance
genes in a rice cultivar (Arunakumari et al., 2016; Jiang et al., 2019; Wu et al., 2019) or mixture
planting different varieties in a region (Zhu et al., 2000) may control rice blast effectively, but
both methods have production limitations because pyramiding is a time-consuming and dif-
ficult task, and mixture planting is difficult to plant and harvest.
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Some R genes with a relatively broad spectrum of blast resist-
ance, such as Pil (Hua et al., 2012), Pi37, Pit, Pikm, Pi5, and Pbl,
have been extensively utilised in rice disease resistance breeding.
Some blast R genes have a relatively narrow spectrum of resist-
ance; however, their alleles and orthologs from various rice
resources may exhibit varying blast resistance spectra. This is
due to the coevolution of rice and the blast pathogen in various
rice-growing locations, which has resulted in an abundance of
allelic variety in rice resources. For example, Pi9/Pi2/Piz-t were
cloned from the same chromosome location in different varieties
and showed different resistance spectra (Zhou et al., 2006).
The same condition was also observed in the Pik locus, which
contains five rice blast R genes (Pik, Pik-m, Pik-p, Pilk-h and
Pik-s) (Wang et al., 2009). Therefore, studying natural variation
in rice resistance genes from various rice resources can not only
predict the stability of resistance to rice blast fungus, but can
also be a crucial technique for rice blast resistance breeding.
Four types of diversification of R genes can be defined on the
basis of the polymorphism level (pi value) : conserved (type I;
pi<0.5%), intermediate-diversified (type II; 0.5% < pi<5%),
highly diversified (type III; pi>5%), and present/absent genes
(type IV; P/A).

Receptor-like kinases (RLK) are members of a vast gene family
and participate in numerous cell-cell communication activities
(Barre et al., 2002; Bellande et al., 2017). In the preceding decades,
a number of studies suggested a variety of possible functions for
these genes. First, RLKs participate in plant growth, such as the
CLV1 receptor in meristem signalling (Clark et al., 1997) and
the SRK receptor in pollen development signalling (Clark et al,
1997). (Nasrallah, 2000). In addition, RLKs participate in biotic
and abiotic stress signal transduction, such as XA21 (Song
et al., 1995) in rice blight resistance. The TM domains of RLKs
play a significant role in the correct signal transduction from lig-
and reception by the extracellular region to the production of
responses by the intracellular region. One amino acid variation
in the TM region of Pi-d2 determines sensitivity or resistance to
the AvrPi-containing rice blast fungus (Chen et al., 2006).

Compared to Arabidopsis, RLKs exhibits expansionary pat-
terns in rice, which are believed to be associated with recent
lineage-specific expansions of resistance/defence-related genes
(Shiu et al., 2004). The majority of plant RLKs involved in disease
resistance, including XA21 (Song et al., 1995), XA26 (Sun et al.,
2004), and FSL2, belong to this subclass (Gomez-Gomez et al.,
2001). Pi-d2, a single copy gene identified in the rice genome
encoding a potential serine-threonine RLKs membrane-spanning
protein with 825 amino acids, gives resistance to M. oryzae strain
ZB15 in the indica cultivar Digu (Chen et al., 2004, 2010). At pos-
ition 441 of the vulnerable pi-d2 allele, the amino acid methionine
(M) was identified, while the resistant allele included isoleucine
(I) (Chen et al., 2006). Pi-d2 represents a new class of blast resist-
ance genes since its structure differs from that of existing R genes,
indicating that it may employ a novel pathogen recognition mech-
anism. The intracellular serine/threonine kinase domain of Pi-d2
has been discovered to interact directly with the E3 ligase
OsPUBIS5 to regulate plant cell death and blast disease resistance
(Wang et al, 2015). Although some allelic variations have been
discovered at the Pi-d2 locus in diverse rice varieties
(Chen et al,, 2006; Li et al., 2015). However, the corresponding
evolutionary analysis could not be performed due to the small
number of the found Pi-d2 haplotypes. Moreover, the disease
resistance spectra among the different haplotypes were not deter-
mined yet.

https://doi.org/10.1017/51479262124000248 Published online by Cambridge University Press

Yi Yang et al.

China’s Yunnan province is one of the world’s major hotspots
of rice genetic variation (Zeng et al., 2007). Rice crop diversity has
been influenced by the agricultural practises, customs, and tradi-
tions of many ethnic groups inhabiting regions of varying alti-
tudes and climatic circumstances. The objective of this study
was to investigate the DNA sequence of Pi-d2 haplotypes from
Yunnan landrace varieties and to evaluate their blast resistance
via gene transformation and blast inoculation. On the basis of
the respective blast resistance spectra of the cloned orthologs,
comparative analyses between the amino acid polymorphism
sites of the discovered RLK proteins and their respective blast
strain-specific resistances were done.

Materials and methods
Plant materials and rice blast strains

The Pi-d2 coding sequences for Digu (GenBank accession num-
ber FJ915121.1) and Nipponbare (NCO008399) were retrieved
from http://blast.ncbi.nlm.nih.gov. Six (6) wild rice lines’ Pi-d2
haplotypes were retrieved from http:/blast.ncbi.nlm.nih.gov.
(online Supplementary Table S1), and four (4) wild rice lines’
Pi-d2 haplotypes were amplified from plant seedlings cultivated
in the lab’s greenhouse. From the main germplasm bank of rice
seed resources in Yunnan province, the Institute of
Biotechnology and Genetic Resource of Yunnan Academy of
Agricultural Sciences chose 299 rice (O. sativa) landraces, includ-
ing 108 indica (Oryza sativa L. subsp. indica Kato) types and 191
japonica (Oryza sativa L. subsp. japonica Kato) variants (online
Supplementary Table S2). The Agricultural Environment and
Resources Research Institute of the Yunnan Academy of
Agricultural Sciences supplied the 19 M. oryzae strains used in
this investigation, which were dominant or high infectivity strains
collected from Yunnan province (Table 1). Professor Cailin Lei of
the Chinese Academy of Agricultural Sciences supplied ZB15 as
the first isolate for the determination of Pi-d2.

Gene cloning

Fresh leaves of farmed and wild rice species were used to extract
DNA. Forward primer Pid2F: 5'- ATAggatccATGGAAGCTCATG
GCAATCG-3" and reverse primer Pid2R: 5'-ATAcccgggTCATC
TGGGACCAGAGAGCC-3' were constructed and used to amp-
lify the whole coding sequence of Pi-d2 based on the published
data sequence (Li et al., 2015). A BamHI and a Smal recognition
sites with three protective bases (ATA) were added to their
respective 5" ends. Initial DNA denaturation was conducted at
95°C for 5min, followed by 30 cycles of denaturation at 95°C
for 40 s, annealing at 60°C for 40 s, extension at 72°C for 3 min,
and a final extension at 72°C for 5 min. The PCR products were
respectively purified and sequenced.

Rice transformation

Because the Pi-d2 lacks an intron, the cloned gene fragments above
were inserted into the binary vector pUN1301 via the BarmHI and
Small cloning sites. The completed construct was injected into
Agrobacterium tumefaciens EHA105 after sequence verification.
Hiei et al. (Hiei et al, 1994) performed Agrobacterium-
mediated transformation on calli obtained from mature embryos
of the sensitive rice variety Nipponbare. Positive transgenic plants
were identified by amplifying the marker gene hygromycin
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Table 1. Rice blast resistance spectra of Pi-d2 haplotypes
M. oryzae strains
Test rice
lines ZB15 08-43-1a W1-117 W1-79 W1-10 A23 16-2-1e 08-55-1a 08-35-1a W1-125 15-30-3a
LTH S S S S S S S S S S S
Pi-d2_UN S S S S S S MS S S S MS
Pi-d2_NP S S S S S S MS S MS S MS
Pi-d2_H1 R R R R MS MS R R R R MS
Pi-d2_H2 R R R R M S R R MS MS MS
Pi-d2_H12 R R R R R S R R MS MS S
Pi-d2_H20 R R R R MS S MS R MS S S
Pi-d2_H23 R R R R R R R R R R MR
Pi-d2_H24 R R R R R R R R R R R

5 scales were rated according to the visual number of lesions at the second youngest leaf, levels 0 and 1 were considered to be resistant (R); levels 2 and 3 represented medium resistance
(MR) and medium susceptibility (MS), respectively; and levels 4 and 5 were considered to be susceptible (S).

(HYG) in vector with the forward primer HYG-F: 5-TGCGC
CCAAGCTGCATCAT-3" and reverse primer HYG-R: 5-TG
AACTCACCGCGACGTCTGT-3'. The following PCR amplifica-
tion profile was used: initial DNA denaturation at 95°C for 5 min,
followed by 30 cycles of denaturation at 95°C for 40 s, annealing
at 60°C for 30 s, extension at 72°C for 20 s, and final extension at
72°C for 5 min.

Expression analysis of Pi-d2 haplotypes

TRIzol reagent (Invitrogen, Carlsbad, CA) was used to separate
RNA from leaf sheath tissue, and cDNA was generated from
poly(A) + RNA wusing a cDNA synthesis kit (Promega,
Shanghai). The specific primer pair Pi-d2 was used in real time
quantitative PCR (Pi-d2 D-F: 5-CACAGGCTTCTTGCCT
ACGA-3’ and reverse primer Pi-d2 D-R: 5-TATGCCAATCC
CTTTGCCGT-3') for 45cycles of amplification. Transcription of
the Actin gene was utilised to normalise the cDNA levels using
the primer pair 5-CTGCGGGTATCCATGAGACT-3’ and
5'-GCAATGCCAGGGAACATAGT-3'.

Fungal inoculation

As detailed earlier by Jia et al. (Jia et al., 2003), the reactions to
rice blast were measured using a modified standard pathogenicity
test. First, rice seedlings at the 3rd-4th leaf stage in a plastic sealed
enclosure were spray-inoculated with a rice blast spore suspension
at 1-5 x 10° spores/ml; second, the plastic sealed enclosure were
sealed to maintain high humidity for 24 h; and finally, the plants
were removed from the plastic sealed enclosure and kept in a
greenhouse for an additional 6 days to allow for the development
of notable disease symptoms. Based on the amount of visible
lesions on the second youngest leaf, the reactions were classified
as 0-1 for resistant, 2 for moderately resistant, 3 for moderately
susceptible, and 4-5 for susceptible.

Computational analysis of DNA and protein sequences

Using DNAMAN (http:/www.lynnon.com/) and Clustal X ver-
sion 2.0, the sequences were aligned. Using version 7.0.1 of
BioEdit, sequences were manually modified. The SMART tool
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(http:/smart.embl-heidelberg.de) was utilised to search for pro-
tein motifs. The phylogenetic tree of Pi-d2 orthologs was con-
structed using MEGAS5.0. DnaSP version 5.10 was used to
conduct sliding-window analyses, polymorphism tests, and
neutral-tests on different sections of Pi-d2 orthologs.

Results
Sequence characteristics of Pi-d2 haplotypes

The analysis of the Pi-d2 coding sequences of 309 rice varieties,
comprising 299 landrace variants from Yunnan region and 10
wild rice varieties, revealed a total of 41 nucleotide changes.
There were 28 informative parsimony sites and 13 variable single-
ton sites detected. In addition to the 25 synonymous mutation
locations, 16 substitutional sites were observed.

Alignment of 299 Yunnan-assembled DNA sequences indi-
cated 24 Pi-d2 haplotypes (H) (online Supplementary Table S3).
H1 was compatible with the sequence of Pi-d2_digu, which was
only observed in one indica variety, Jiugu (I1). H3, which includes
56 japonica types and 69 indica kinds, accounted for 41.67% of
the total. H9, containing 88 japonica and 12 indica types,
accounted for 33.33% of the total frequency (the second highest
frequency, 31.7%). The third category, H2, contains 20 indica
and 20 japonica types and accounts for 13.33% of the total.
Each of the remaining haplotypes contains no more than ten var-
iants. 14 of all haplotypes were only detected in Japonica varieties,
while only 3 were found in indica varieties. However, the
Yuanjiang wild rice variety had a unique H24 haplotype.

Nucleotide polymorphism of Pi-d2 haplotypes

Pi-d2 encodes a receptor-like kinase protein having an external
domain anticipated to be a bulb-type mannose specific binding
lectin (B-lectin) and an internal serine-threonine kinase domain.
Figure 1 shows the nucleotide diversity distribution in the whole
encoding sequences, as shown by a sliding window analysis of 309
Pi-d2 haplotypes, revealing the following characteristic: Firstly, 5
different variation peaks were found among all varieties, one in
the unknown functional region, one in the PAN domain, one in
the TM-spanning region, and two in the Serine-threonine kinase
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Figure 1. Sliding-window analysis of diversities in Pi-d2 coding region. The nucleotide diversity (z; Y-axis) was generated by DNAsp5.0, and the X-axis represents the
positions of nucleotides. The blue line stands for the result of cultivated rice varieties; the red line stands for the wild rice, and the black line stands for all rice. The
map below the sliding window is the encoding structure of the Pi-d2 gene, the coloured box denotes the exon region.

catalytic domain; secondly, the two peaks exists in the PAN
domain and the TM-spanning region were significantly higher
in Japonica, indicating that the diversity of Japonica is greater
in these two regions than that of Indica. The PAN domain and
the Serine-threonine kinase catalytic domain had greater nucleo-
tide diversity than the other sections, which had lower nucleotide
diversity.

Neutral tests were used to undertake additional examination of
the different regions of Pi-d2 haplotypes (online Supplementary
Table S5). In japonica and wild rice types, Tajima’s D values
were predominantly negative but not statistically significant, indi-
cating that Pi-d2 orthologs may experience a slight tendency for
positive selection but not balanced selection. However, the
Tajima’s D value was extremely negative for indica strains, par-
ticularly in the Serine-threonine kinase catalytic domain, indicat-
ing that the indica region may have been subjected to strong
positive selection during evolution.
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Amino acid sequence analysis of Pi-d2 haplotypes

Alignment of Pi-d2 protein amino acid sequences revealed a high
degree of similarity; sequence consistency reached 99.69%.
According to the alignment, the most significant amino acid sub-
stitution site is located in the TM domain, which is the resistance-
determining site (441 I/M). In the remainder of the domain, only
a few amino acid substitutions were detected, none of which were
found in the region of sequence conservation (Fig. 2). Using the
encoded amino acid sequences, a neighbour-joining tree was cre-
ated to examine the evolutionary relationships of Pi-d2 haplotypes
(Fig. 3). All of the materials were seen to be organised into four
large groupings. On branch 1 were grouped five O.nivara varieties,
one O.rufipogon variety, and ten haplotypes from farmed varia-
tions. This branch includes the majority of indica strains, including
Pi-d2_Digu. Pi-d2_Nipponbare and eight additional haplotypes of
107 cultivated cultivars were assigned to branch 2. The percentage
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of japonica varieties within this category reached 88.79%. In branch
3, O.longistaminat, Hainan_O.rufipogon, and one japonica variety
were grouped. Yuanjiang O.rufipogon was placed on the same
branch as Dongxiang O.rufipogon and three haplotypes from cul-
tivated rice cultivars. These outcomes showed that indica and
japonica each had their own dominant haplotype, and that the
majority of indica and japonica cultivars differed in the Pi-d2 cod-
ing region.

Blast resistance of Pi-d2 haplotypes

Six Pi-d2 haplotypes, encoding for H1, H2, H11, H20, H23 and
H24, containing a single amino acid I at position 441 were chosen
for testing their resistance to a collection of rice blast strains. H1
was selected as a positive control since it codes for the same pro-
tein as Pi-d2_Digu. The coding protein of H2 was the most
broadly distributed in Yunnan province, but the other four hap-
lotypes were unique to Yunnan province.

To ensure uniformity, each Pi-d2 haplotype was placed into
the binary vector pUN1301 under the control of the Zea mays
ubiquitin 1 (Ubi) gene promoter and then converted into the sus-
ceptible rice variety Nipponbare. Pi-d2 haplotypes from
Nipponbare Pi-d2_Nipponbare and empty vector UN1301 were
also transformed into Nipponbare seedlings as a negative control.
The independent primary transgenic lines (T0) were obtained and
identified using the CAPS and Hyg transgene markers (Fig. 4).
PCR results revealed that every putative transformant was trans-
gene positive. The transgenic lines in which the individual trans-
genes were expressed at roughly the same levels (online
Supplementary Fig. S1) and in which there were no visible side
effects on phenotypes were chosen for co-segregation analysis in
the TO to T2 generations using the CAPS marker. In subsequent
blast inoculation tests, the homozygous T2 lines of the six Pi-d2
haplotypes were used.

Six Pi-d2 haplotype transgenic lines were separately injected
with eleven M. oryzae strains. As a negative control, LTH exhib-
ited susceptibility to all eleven strains, showing that the inocula-
tion test was successful. Pi-d2 NP and UNI1301 exhibited
susceptibility to ZB15 and three other stains, including w1-117,
08-43-1a and 15-30-301. While exhibiting moderate resistance
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Figure 2. Conservatism analysis of amino acid sequences among
Pi-d2 orthologs. The conservatism analysis of amino acid
sequences was produced by the software WebLogo on line.
The piled height of amino acid loci showed the degree of conser-
vatism, and the piled height of different amino acids in single
locus reflected the degree of correlation with this site. The
underline indicated a conservative sequence.

to wl-79, 16-2-1e, A23, wl-10, 08-55-1a and 08-35-1a, it exhib-
ited resistance to wl-125 and 08-55-1a. All Pi-d2 haplotype trans-
genic lines exhibited resistance or moderate resistance to ZB15, as
observed (Fig. 5). Nonetheless, various transgenic lines exhibited
distinct spectra of resistance to other strains (Table 1). Notable
is the fact that Pi-d2_H23 and Pi-d2_H24 transgenic lines were
resistant to all strains. These outcomes suggest that the resistance
of different Pi-d2 haplotypes transgenic lines has been significantly
enhanced; however, there are variations in the resistance and
spectrum of the various Pi-d2 haplotypes. To validate the disease
resistance and resistance spectrum of Pi-d2_H23 and Pi-d2_H?24,
18 additional M. oryzae strains were injected. Unlike the negative
control, Pi-d2_H23 and Pi-d2_H24 exhibited nearly full resistance
to all M. oryzae strains (online Supplementary Table S4). These
results indicated that these two transgenic lines have a wider spec-
trum of resistance than the others.

By comparing the protein sequences of several Pi-d2 haplo-
types, it was shown that the broad range of blast resistance was
associated with an amino acid substitution at position 363 (online
Supplementary Fig. S2), where Pi-d2_H23 and Pi-d2_H24 were V
(valic acid) and others were A. (alanine). The results of the
domain analysis revealed that the substitution site was present
in the PAN domain of the extracellular structure of Pi-d2, indicat-
ing that the PAN domain coding region may have a role in detect-
ing the unique blast strains.

Discussion

The present study showed that the pi value of the wild rice acces-
sions belongs to type II (pi=0.53%) while the Japonica accessions
(pi=0.191%) and the Indica accessions (pi=0.085%) belong to
type I, which indicated that the diversity of wild rice is larger
than that in cultivated rice. This result shows that the encoding
sequences of Pi-d2 gradually tend to unity during the rice domes-
tication. Also Pi-d2_H24 from wild rice has a broader range of
blast resistance than others. Plant disease resistance is connected
with the expression pattern of R genes or genes involved in patho-
genesis (PR genes) (Hayashi and Yoshida, 2009; Amaranatha
et al., 2013; Li et al., 2017). Although our study did not consider
the effect of the endogenous expression pattern of Pi-d2 on the
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Figure 3. Phylogenetic analysis of Pi-d2 orthologs. 0.0030 0.0025 0.0020 0.0015 0.0010 0.0005 0.0000

disease resistance, the phenotypic determination results of Our study show that there are two polymorphic loci in the TM
transgenic plants with different Pi-d2 haplotypes in the same  domain, excluding the resistance determinant site (441 I/M), with
genetic background can also have a great reference value (Lv  the other site found at the 437th I/F, which is unique to one variety.
et al., 2013). To determine the biological significance of this polymorphism
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Figure 4. Detection of the DNA to the transformants. (a) HYG marker was used in the DNA detection. (b) (c) CAPS marker was used to confirm the positive trans-
formants precisely and the restriction enzyme cutting site (Faul) exit in Pi-d2_H1/ Pi-d2_H2/ Pi-d2_H12 and (Xmn1) exist in Pi-d2_H20/ Pi-d2_H23/ Pi-d2_H24.

location, additional research is required. The majority of plant
disease-resistant proteins are unstable. Similar to XA21, PI-D2’s
juxtamembrane domain contains a putative proteolytic motif
(Ding et al., 2009). It has been suggested that this motif contributed
to the protein’s instability (Xu et al., 2006). All Pi-d2 haplotypes
were found to be conserved in this motif range, indicating that
the proteins coded by these Pi-d2 haplotypes remain unstable.
We show that, there are five polymorphic loci in the serine-
threonine kinase catalytic domain. Specifically, at site 686H/R,
nearly all rice varieties (R) differ from Pid2-digu (H). The

significantly low value of Tajima’D in the Serine-threonine kinase
catalytic domain of indica strains indicates that this region of
indica may have been subjected to a strong positive selection dur-
ing evolution. Although these polymorphism sites are not located
in the kinase’s ATP-binding region or serine-threonine specificity
signature sequence region. However, these polymorphic sites may
lead to conformational changes in the serine-threonine kinase
domain, thereby altering the PI-D2 intracellular domain’s ability
to bind to substrates. And additional research is required to con-
firm this conclusion.

Ml
il i A

Figure 5. Phenotyping of rice lines with Magnaporthe oryzae isolates. Disease reaction of transgenic plants inoculated with M. oryzae ZB15, W1-10, A23, 15-30-3a,
08-35-1a and W1-125. Columns: 1, UN1301 (empty vector control); 2, Pi-d2_NP; 3, Pi-d2_H1; 4, Pi-d2_H2; 5, Pi-d2_H12; 6, Pi-d2_H20, 7, Pi-d2_H23; 8, Pi-d2_H24.
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Therefore, it was hypothesised that the extracellular domain of
PI-D2 could bind to hydrophobic macromolecules, such as plant
hormones or proteins, with greater probability (Chen et al., 2006).
Among 309 rice varieties, our findings revealed two polymorph-
ism loci in the b-lectin domain (including 299 landrace and 10
common wild rice lines). Nonetheless, these two loci are not
within the core sequence of the b-lectin domain, indicating that
this domain has been conserved throughout the evolution of
rice. Interestingly, our investigation also suggested that resistance
differences across Pi-d2 alleles are associated with the change of
amino acids at position 363, with Pi-d2_H23 and Pi-d2_H24 con-
taining valine and the others containing alanine (alanine).

Over all, in this study, we investigated the nucleotide poly-
morphism and evolution patterns of the Pi-d2 gene among 299
rice landraces of Yunnan province and six wild rice relatives, and
50 polymorphic sites and 24 haplotypes of Pi-d2 were found.
Unlike the results of the previous studies, the functional site of
Pi-d2 did not show strict differentiation between Indica subgroub
and Japonica subgroub (Xie et al, 2022), which provides new
clues on the origin and evolution of Pi-d2. Furthermore, we
observed Tajima’s D value was —1.87012 with statistical signifi-
cance for Indica subgroub, which suggested that the rice blast
resistant gene Pi-d2, especially Kinase domain of it indeed, may
have undergone positive selection in Indica subgroub. Pi-d2 acts
as a haploid gene and originated in early stage of Poales evolution
(Vaid et al., 2012; Xie et al., 2022). All of functional/non-functional
haplotypes of Pi-d2 are present in the genome under strong direc-
tional selection during rice evolution, suggesting that Pi-d2 may
palys other biological role besides pathogen recognition.
Therefore, studying the mechanism of intracellular signalling
mediated by kinase domain of Pi-d2 is likely to further reveal its
biological function. In addition, we compared the blast resistance
spectra of six Pi-d2 haplotypes carrying the functional site under
Nipponbare’s genetic background. Intriguingly, the data revealed
that Pi-d2_H23 and Pi-d2_H24 have a broader range of blast resist-
ance than others, including the Pi-d2 haplotype of Digu, which
indicated that this two haplotype are beneficial for improving the
breeding of rice blast resistance.

Supplementary material. The supplementary material for this article can
be found at https:/doi.org/10.1017/51479262124000248
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study are available in the supplementary material of this article. These data
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