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Abstract

A new formula for the gravitational potential of flattened systems is proposed. It is a modification of the Miyamoto–Nagai
potential and should be applied to very flattened systems, exponential discs as a typical example. The resulting rotation
curve agrees sufficiently well with that obtained by using special functions and the total masses remain the same. The
functions contained in the new term can improve the agreement for the rotation curve and also reduce the effect of negative
density values which appear off the midplane.
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1 INTRODUCTION

The gravitational potential proposed by Miyamoto and Nagai
(1975) (MN) is well known. Its applications to models of the
Milky Way and other disc galaxies are numerous (e.g. Allen
& Santillan 1991, Ninković 1992, Dinescu, Girard, & van
Altena 1999, Binney & MacMillan 2011). The observational
evidence is in favour of exponential discs characterised by the
dependence of the circular speed on the distance to the centre
(rotation curve) as given in Freeman’s paper (1970). As to
the fitting of the circular-speed dependence resulting from
the Miyamoto–Nagai formula to Freeman’s curve, there are
some difficulties indicated in an earlier paper of the present
author (Ninković 2003a). In the present paper, a new formula
for the gravitational potential is proposed. It appears as a gen-
eralisation of MN and it contains the formula analysed in the
earlier paper (Ninković 2003a) as a special case. The density
generating this potential as function of the coordinates is also
studied.

2 THE POTENTIAL FORMULA

The gravitational potential in stellar systems (subsystems),
such as, for instance bulges and discs of spiral galaxies, is
often represented by a variant of the Green formula (e.g.
Cuddeford 1993). This would mean that in general the grav-
itational potential � should have the following form:

� = GM
R , (1)

where G and M are constants, whereas R is a function. The
first constant (G) is the universal gravitation constant, the

second one (M) is the total mass of the system (subsystem)
appearing as the source of the gravitational field. R is a
function of the generalised coordinates and time. It must
satisfy the following conditions: to have dimension of length
and to be approximately equal to the distance from the centre
of the source system r at the points lying very far from the
system centre.

The potential of a flattened stellar system, as here of in-
terest, is assumed to depend on two arguments: R, distance
to the axis of symmetry z, and |z|, distance to the midplane.
The function proposed by MN is a well-known example

RMN =
[

R2 +
(

a +
√

z2 + b2

)2
]1/2

. (2)

In this function, a and b are constants and for significantly
flattened systems satisfy b/a < 1. When the function RMN
is substituted in Equation (1), one obtains the Miyamoto–
Nagai potential formula. The present author proposes here a
potential formula which contains a new termRN , as follows:

� = GM
RMN − RN

. (3)

In a general case, the new term RN is also a function of the
same two variables, R and |z| and is everywhere positive.
Since RMN satisfies the condition of being approximately
equal to the distance r at the points lying very far from the
system centre, the new term at such points must be negligibly
small compared to RMN . In this way, the difference RMN −
RN will satisfy the condition of being approximately equal
to the distance from the centre r at very distant points.
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2 Ninković

Figure 1. Rotation curves from Equation (7) as described in the text (blue
curve γ1 = −0.1, red curve γ1 = −0.3) together with Freeman’s (1970)

curve; ξ = R/Rd , χ = uc/
√

GM
Rd

.

3 THE ROTATION CURVE

The surface density of the disc of a spiral galaxy, bearing in
mind the observational constraints, is usually assumed to be
exponential (often referred to as Freeman law), for instance
its luminosity or mass density ρ obeys the following formula
[e.g. Deg & Widrow 2013, their Equation (13)]:

ρ(R, z) = ρ(0)exp

(
− R

Rd

)
sech2

(
z

zd

)
, (4)

where Rd and zd are constants. As easily seen, the surface
density following from this expression will depend on R as a
simple exponential function with Rd as the scale length.

Unfortunately, Equation (4) yields no analytical solutions
for the potential via the Poisson equation. This is important
because with the known potential, it is possible to obtain the
circular speed uc by using the well-known relation

uc =
√

−R
∂�

∂R
, z = 0. (5)

The plot of circular speed versus distance R according to
Freeman’s solution (Figure 1) is characterised by existence
of radius at which the circular speed is the same for the
Keplerian and exponential disc cases of the same mass. As a
consequence, at infinity the circular speed for the exponential
disc approaches the Keplerian curve from ‘above’, i.e. from
higher values of uc. This is not the case with the potential
formula of Miyamoto and Nagai. Substituting Equation (2)
in Equation (1) and applying Equation (5), one obtains the
dependence of the circular speed on R corresponding to the
Miyamoto–Nagai potential. Since z = 0, the parameters a
and b enter the circular-speed dependence always through
their sum a + b. In other words, the flattening expressed by
means of b/a, does not affect the circular-speed dependence.
The maximum circular speed occurs at about 1.4(a + b) and
the circular-speed value resulting from the Miyamoto–Nagai

formula is everywhere smaller than the value yielded by the
Keplerian dependence for the same total mass. Due to this,
a good fit between the circular speed following from the
potential of Miyamoto and Nagai and that corresponding
to the exponential disc is achieved at the cost of different
total masses. Usually the total mass in the Miyamoto–Nagai
formula is about 1.5 times as large as that of the exponential
disc (e.g. Ninković 1992).

The purpose of introducing the new termRN [equation (3)]
is to reproduce the property of intersection with the Keplerian
curve and to have the same total mass as for the exponential
disc. As shown earlier (Ninković 2003a), this is possible even
with a constant substituted for RN . The constant introduced
here will be Rd , the scale length. Then in fitting the rotation
curve, one should determine the ratio (a + b)/Rd . According
to the definition assumed in the present paper [Equation (1)],
the potential cannot have negative values, so this ratio must
be greater than 1. We find a best fit value of 2.1. The fit can
be further improved. This is done by generalising the term
RN in the following way:

RN = 1

2
Rd

⎡
⎣

(
1 + R2

c2
1

)γ1

+
(

1 + z2

c2
2

)γ2

⎤
⎦, (6)

where γ1 < 0.5, γ2 < 0.5. Though it may seem that the num-
ber of parameters now tends to be too large, this is not the
case in practice. For instance, Rd is quite acceptable to be
substituted for c1. The second term in Equation (6) (the func-
tion of |z|) is foreseen because of the density distribution
the potential returns (see next section). With regard to all
equations written above except Equation (4), one obtains the
following expression which yields the circular speed:

uc =
√√√√√√√

GMR⎡
⎣√

R2 + (a + b)2 − 1
2 Rd

(
1 +

(
1 + R2

R2
d

)γ1

)⎤
⎦

2 ·

·

√√√√√ R√
R2 + (a + b)2

− γ1

R

Rd

⎛
⎝1 + R2

R2
d

⎞
⎠

γ1−1

. (7)

The curves presented in Figure 1 follow from Equation (7)
with a + b = 2.1Rd , γ1 = −0.1, and γ1 = −0.3. They are
presented together with the corresponding curve from Free-
man’s (1970) paper. The dimensionless variables, ξ and χ ,
are defined as: ξ = R/Rd , χ = √

GM/Rd . The comparison
requires the scale lengths Rd and the total masses M to be
equal in both formalisms.

4 THE DENSITY

The density which generates a gravitational potential and the
potential are related through the Poisson equation

∇2� = −4πGρ. (8)
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A New Potential Formula Applicable to Flattened Systems 3

Figure 2. Density dependence on height |z|, for R = 3Rd , γ1 = γ2 = 0 [see Equation (6)]; distance
unit Rd , density unit M R−3

d .

∇2 is the Laplacian, ρ is the density. The full formula is given
in the Appendix.

In the density calculation, the constants c1 and c2 [Equation
(6)], as well as the ratio b/a, must be specified. The fit for
the rotation curve has yielded a + b = 2.1Rd , under the con-
dition b � a (flattened mass distribution), so it is easy to
conclude that a is approximately 2Rd . In such conditions, the
first term within the brackets in Equation (6) should not differ
substantially from 1. As for the second one, a too small c2 can
contribute to significant values of RN , for instance c2 = b,
leads to such a high RN that the denominator in Equation (3)
becomes negative and, as a consequence, the potential, con-
trary to the convention assumed here, becomes also negative.
Thus, it is reasonable to assume c1 = c2 = Rd .

In spite of introducing the new term RN [Equations (3)
and (6)], negative density values cannot be avoided. In the
midplane, the density is nowhere negative. Its dependence
on R in z = 0 is a monotonously decreasing function. As
for the dependence ρ(z), R = const, there are three types of
profiles: (i) with a minimum ρmin < 0 and then approaching
zero from the negative side (Figure 2); (ii) a wavy profile,
with one minimum and one maximum and then approaching
zero, along R = 0 both extrema can be positive, in general the
minimum is negative, the maximum positive (Figure 3); (iii)
a sound profile, without negative values and monotonously
decreasing, but obtained along R = 0 only (Figure 4). In or-
der to be more clearly visible, the most essential part of the
curve is magnified and given in the same figure (Figures 2
and 3).

In the simplest case—γ1 = γ2 = 0 [equation (6)]—the
density dependence ρ(z), R = const, is always of type (i)
(Figure 2). The z value at which the density minimum occurs

depends on R, the smaller R is, the closer is the minimum to
the midplane. Finally, when R tends to infinity, the z value
also tends to infinity, because the density tends to zero.

When the term RN [Equations (3) and (6)] takes a func-
tional form, i.e. both γ1 and γ2 are non-zero, the dependence
ρ(z), R = const, changes the form, towards the types (ii) and
(iii). For γ1, some kind of critical value appears at which the
dependence ρ(z), R = 0, obtains the form (iii) (Figure 4). It
should be γ1 < 0, the modulus is affected by the ratio b/a.
For instance, for the pair of values b = 0.18, a = 1.92, the
critical value is γ1 = −0.3, for b = 0.08, a = 2.02, the corre-
sponding is γ1 = −0.5, for b = 0.02, a = 2.08, γ1 = −0.6,
etc. The influence of γ2 is not so strong; it is better to be
γ2 > 0, but increasing γ2 leads to weaker decreasing of ρ

with increasing z. The most important is that increasing the
modulus of γ1 further does not improve the situation, as the
negative density values remain and the wavy profiles sur-
vive (Figure 3). However, the moduli of both exponents γ1
and γ2 are limited. As for the former, the main limitation
comes from the fit of the rotation curve, in the case of the
latter, since it is supposed to be positive, the physical limi-
tation (γ2 < 0.5) becomes essential. The final conclusion is
that the best achievable result is to obtain a monotonously de-
creasing density along R = 0 and wavy density profiles along
cylinders R > 0. For the purpose of giving a more clear ex-
planation the following example is chosen. The values of
the parameters in Equations (3) and (6) are: a + b = 2.1Rd
(b = 0.18Rd), c1 = c2 = Rd , γ1 = −0.3, γ2 = 0.3. The ro-
tation curve (Figure 1—red curve) and the density profiles
(Figures 3 and 4) correspond to this example.

In Figure 2, we show another density comparison, typical
for γ1 = γ2 = 0, corresponding to the same a + b and the
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Figure 3. Density dependence on height |z|, for R = Rd , γ1 = −0.3, γ2 = 0.3 [see Equation (6)];
distance unit Rd , density unit M R−3

d .
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Figure 4. Density dependence on height |z|, for R = 0, γ1 = −0.3, γ2 = 0.3 [see Equation (6)];
distance unit Rd , density unit M R−3

d .

ratio b/a. The wave (Figure 3) can be explained by the rather
rapid density decrease with increasing distance to the mid-
plane. Beyond the centre, the density values in the midplane
are generally low, significantly lower than at the centre, so
that at reasonable distances to the midplane they are practi-
cally zero. Here, one obtains the density values by using the
Poisson Equation (8) which in the case of axial symmetry
means as the algebraic sum of three terms (see Appendix).
Clearly, in a numerical procedure instead of density values
of exactly zero we usually have values of low moduli with
both signs. In this way, the wavy density profiles obtained

here can be easily understood as due to numerical precision
issues.

5 DISCUSSION AND CONCLUSIONS

The present author proposes an analytical form for the gravi-
tational potential which would correspond to the exponential
disc, the most luminous subsystem of a spiral galaxy. This
is done by modifying the well-known formula of Miyamoto
and Nagai [Equations (1)–(3) and (6)]. In this modification,
there are three essential parameters: the total mass M, the
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exponential scale length Rd , and the other scale length b. The
other three parameters—a, γ1, and γ2 are auxiliary. Their
role is to improve the fit of the rotation curve particularly,
their values are limited. Since the system (subsystem) un-
der study is flattened, it must satisfy a � b, and bearing in
mind the constraint based on the rotation curve, one obtains
a ≈ 2Rd . The exponents γ1 and γ2 cannot exceed 0.5 and
γ1 is constrained to be small and negative, while γ2 lies in
0 < γ2 < 0.5. Thus, an exponential disc modelled in the way
as proposed here should be generally characterised by its total
mass and two scale lengths.

Though negative density values cannot be avoided com-
pletely, the functions in the new term [Equation (6)] con-
tribute to a significant reducing of this effect. A discussion
concerning the analogous spherical-symmetry model can be
found in Ninković (2003b).
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A APPENDIX

Equations (1) and (3) from the main text are given again

� = GM
R ,

R = RMN − RN .

The designations used are: �, the gravitational potential, G the uni-
versal gravitation constant, whereas RMN and RN are two functions
depending on the arguments R and z (axial symmetry).

The Poisson Equation [(8) from the main text] relating the density
and potential is also rewritten

∇2� = −4πGρ.

With regard to the axial symmetry, the Laplacian has the form

∇2� = ∂2�

∂R2
+ 1

R

∂�

∂R
+ ∂2�

∂z2
.

The derivatives will be

∂�

∂R
= −GM

R2

⎡
⎣∂RMN

∂R
− ∂RN

∂R

⎤
⎦;

∂2�

∂R2
= 2GM

R3

⎡
⎣∂RMN

∂R
− ∂RN

∂R

⎤
⎦

2

−GM
R2

⎡
⎣∂2RMN

∂R2
− ∂2RN

∂R2

⎤
⎦;

∂2�

∂z2
= 2GM

R3

⎡
⎣∂RMN

∂z
− ∂RN

∂z

⎤
⎦

2

−GM
R2

⎡
⎣∂2RMN

∂z2
− ∂2RN

∂z2

⎤
⎦.

The first function in the denominator RMN and its necessary deriva-
tives are

RMN =
[

R2 +
(

a +
√

z2 + b2

)2
]1/2

;

∂RMN

∂R
= R

RMN

;

∂2RMN

∂R2 =
RMN − R2

RMN

R2
MN

;

q = a +
√

z2 + b2;

∂RMN

∂z
= q

RMN

∂q

∂z
;

∂2RMN

∂z2
= qzRMN − qz(q

2/RMN )

R2
MN

qz + q

RMN

qzz;

qz ≡ ∂q

∂z
= z√

b2 + z2
, qzz ≡ ∂2q

∂z2
= b2

(b2 + z2)3/2
.

The second function in the denominator RN and its necessary
derivatives are

RN = 1

2
Rd

⎡
⎣(

1 + R2

R2
d

)γ1

+
(

1 + z2

R2
d

)γ2

⎤
⎦;

∂RN

∂R
= γ1

R

Rd

(
1 + R2

R2
d

)γ1−1

;

∂2RN

∂R2
= 2γ1(γ1 − 1)

R2

Rd
3

(
1 + R2

R2
d

)γ1−2
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+ γ1

Rd

(
1 + R2

R2
d

)γ1−1

;

∂RN

∂z
= γ2

z

Rd

(
1 + z2

R2
d

)γ2−1

;

∂2RN

∂z2
= 2γ2(γ2 − 1)

z2

Rd
3

(
1 + z2

R2
d

)γ2−2

+ γ2

Rd

(
1 + z2

R2
d

)γ2−1

.
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