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DISTANCE FROM PROJECTIONS TO NILPOTENTS 

GORDON W. MACDONALD 

ABSTRACT. The distance from an arbitrary rank-one projection to the set of nilpo-
tent operators, in the space of k x k matrices with the usual operator norm, is shown to 
be sec(7r/(A:+2))/2. This gives improved bounds for the distance between the set of all 
non-zero projections and the set of nilpotents in the space ofkxk matrices. Another 
result of note is that the shortest distance between the set of non-zero projections and 

the set of nilpotents in the space of 3 x 3 matrices is J(3 — y/S)/2. 

Let 9{ be a Hilbert space and let (B(?{) denote the space of bounded linear operators 
on 9{ with the usual norm 

Mil = sup{|M|:*etf, ||*||=1} 

for all A G îB(^). Consider the problem of finding the shortest distance between the set 
of non-zero orthogonal projections (which we denote by &(?{)) and the set of nilpotent 
operators (which we denote by 9\[(9{)). (Recall that an operator P G (B{9() is in &(9{) 
if and only if P2 = P = P* and an operator N G ® ( # ) is in 0{fjH) if and only if TV7 = 0 
for some whole number/) 

When H = C2, as shown in [1], 

* - ( « ) -«-(Si) 
are a closest pair, and \\P2 — A^ || = l/>/2-

When the dimension of H is 3, the best previously known bound on this distance is 
2 /3 , which is achieved by the projection 

/ 1 / 3 1/3 l / 3 \ 
P= 1/3 1/3 1/3 

\ l / 3 1/3 1/3/ 

and the nilpotent 
/ 0 2/3 2/3 \ 

N=\0 0 2/3 . 
\ 0 0 0 / 

In [3], it is shown, using a quantitative spectral continuity theorem, that the distance 
between the set of non-zero projections (all projections referred to in this paper are or­
thogonal projections) on a space 9{ and the set of nilpotents on the same space is always 
at least 1 /2 , and \itt is infinite dimensional, the distance is shown to be 1 /2 . 
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Here we are mainly concerned with a related problem of computing the distance from 
the set of rank-one projections to the set of nilpotents. This problem is interesting in its 
own right, and gives an elegant solution. The answers we obtain to this question also 
allow us to show that the distance from the set of nonzero projections to the set of nilpo­
tents in #(C3) is ^(3 - \ /5)/2, and gives better bounds for the shortest distance from the 
set of non-zero projections to the set of nilpotents in #(C*). This allows us to disprove a 
conjecture of Herrero concerning these distances. 

Let us begin with definitions and notation for the two main sequences of distances 
that concern us. 

DEFINITION. Let 

6k = inf{\\P -N\\:Pe <P(C*)9 N G ^(C*)} 

and 
vh = inf{\\P -N\\:Pe 2>(C*),rankP = h N e fAftC*)} 

forJt= 1,2,.... 
As mentioned, the sequence 6k has been extensively studied, and although values are 

not known, a number of bounds on the sequence are known (see [4], [7]). The best bound 
known for large values of A: was obtained by Herrero [4] using Berg's technique and is 

l/2<6k<l/2 + sin(7r/[(Jfc+ l)/2]) 

for k > 3 (Here, and throughout this paper, [ ] denotes the greatest integer function.). So 
8/ç decreases to 1 /2 as k goes to infinity. A sketch of the background information about 
6k can be found in Chapter 2 of [5]. 

Clearly 6k < Vk for all values of A: since we restrict the set of projections over which 
the infimum is taken when computing z/̂ . Also, for all values of A: there exists at least one 
rank-one projectionPk and one nilpotent TV* such that i/k = \\Pk~Mj|- (Since i/k < 1 and 
all projections have norm equal to 1, a nilpotent as close to the set of projections as the 
0 nilpotent can have norm no greater than 2, so we need only consider such nilpotents. 
But both the set of rank-one projections and the set of nilpotents of norm no greater than 
2 are compact in #(C*), so the infimum is attained.) Similarly, for each k, there exists a 
projection and nilpotent which are at a distance of 6k. 

We shall now state the main theorem of this paper. Its proof shall be given, interspersed 
with some asides on related topics, throughout the remainder of this paper. 

THEOREM 1. For k = 1,2,..., the shortest distance from the set of rank-one pro­
jections to the set of nilpotents in the space *B(Ck) is 

j / * = sec(7r/(fc + 2))/2. 

As we begin to prove the main theorem, we give a number of alternate definitions 
ofi/k. 
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Both the set of rank-one projections and the set of nilpotents are invariant under uni­
tary conjugation. That is, if P G !P(?{\ N G Hi^() and U is a unitary operator in 
®(# ) then UPU* G <£(?<) and UNIT G fA£(#). Also, such unitary conjugation does 
not change norms, \\A\\ = \\UAU*\\ for all A G S ( # ) and unitary [/ G <B(jH). Since, in 
fact, all rank-one projections are unitarily equivalent, for k = 1,2,..., 

vk = M{\\P-N\\:NeWS?)} 

where P is an arbitrary fixed rank-one projection in 2?(C*). Also, since every nilpotent 
operator is unitarily equivalent to one whose matrix, with respect to the standard basis, 
is strictly upper-triangular, we have that for k — 1,2,..., 

vk = inf{\\P - T\\ : P G 2>(C*),rankP = 1, T G T(C*)}, 

where T(C*) denotes the set of operators in ®(C*) which are strictly upper triangular 
with respect to the standard basis. It is this definition of vk that will be the most useful. 

A slight digression on rank-one operators is now in order. If A G 1i(jH) has rank 
one, then ker1,4 is a one dimensional closed subspace oîtH. Choose a non-zero vector 
y G ker1^ and let x = 4y/IH|2 then, 

A(z) = (z,y)x 

since this is obviously true for vectors z in ker^l or ker1 A. A standard notation for this 
rank one operator is A = x ® >>*, and ||x ® y || = ||JC|| ||JK||. When A is also a projection, 
then ker1 A = Ranged and so if e G ker1 A is chosen to be a unit vector, A = e®e*. 

Using the above notation, we can give another equivalent definition of i/k. 

vk = inf{||e® e* - T|| : e G C*,|M| - l , r e T(C*)} 

= inf {inf{||e® e* - 7|| : TG T(C*)}}. 

In order to compute i/*, we first must compute the distance of a rank-one projection 
to the space of strictly upper triangular operators. The following theorem, a version of 
the Arveson Distance Formula, allows us to do this very thing. 

THEOREM 2 [6]. Let {e/}f=1 denote the standard basis for Ck and let P$ = 0 and 
Pi = Y!j=lej®e*fori = 1,. . . j denote the orthogonalprojection onto the i-dimensional 
subspace spanned by {ejYj=x. Then, for an arbitrary operator A G %(&), the distance 
from A to the set of operators whose matrix with respect to the standard basis is strictly 
upper triangular is 

distU ?(&)) = inf{\\A -T\\:Te ?((*)} = max \\PJLxAPi\l m 
v ' \<i<k ' 
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Applying this, 
vk= inf max\\Pl_xe®e*Pi\\ 

IWI=i 

= inf ma* \\Pt\e®(Pie)*\\ 

M\ = l 

= inf maxHP^^IIIlP^II. 
eeCk \<i<k 

Now, if we set at(e) = | |P^| |2 then since 1 = ||e||2 = ||P/e||2 + HP^H2 for ail 
/ = 1,2, . . . ,£ , we have that 1 — a,-_i(e) = HP^i^H2. Hence, 

vk = inf max J{\ - a;_i(e)We). 
e^Ck l< i<* V V ' 

IHI=i 

Note that any sequence of the form 

0 = ao < a\ < — - < ajç-i < ak = 1 

can be achieved as {<*/(e)}f=1 for some unit vector e G C*, namely 

and hence 
i/* = inf max \/(l — a/_i)*z/. 

To compute this we need the following. 

LEMMA 3. The above infimum is achieved when all the terms (1 — fl/-i)a, are equal 
and hence when at — a\ / ( l — at-\)for i = 1,2,..., k, so 

Vk = inf{^/a~i : 0 = ao < a\ < • • • < ak-\ < ak = 1, and 
a\ — ^ i / ( l — ai-\)fori = 1,2, ...&}. 

PROOF. Suppose that we are given a nondecreasing sequence {at}k
i=l where all the 

terms (1 — <ZJ_I)Û; are not equal and choosey between 1 and k to be the largest index at 
which the maximum is achieved. Then the maximum of the k terms is (1 — fl/-i)o/. With 
no loss of generality we may assume that 

(1 -aj„i)aj>(l-aj)aj+i. 

(If it occurs that y = k, replace the sequence {<z/}f=1 by the sequence {1 — ajt_/}f=1 and 
repeat above. If againy = k then the terms are all equal.) 

Also, we may assume that ay > a/_i, since if a, = aj-\ we obtain from the above 
inequality (and the fact that a} ^ 1) that a,j > aJ+\ which is a contradiction. 
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Note that 

> l-aj 1 - o/_i 

and the function / —•» f/(l — t) is an increasing function on the interval [0,1], we can 
choose a number aj such that aj < ay, aj > ay_i and 

aj ^ ^7+1 
> 1 - aj 1 - ay_i ' 

Define a new nondecreasing sequence {6/}f=1 by 

aj, if i=j; 
{a/? otherwise. 

Then either 
max(l — bi~\)bi < max(l — a,-_i)a/ 

or the largest index at which the maximum of the terms (1 — bi-\)bi occurs is now less 
thany, and we may repeat this procedure until the maximum is decreased, or the terms 
are all equal. • 

If we set 

^ = ih 
then a sequence recursively defined by a/ = a\ / ( l — a/_i) for i = 1,2,..., k can alter­
natively be described by a\ — t and ay =f?\0). Hence, 

vk = mf{y/t:t>09mf}k\0)=l} 

or equivalently 
v2

k = mf{t>0:JÎk\0)=l}. 

As mentioned earlier, it has been shown that 6k > 1 /2 for all k = 1,2, Since vk > £*, 
this implies that vk > 1/2 as well. This can be seen directly from the above formula for 
vk. If, for some k = 1,2,..., we have vk < 1/2 then the above formula gives that 
f}k\0) = 1 for some t with 0 < t < 1/4. But it is easily checked that for such t, we 
always have that 

„ ^ 1 - vT^4~; i - y T ^ 4 * 
M*) < ^ whenever 0 < x < . 

Note thaty^(O) is a rational function of t so we can define 

Pk-\{t) 

qk-\{t) 

for k = 1,2,..., then/?0(0 = t, qo(t) = 1 and 

Pk(t) 

=# }(0) 

t tqk-i(t) 

fltig #_!(/)-/>*_,(/) 
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so we obtain the recursive formulas: 

Pk{i) = tqk-1 (0 and qk(t) = qk_ x (t) - pk_ x (t). 

Combining these we get the recursive formula qk(t) — ak-\{t) — %-2(0 for qk(t), with 
initial conditions q-\{t) = 1 andgo(0 — 1-

The condit ion^ (0) = 1 becomespk-\{i) = #*-i(0 or, by the recursive formula for 
qk{t\ qk{i) = 0. Therefore, 

v\ = inf{* > 0 : qk(t) = 0, where qk{t) = qk^(t) - tqk-2(t\ q-\(t) = 1, q0(t) = 1}, 

so we have determined i/k, up to finding the smallest positive real zeroes of a sequence 
of inductively defined polynomials. Later, we will derive formulae for qk(t) and prove 
the general form of vk stated in Theorem 1, but first, let us see what is readily evident. 

Clearly, the smallest zero of q\ (i) — 1 — f is 1, so i/i = 1. Of course, this is trivial since 
this is the distance, in the space ^(C1) = C1 from the set of rank one projections ({1}) 
to the set of nilpotents ({0}). Also, qi{t) = q\{i) — tqo(t) = \—t — t— 1—2/, which has 
smallest zero 1 /2 , so 1/2 = I / A / 2 which agrees with the example given earlier. A little 
elementary computation shows that q^(f) — q2{i) — tq\(t) = I — 2t — 3? has smallest 
zero (3 — y/S)/2 so 1/3, the shortest distance from the set of rank-one projections to the 

set of nilpotents in #(C3), is ^(3 - >/5)/2. We can show even more in this case. 

COROLLARY 4. The shortest distance from the set of all non-zero projections to the 
set of nilpotents in the space of 3 x 3 matrices (i.e. *B(C3)) is 

3-y/S 

PROOF. AS shown above, the shortest distance from the set of rank-one projections 

to the set of nilpotents in ®(C3) is J (3 — >/5)/2, so to complete the proof we need only 
show that the shortest distance from the set of non-zero projections to the set of nilpotents 
can only be achieved by rank-one projections. Suppose P G (P(C3) and has rank greater 
than 1. Then, if NelA£(C3) 

2 < rankP = trace(P) = trace(P - N) < \\ trace || ||P - N\\, 

since all nilpotents have trace 0. But, the trace has norm 3 on ®(C3) so ||P—N\\ > 2/3 > 

J (3 — \fS)/2 for all nilpotents and all projections of rank greater than 1. • 

This corollary tells us that, at least in S(C3), the non-zero projections closest to the 
nilpotents (which have trace 0) have trace as small as possible. This heuristic guide leads 
to the following conjecture. 
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CONJECTURE. For all k = 1,2,..., 6^ = y h that is, a closest projection to the set 
ofnilpotents in *B(Ck) is of rank one. 

For larger values of k, an imitation of the proof of Corollary 5 gives that a closest 
projection to the set ofnilpotents in $(C*) can have rank no greater than k/2. 

Returning to the main thread, the analysis of i/*, our next step shall be to develop 
non-inductive formulae for the polynomials qk{t). Evidently, qk(t) is a polynomial of 
degree [(k + l)/2] with integer coefficients. A straightforward induction proof shows 
that 

where 

. = { «#â)f> i f a ^ b> 
b] 10 otherwise. 

(Note that the «-th term in the sum is zero for n > [{k+ l)/2].) This formula shows 
that qk(t) has no negative zeroes; however, the following alternate description of qk(t) 
will better allow us to obtain exact values for vk for all values of A:. These formulae for 
qk{t) are obtained by generalizing a common method of deriving values of the Fibonacci 
sequence. 

The inductive formula qk(t) = qk-\(t) — tqk-2(t), where q-\ = 1 and qo = 1 can be 
rewritten as the 2 x 2 matrix equation with polynomial entries 

) [l 0){qk.2(t)j 

o')" 

qk(t) 

i o J i 

The matrix 

(i r) 
has eigenvalues (1 ± y/l — 4t)/2, so, as long as / ^ 1 /4 , it can be diagonalized. Doing 
so, 

1 -t\ „{*Q* 0 
i o ; p[ o i=£3L*pl 

where 

and 

Hence 

[ 2 2 ) 

p-l= - ,2 - i + v T - 4 r 
4v/T=^l-2 1 + vT At}' 

( iM)=P( 
k 

^Lp/m1 ° W1 
0 ( i = ^ > 

p-
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so by multiplying and considering the first coordinate of the resulting vector, we obtain 
that 

qk{t)=7^tt[[—^) -y—2—J j 
for all/ i- 1/4. 

We shall be interested in the case where f > 1/4, (since we know that vk>\\2, there 
are no zeroes less than or equal to 1 /4), so to accent the complex nature, we rewrite 

- i ( I + iVïi^î\k+2 f 1 - iy/At - 1 
*tW = r. r 

V 4 f - 1 n Finding the smallest real zero of q^if) is equivalent to finding the smallest positive zero 

(setting;; = \/4t— 1, we have Xhatpkiy) = qk(t) for t > 1/4). 
Now/7 :̂(y) = 0 for some y > 0 if and only if 

(\+iy)k+2 = (l-iyf+2. 

Let pk+2 = g2™'/^) then 

\+iy\k+2 l + / y 

for some integer n. Solving y we obtain that pk(y) = 0 when 

1 /i« - 1 1 on/2(on/2 - o~n/2} 
_ l Pk+2 l _ l Pk+iyPk+2 Pk+2 ) 

7 tf*+i 7PiM2
2+p;+f) 

_ ^ 2 - ^ / 2 2 _ sin(̂ /(fc + 2)) _ 

for some integer w. Thus, the smallest positive zero of pk(y) occurs when n = 1. Since 
y2 = 4£ — 1, the smallest zero of q^if) which is greater than 1/4 is 

tanz
 (TT/(A: + 2 ) ) + 1 _ sec2(7r/(£ + 2)) 

n = 4 = 4 

so 
sec(7r/(A; + 2)) 

Vk = AA> = — L — j • 

This ends the proof of Theorem l. • 
An immediate corollary of Theorem l is the following result concerning infinite di­

mensional spaces. 
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COROLLARY 5. For 9{ an infinite dimensional Hilbert space, I/QQ, the distance from 
the set of all rank-one projections to the set of all nilpotents in the space *B(H) is 1/2. 

PROOF. This distance is greater than or equal to 1/2 since, as mentioned in the 
preamble to Theorem 1, the distance from the set of all non-zero projections to the set 
of nilpotents is 1/2. Clearly, however, by considering each Ck as a subspace of H, we 
have that I/QQ < v^ for all k. Hence 

i/oo < lim vk = lim sec(7r/(Â: + 2))/2 = 1/2 
k—>oo k—>oo v ' 

and the corollary is proven. • 
There is a quantity r/*, which is often considered in conjunction with 6k, defined by 

m = {\\P-N\\ :P e nrt), Ne^(^i ^ = 0} 

where 9f is a separable infinite dimensional Hilbert space. It is apparent that 7/* <6k < 
i/k. In [5], Herrero conjectured that rjk = 8k and a conjecture was also made about the 
bounds on 77*. He theorized that the sequence {k(r\k — 1 / 2 ) } ^ has a limit as k goes to 
infinity and that 

?r/2 < lim k(r]k - 1 /2) < 2TT. 
k—>oo 

Theorem 1 disproves the last part of the above conjecture, since it implies that 

limsupÀ;(77£ — 1/2) < lim sup k(i/k — 1/2) 
k—+00 k—+00 

*-oo V 2 2J 

contradicting the conjectured lower bound. 
Actually finding the closest pairs {Pk,Nk} which achieve the shortest distance in 

(B(C )̂ is problematic. One of the cornerstones in developing the formulae for z/# was 
the Arveson Distance Formula. This gives a formula for the distance from a fixed oper­
ator A to the upper triangular operators. However, to explicitly find an upper triangular 
operator which is closest to A one must compute the square roots of a number of positive 
operators. Rather than do this we make a few reasonable assumptions which are borne 
out. If {Pk, Nk} is a closest pair, then Pk — Nk is an operator of norm i/k. It seems rea­
sonable that this operator be vk times a unitary, since otherwise, it might be possible to 
change Pk or N^ in some direction and decrease the distance between them. When this 
assumption is correct, starting from Pk, and assuming that Pk — Nk is a multiple of a 
unitary, one is able to construct Nk by solving a few linear equations. In the process of 
doing so, we note that the unitary has a very special form. With respect to the basis in 
which Nk is strictly upper triangular (which we have chosen to be the standard basis), the 
matrix of this unitary has all the entries which are above the first superdiagonal equal to 
zero. 
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THEOREM 6. For k a fixed positive integer, {fl/}f=0 a nondecreasing sequence of 
positive numbers satisfying a$ = 0, a\ = v\ and at — a\/{\ — a[-\)for i = l,2,...,k, 
and {z/}f=1 a sequence of complex numbers of modulus 1, let 

ek = (z\y/a\ - ao,z2y/a2-a\,...,zky/ak — ak-\) 

andPk = ek ® e\ so thatPk is the rank-one projection with matrix entries, with respect 

to the standard basis, 

(Pk)ij = ZiZjy/(ai-ai-i)(aj- tf/_i) 

and Nk the nilpotent operator with matrix entries, with respect to the standard basis, 

"0, tfi>j; 

[ z/z* y/fa - ai-\)(aj - aj-i)9 ifi <j-2. 

then {Pk,Nk} is a closest pair, and Pk — Nk = Uk, where Uk is vk times a unitary and 
has entries 

I ZiZ*jyJ(ai - at-xXaj - aj-i), ifi >j; 

0 ifi<J-2. 

PROOF. In the proof of Theorem 1 it was determined that the rank-one projections 
which are closest to the set of nilpotents must be of the above form. It is clear that Pk is 
a projection and that Nk is a nilpotent. It is left as an exercise to check that Uk is vk times 
a unitary and that Pk — Nk = Uk. m 

Note that it is not clear whether all closest pairs are of the above form; however, it 
seems reasonable that this be so. If every closest pair {Pk, Nk} is such that their difference 
is a multiple of a unitary, then, by the uniqueness of the above construction, all closest 
pairs must be of the form in Theorem 5. 

To save the reader from tedious calculation, note that 

Pi 

( ^ V^ 
ll+5\/5 

•11+5A/5 
2 

3^/5 
2 

V~5 / 
l-ll+5y/5 

3 ^ 5 \ 
2 l 

—ll+5x/5 
2 

3^/5 
2 

and 

N3 = 
/0 

0 
\0 

-1+A/5 
2 

3 ^ 5 \ 

0 
0 f •l+y/5 

2 

0 / 
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are a closest pair in (B(C3) (and, by Corollary 4, a closest pair among all non-zero pro­
jections and all nilpotents as well). Also, 

/ 

P3-N3 = 

3-V5 
_2 
-ll+5\/5 

2 

3-A/5 

V-^ + vf 
- 2 + X/5 

f •11+S>/S M / 
is 7(3 — \/5)/2 times a unitary. 

In ^(C4), a projection P4 and a nilpotent A^ which achieve the shortest distance be­
tween the set of rank-one projections and set of nilpotents are 

P4 = 

V I _L_ _L_ 
\ 3 1+/Ï i./ï 

and 

1 
3 

1 
3y/2 

1 
3v/2 1 \ 

(0 < 
1 

/ 2 
1 

3A/2 h 1 
3>/2 

1 
6 
j 

6 5; 
1 

1 

ft 
1 

and # 4 = 
0 0 2 

3 
1 

3v/2 

575 6 6 i75 0 0 0 1 

sfi. 1 
3 

1 
3v/2 

1 
3v/2 

- 2 
3v/2 

0 

\ 0 0 0 0 / 

P4 -iV4 = 
1 

3\/2 
1 

3v/2 

1 
6 
1 
6 

- 1 
2 
1 
6 

0 
- 2 

3\/2 

\ i 1 
3A/2 575 3 ^ 

which is a 1 / y/3 times a unitary. 
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