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Abstract

In this essay, I will briefly sample different instances of the utilization of the concept of resilience, attempting to complement a comprehensive
representation of the field in the special issue of Development and Psychopathology inspired by the 42nd Minnesota Symposium on Child
Psychology, hosted by the Institute of Child Development at the University of Minnesota and held in October of 2022. Having established the
general context of the field, I will zoom in on some of its features, which I consider “low-hanging fruit” and which can be harvested in a
systematic way to advance the study of resilience in the context of the future of developmental psychopathology.
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Introduction

In its early and, perhaps, the broadest definition, resilience was
equated with the capacity to cope with and overcome adversity.
The origin of this now vast field of research and practice is typically
attributed, at least partially (Masten, 2007; Masten & Tellegen,
2012), to the work of Norman Garmezy who was concerned with
issues related to primary prevention of psychiatric disorders and
proposed and propelled the investigation of children who are at
risk for the manifestation of psychopathology later in life because
they were born to parents (mothers, fathers, or both) with
psychiatric disorders (Garmezy, 1985, 1992). In particular, he
focused on families of individuals with schizophrenia, stressing
that both the very origin of these children and their family
environment form a system of risk factors for the development
of psychopathology. In his earlier writings, Garmezy (1971)
juxtaposed vulnerable (whose unfavorable prognosis follows the
expectations generated by their familial risk factors) and
invulnerable (whose unfavorable prognosis upsets “our prediction
tables” and bears “the visible indices that are hallmarks of
competence,” p. 114) children underlying the importance
of developing not only prevention models aimed at curtailing
the incidence of susceptibility to psychopathology in vulnerable
children, but also enhancement models leading invulnerable
children to survival and adaptation.

Although this early work laid the foundation for the science of
resilience and offered the first broad notion of the concept, the
evolution and crystallization of both the definition and the field of
resilience have emerged through the contributions of multiple
researchers and multiple studies (Cicchetti & Garmezy, 1993;
Masten & Tellegen, 2012; Masten et al., 2023). As eloquently put,

“Resilience research co-emerged with developmental psychopa-
thology from the same nexus of influences (Cicchetti, 2006;
Masten, 2007)” (Masten & Tellegen, 2012, p. 346). Cicchetti’s work
was fundamental to this nexus as he has contributed to the
understanding of the phenomenon by interrogating it at different
levels of analyses (Cicchetti, 2010), approaching it from different
domains and contexts (Cicchetti & Rogosch, 2007; Curtis &
Cicchetti, 2007; Denckla et al., 2020), and developing and
evaluating the much-needed interventions for children and
adolescents who have lived through adverse experiences (Luthar
& Cicchetti, 2000). In this essay, I will briefly sample different
instances of the utilization of the concept of resilience, attempting
to complement a comprehensive representation of the field in
the special issue of Development and Psychopathology inspired by
the 42nd Minnesota Symposium on Child Psychology, hosted
by the Institute of Child Development at the University of
Minnesota and held in October of 2022 (Masten et al., 2023).
Having established the general context of the field, I will zoom in
on some of its features, which I consider particularly promising to
focus on to advance the study of resilience in the context of the
future of developmental psychopathology.

Definitions, definitions, definitions

Garmezy’s (1974) initial broad interpretation of resilience as the
capacity to maintain normative development and demonstrate
adaptive outcomes in the presence of adversity has been reflected
in the definition of resilience as presented by the American
Psychological Association, APA: “Resilience is the process and
outcome of successfully adapting to difficult or challenging life
experiences, especially through mental, emotional, and behavioral
flexibility and adjustment to external and internal demands”
(2024). Alternatively, paraphrasing, resilience is the physical and
mental (or behavioral and psychological) capacity to confront and
manage adversity generating stress, adjust to change, recoup,
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regain composure, and rise from holdups and setbacks. So : : : .
resilience is life itself!

Yet, although defined through broad strokes, such definitions
were marked (Denckla et al., 2020) as difficult to translate into
research language constrained by verifiable theories, falsifiable
hypotheses, and interpretable data. Correspondingly, there is an
ongoing quest for the definition of resilience through developing
theoretical interpretations that generate specific testable hypoth-
eses addressable with collectible and explainable data. Given the
range of existing definitions, can constant features of the concept of
resilience be noted? It seems so!

First, resilience assumes the presence of exogenous risk in
response to which it arises. Thus, it has been defined as having a
lower vulnerability to the presentation of such risk and
maintaining the overall normative developmental trajectory in
the face of the need to overcome or to continue facing adversity
(Rutter, 2006). This notion of resilience stresses its “relative”
nature (Holz et al., 2020), as it arises in response to outer factors of
various types (from wars and natural catastrophes to school
bullying). Yet, it is important to stress that resilience is a dynamic
developmental process (Rutter, 2012), endogenous to the
individual, and, therefore, characterized by person-specific
characteristics at multiple levels of functioning (e.g., genome,
brain, behavior). This facet of resilience stresses the consistency of
positive outcomes for resilient individuals in the context of various
adversities, alluding to “true (or overall)” resilience (Kaufman
et al., 1994). To capture this juxtaposition, resilience has been
discussed to have both state (in response to adverse exogenous
impacts) and trait (an ever-present endogenous denominator)
presentations and manifest as both domain-specific (e.g., in
response to physical stress) and domain-general (e.g., in response
to any stress) adaptation to the changed environment. However,
Denckla et al. (2020, p. 7) objects to the view of resilience as a trait:
“Resilience is multidimensional; it is not static or trait-like.”

Second, similarly to the need for the vision system to be exposed
to light to trigger its maturation or for the ontogenetic emergence
of language to be surrounded by language-producing talking
heads, resilience emerges in response to stress; in essence, it is the
other side of the story of stress reactivity. Therefore, resilience is
often studied explicitly and implicitly in the literature on stress
(McEwen, 1998). Yet, “While research is beginning to demonstrate
the link from social adversity to negative outcomes via altered
neural mechanisms, which is in line with the vulnerability
perspective, the resilience perspective has only recently become
a focus within neuroscience.” (Holz et al., 2020, p. 380). Thus, the
field knows much more about the neuroscience of adversity than
about the neuroscience of resilience. Yet, these systems are
interconnected, as adversity needs to be encountered, and stress
needs to be experienced to develop resilience, which, in turn,
modulates the response to stress and adversity. This interactive
nature of resilience has been identified as the capability of a
complex system to endure and/or rebound from disturbance; this
notion of resilience has been used in ecology (Holling, 1973),
economics (Rose, 2007), and sociology (McKeown et al., 2022).
Correspondingly, resilience is one of the characteristics of a
complex system capturing its dynamics sampled through the
system’s adaptive cycles; specifically, resilience refers to the
capacity of a system to successfully adapt to challenges that
threaten the function, survival, or development of that system
(Masten et al., 2021).

Third, as resilience is a systemic characteristic, it requires the
amalgamation of numerous signals from peripheral and central

sources, extending from short-range signaling of local circuits of
the nervous to long-range signaling of humoral immunity factors
of the immune system (Cathomas et al., 2019). The appreciation
of and appeal to the multilevel investigation of resilience was
made 30 years ago (Cicchetti & Garmezy, 1993). These multiple
interdependent levels have been conceptualized as allostatic
load, stress inoculation, developmental trajectories, epigenetic
factors, and transgenerational effects, among others (Southwick &
Charney, 2012). Yet, despite the conceptual and practical
appearance of finding psychological, biological, and biopsy-
chological protective markers characteristic of resilience, the field
still lacks an understanding of what these markers are, especially
when sampled at the individual levels. Although still not numerous
and mostly correlational in nature, there are studies sampling
resilience as a complex collection of systemic indicators at multiple
levels of individual functioning (Holz et al., 2020).

Fourth, although initially discussed as a rather rare positive
outcome in the high-risk context of familial risk for schizophrenia,
resilience has been reconceptualized as a common phenomenon
(Masten, 2001). A superficial analogy here is a differentiation of
big C and little c creativity (Runco, 2019), indicating both the
commonality (or not) of the process and the magnitude of the
product (small everyday creative moments or highly impactful
creative products). As per this analogy, Resilience (big R) pertains
to rare remarkable demonstrations of strength in the face of
adversity (e.g., Nelson Mandela and Aleksei Navalny), whereas
resilience (little r) is a quantitative trait measurable in the general
population. With regard to the latter, research has identified a
number of factors differently associated with resilience, such as
positively correlated strong social support, both through family
and the wider social network (Herrman et al., 2011) and negatively
associated social isolation (Tost et al., 2015); and such as positively
correlated active coping responses intended to gain actual or
perceived control of a stressor by minimizing its physical,
psychological, or social harm (Russo et al., 2012) and negatively
correlated passive coping, such as avoidance and helplessness
(Southwick et al., 2004; Wood & Bhatnagar, 2015). Relatedly,
there is accumulating evidence to differentiate passive and active
(or more active) resilience (Rakesh et al., 2019). There is an open
task of cross-mapping these various concepts onto a single “quilt”
of resilience.

This “quilt” of definitionsmakes studying resilience a challenge,
which necessitates an introduction of a specific definition used
prior to a study-based specification and operationalization of the
concept. So, what is the one for this essay? Here, resilience is
defined as an integral over an interval, where performance
is sampled behaviorally and biologically repeatedly (continuously)
as a process and cross-sectionally (categorically) as an outcome
(see the APA definition above) in the face of adversity and under
stress. This definition seems to reflect the four common features
of the multitude of conceptualizations of resilience, namely:
(1) the manifestation of resilience is substantiated by the presence
of adversity and stress; (2) resilience is a dynamic systemic
characteristic; (3) resilience is characterized by a complex
collection of systemic indicators at multiple levels of individual
functioning; and (4) resilience is a common feature of the general
population (i.e., a source of individual differences).

This endorsement of the definition in this essay is three-fold.
First, the current literature on the neuroscience of resilience has
established numerous targets that serve both as the (neuro)
physiological substrates and biomarkers of resilience. The analysis
of this literature presents the “hot spots” of resilience as a source of
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individual differences in the general population. Second, this
definition permits a description of resilience at multiple levels
of human performance and through the characterization of a
changing complex system as it interacts with adverse challenges.
Third, the availability of portable wearable and carriable devices
today permits the collection of the needed data to substantiate
and interrogate the notion of resilience as dynamic readiness
characterized as a continuum of (neuro)physiological states
integrated over numerous contexts, situations, and tasks.

(Neuro)physiological substrates and markers of resilience

To restate, resilience has been referred to as the capacity to face
adversity and manage stress within the normal range of
psychological and physiological functioning (Wu et al., 2013).
This definition assumes that there is a notion of what that normal
baseline is and what deviations from the baseline are acceptable for
readiness to perform optimally with and without different sources
of stress. Importantly, there is evidence (Ledford et al., 2020) that
self-reported appraisal of resilience (that calls for the awareness of
both the amount of stress and the individual’s readiness) appears to
be as accurate as the capture of resilience through various
biomarkers (that do not call for any awareness and are easily
recordable) in predicting outcomes (9.6% vs. 10.8%, respectively).
Yet, the predictive power of their combination is almost additive
(17.2%), indicating that only a partial and small amount of
predictive information contributed through these different types of
assessments overlap. Hence, although it is well-known that, among
others, both psychological and (neuro)physiological factors
contribute to resilience, it is important to focus on the latter, as
many relevant indicators can be collected noninvasively and
continuously.

It is accepted that the neurophysiological mechanisms of
resilience are remarkably intricate (Murrough & Russo, 2019).
Importantly, most of the data have been derived from studies of
stress reactivity (see juxtaposition above), and the hypothesized
apparatus has linked modifications in immune, hormonal,
and microbiota-related pathways substantiated by specific neuro-
circuits and genetic and epigenetic events and processes. Notably,
the general assumption is that salient features of resilience are
likely to rely on the active engagement of key (neuro)physiological
systems whose critical function is to maintain homeostasis rather
than on the absence of maladaptive alterations that are expected to
be generated by stress (Russo et al., 2012). To describe the systemic
adaptive response of the brain and body to stress, Bruce McEwen
coined the term “allostasis” (McEwen, 1998, 2012), which is a state
of themultilevel activation of the hormonal and cytokine signaling,
the sympathetic nervous system and hypothalamic-pituitary-
adrenal (HPA) axis, which have the capacity to calm down and
recover adequately (Osório et al., 2017). Thus, resilience can be
seen as derived from the specific (neuro)physiological allostatic
reactions that are produced in response to stress (Murrough &
Russo, 2019). These responses are “sufficient but not excessive”
and indicative of “rapid and efficient psychobiological recovery”
(Feder et al., 2019, p. 444). Importantly, for this discussion, these
responses are assumed to be replicable, although modulated by the
characteristics of stress.

Resilience in the brain

As the capacity to regulate emotions is a recognized aspect of
resilience, it has been hypothesized that the function of the (neuro)
physiological systems substantiating the cognitive restraint of

emotion (Kong et al., 2015; Takeuchi et al., 2014; Urry et al., 2004)
and reward circuitrymight be relevant for the understanding of the
(neuro)physiological bases of resilience. Behaviorally, resilience in
such studies is typically defined through indicators such as
inhibitory control (Maier & Watkins, 2010; Ochsner & Gross,
2005) and emotional appraisal and regulation (Hänsel &
von Känel, 2008; Maier & Watkins, 2010), and flexibility
(Waugh et al., 2008). Specifically, it has been demonstrated that
individual differences in these processes substantiated by the
related capability to employ prefrontal cortical (PF, or PF cortex,
PFC) control systems that control affective processing by the
amygdala and related structures mediate a response to adversity
(Rodman et al., 2019). Additionally, it has been hypothesized that
the parietal lobe (PL) might play a role in resilience due to its
centrality in the evaluation of the emotional relevance of the
external stimuli in particular and emotion regulation in general
(Bisley & Goldberg, 2010; Bzdok et al., 2016). Particularly, the
primary somatosensory cortex is responsible for initiating the
processing of sensory inputs, and the secondary somatosensory
cortex engages cognitive processes to complete their processing.
Both areas are located in PL, and, therefore, the lobe orchestrates a
complex interplay between incoming stimuli and pre-existing
somatosensory representations, generating fresh memory traces
(Wagner et al., 2005). Hence, it is sensible to wonder whether
children who experience early life stress (ELS) but exhibit
enhanced parietal functioning (i.e., children with, presumably,
stronger resilience) are less susceptible to the impact of the novel
external stimuli when they are somehow related to, reminiscent of,
or can trigger their past neglected experiences (Luo et al., 2023).

As the number of empirical studies has grown (Dedovic et al.,
2009; Pitman et al., 2012; Shin & Liberzon, 2010; van der Werff
et al., 2013), numerous brain structures have been implicated as
substantiations of resilience, including the anterior cingulate
cortex (ACC), hippocampus, insula, orbitofrontal cortex (OFC),
and ventro-medial and dorsolateral prefrontal cortical (vmPFC).
An early comprehensive review of the literature on the (neuro)
physiological bases of resilience has demonstrated that it arises
from a sophisticated orchestra of tuned-up structures connected by
the interchange between distributed brain systems, including the
amygdala, ACC, and PFC, which are neuromodulated (Feder et al.,
2019). A later review (Holz et al., 2020) fine-tuned the “convergent
resilience circuit,” still stressing its reliance on frontal regions,
particularly the perigenual anterior cingulate cortex (adjacent to
OFC), numerous regions of the PFC, and key limbic structures
such as the ventral striatum (VS). To illustrate, a concurrent
stimulation of the dorsolateral prefrontal cortical and OFC leads to
enhanced resilience (Salehinejad et al., 2017). In addition, there is
evidence of a positive association between resilience and a larger
hippocampal structure (Moreno-López et al., 2020).

Special attention has been given to findings of altered
hippocampus dentate gyrus (DG) development, as it has been
previously related to stress reactivity (Anacker et al., 2018; Boldrini
et al., 2019; Roddy et al., 2019) and depression and suicidal
behavior (Boldrini et al., 2019; Boldrini et al., 2013; Huang et al.,
2013; Roddy et al., 2019;Wang et al., 2010), and contains structures
involved in adult neurogenesis (Toni & Schinder, 2016).
Experimental manipulations of the ventral DG inmodel organisms
have been related to resilience to chronic stress and depressive-like
behaviors, suggesting a substantive and even causal role for the DG
in resilience (Anacker et al., 2018; Boldrini et al., 2019; Hill et al.,
2015; Tunc-Ozcan et al., 2019; Veena et al., 2009). Specifically, DG
neurogenesis made adult mice in the experimental group more
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resilient to chronic stress compared to control rodents (Anacker
et al., 2018). Contrary to this, inhibiting immature neurons
increased susceptibility to stress (Bagot et al., 2015; Jimenez et al.,
2018; Padilla-Coreano et al., 2016). Relatedly, antidepressant
treatments, exercise, and environmental enrichment have been
reported to enhance DG structure and function (Boldrini et al.,
2013; Erickson et al., 2011; Nuninga et al., 2020; Van Praag et al.,
1999; Veena et al., 2009). Antidepressants have been stated to cause
neurogenesis increase in mice (Malberg et al., 2000; Wang et al.,
2008), rats (Lyons et al., 2011), nonhuman primates (Perera et al.,
2011), and perhaps patients with depression (Boldrini et al., 2013;
Boldrini et al., 2009). It is well established that successful recovery
and adaptation after ELS (Charney, 2004) is marked by active
coping style, effective and efficient emotional regulation, and
adequate cognitive functioning, which might either result from or
lead to brain circuit remodeling, such as alterations in DG cellular
plasticity, encoding of emotion-related memories, and strengthen-
ing the amygdala–PFC connectivity (Boldrini et al., 2019). Given
this pattern of these findings, a possible translational outcome
might be related to the potential causal function of the DG in the
manifestation of depressive symptomatology after exposure to
maternal stress, as it can open pathways to novel interventions.

In substantiating the involvement of different brain structures
and networks, the literature cited illustrations of not only resilience
itself but also related behaviors. Specifically, positive coping has
been associated with an increased volume of perigenual anterior
cingulate cortex (Holz, Boecker, Jennen-Steinmetz, et al., 2016),
and the neighboring OFC has been labeled a neural marker of
optimism (Nes & Segerstrom, 2006). The latter, in turn, has been
linked to resilience (Feder et al., 2009; Ozbay et al., 2008), especially
in adulthood and older age (Feder et al., 2019), and reported to
mediate the connection between anxiety and lateral OFC (Dolcos
et al., 2016). Relatedly, the enlarged vmPFC was observed to foster
resilient functioning and safeguard against internalizing disorders
(Morey et al., 2016). There was also a report of the dynamic
changes in the mobilization of vmPFC in response to stress, with
prolonged stress exposure increasing engagement in this area
(Sinha et al., 2016). Additionally, various elements of this circuitry
have been implemented in research capturing the role of social
support in pain-related adversity (Coan et al., 2006; Eisenberger
et al., 2011; Eisenberger et al., 2007; Younger et al., 2010).

The major chunk of this literature pertains to group studies
utilizing structural and functional MRI (e.g., Amico et al., 2011;
Fischer et al., 2019; Hopper et al., 2007; Peres et al., 2011; Phan
et al., 2005; Rauch et al., 2003; Rauch et al., 2000; Rodman et al.,
2019; Shin et al., 2011; Sun et al., 2019; van Dijk et al., 2024), where
individuals who experienced ELS are compared to typically
developing individuals or to themselves when stratified by
such variables as absence or presence of a particular disorder
(e.g., PTSD, anxiety, or depression) or high-risk clinical groups are
compared to low-risk controls. Thus, post-ELS, in non-PTSD,
compared to PTSD, functional connectivity was decreased between
the insula and the right amygdala (Etkin & Wager, 2007) but
increased between the thalamus and the right medial frontal or the
left rostral ACC, rACC (Yin et al., 2011).

There also have been studies of healthy individuals investigating
the neural correlates of resilience (Burt et al., 2016; Gupta et al.,
2017; Kong et al., 2015; Reynaud et al., 2013; Salehinejad et al.,
2017; Waugh et al., 2008). Similarly to the research in clinical
samples, the generated findings are also quite mosaic, demonstrat-
ing both convergence and divergence with the findings from
studies focusing on clinical diagnoses. Of interest is the differential

engagement of the insula by low- (nonspecific activation to both
the neutral and aversive stimuli) and high- (specific activation only
to aversive stimuli) resilient people (Waugh et al., 2008), indicative
of the capacity to use brain resources adequately under threat.
Similarly, the salience network (i.e., the bilateral insula, dorsal
ACC, dACC, and rACC) demonstrated less spontaneous activa-
tion in healthy young adults (Kong et al., 2015), indicating,
perhaps, higher capacity for emotional regulation (Etkin et al.,
2011). There are also studies linking resilience to brain
morphology (i.e., cortical thickness and surface area) of cortical-
limbic regions engaged with the inhibition systems (Gupta et al.,
2017). A large sample study has documented that those adolescents
who experienced ELS and demonstrated positive life outcomes had
larger volumes of gray matter in the right middle and superior
frontal gyrus (Burt et al., 2016). Later, the resilience-higher gray
matter volumes were reported to be differentiated by sex so that the
sex-by-resilience interaction differentiated the role of the enlarged
gray matter in different areas of the brain for males and females
(Cornwell et al., 2023). Moreover, in a sample from a healthy
population with ELS (Luo et al., 2023), the engagement of PL was
reported to be characteristic of resilience. Yet, there are some
contradictory results on the involvement of PL (Barzilay et al.,
2020; Grieder et al., 2020), suggesting that it may have a complex
and context-dependent role in resilience. Healthy samples have
also been used to study functional connectivity, resulting in a
complex map of positive and negative correlations with various
brain regions and connectivity between them (Shi et al., 2019).
There are studies where resilience is defined as a continuous
indicator (e.g., adaptive psychosocial functioning adjusted for the
severity of childhood adversity; González-García et al., 2023) that
can be correlated with different characteristics of brain function-
ing, such as the nodal degree, which indexes the number of
associations that various brain regions form in a given network
(González-García et al., 2023).

Thus, the understanding of the brain foundation of resilience is
only emerging, and as of today, the relevant literature lacks
consistency (Eaton et al., 2022; Méndez Leal & Silvers, 2021; Zhang
et al., 2023). As the literature grows, there is hope for convergence
on the definition of resilience, which, in turn, should aim to
converge the findings on its brain bases. However, at this point, the
bottom line is that the prefrontal and subcortical structure,
function, and functional connectivity are engaged with and
relevant to the manifestation of resilience (Zhang et al., 2023).
Therefore, these systems, together or separately, depending on the
instrumentation, should be consistently sampled while brain
readiness to perform is recorded under different stressogenic
situations.

Resilience in the genome

Whereas there has been much research and progress in mapping
out the genetic bases of stress reactivity, far less is understood
regarding the genetic endowment of resilience. It has been argued
(Elbau et al., 2019; Murrough & Russo, 2019) that identifying
genetic variation that differentiated disease risk in the face of
adversity should enhance the understanding of mechanisms that
trigger and advance resilience, thus detecting new pharmacological
targets. Genetic variation, which has already been associated with
signaling systems that modulate the structure and function of the
relevant neural substrates in response to stress, has been deemed to
be a good starting point as candidate genes for resilience (Elbau
et al., 2019; Holz et al., 2020; Niitsu et al., 2018). Of no surprise is
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that most of these genes have a role in the central nervous system
functioning. Thus, the serotonergic pathway (Kiser et al., 2012) is
known to substantiate emotional processing (Cao et al., 2018).
Increased serotonin turnover in the amygdala, hypothalamus,
PFC, and VS has been reported under stress (Feder et al., 2009).
Similarly, the dopaminergic pathway, substantiating motivation
(Dreher et al., 2008), operates in the PFC and gets inhibited in the
VS (Charney, 2004) following stress. It has been observed that
levels of dopamine are amended in depression and PTSD
(Charney, 2004; Dunlop &Nemeroff, 2007); heightened dopamine
turnover has been stated to substantiate exaggerated fear response
to stress (Hoexter et al., 2012). Given these associations, it is
plausible that genetic variation in serotonergic and dopaminergic
signaling might also be relevant to substantiating individual
differences in resilience. Similarly, a genetic variation known to
alter stress responsivity (Matosin et al., 2018) might play an
important part in resilience. In addition to the involvement of the
neurotransmitter systems, the literature on stress reactivity
emphasizes the importance of hormonal signaling, engaging
systems such as corticotropin (corticotropin-releasing hormone,
CRH, a central regulator of the HPA axis) and oxytocin (a natural
hormone managing reproductive system and engaged with many
aspects of social behavior). There are now “classic” genetic
variants that are both functional and common, which have been
analyzed with regard to their association with resilience (Niitsu
et al., 2018): the serotonin-transporter-linked polymorphic region
(5-HTTLPR) in the serotonin transporter gene (SLC6A4), and
repeats and single-nucleotide polymorphisms, SNP, in dopamine
receptor D4 (DRD4), corticotropin-releasing hormone receptor 1
(CRHR1), and oxytocin receptor (OXTR) genes.

A variable-number tandem repeat polymorphism in the
promoter region of the SLC6A4 gene is a well-studied variant.
The region 5-HTTLPR consists of a 14-repeat short variant,
S-allele, and a 16-repeat long variant, L-allele (Heils et al., 1996;
Lesch et al., 1996). Of note also is a single-base substitution (A>G)
in the L type of 5-HTTLPR known as rs25531 (Hu et al., 2006).
A large corpus of research has registered an association between
the 5-HTTLPR L-allele and decreased activation of the
amygdala (Munafò et al., 2008). Moreover, carriers of the L-allele
demonstrated heightened functional coupling between the PFC
and the amygdala (Pezawas et al., 2005). It has also been reported
(Holz, Zohsel, et al., 2018) that environmental adversity moderated
the impact of 5-HTTLPR on amygdala activation and connectivity
in a number of studies (Alexander et al., 2012; Canli et al.,
2006). Additionally, certain genotypes of 5-HTTLPR/rs25531 were
associated with resilience in children/adolescents, while others
were connected to resilience in adults (Niitsu et al., 2018).
The variation in the promoter region of SLC6A4 has been featured
in genetic association studies of a number of psychiatric
conditions, stressing a lack of specificity of its action. Moreover,
it was featured in several interaction studies (known as G × E or
gene by environment), where it was treated as a genetic liability to a
particular (similarly nonspecific) adverse environmental impact.
Importantly, the field does not converge on the specific role of
this variation but acknowledges its relevance for understanding
the genetic underpinning of both susceptibility and resistance to
the manifestation of negative outcomes in the face of adversity.

Another well-studied source of genetic variation is a variable
number of tandem repeats in a 30-base repeat sequence (VNTR)
polymorphism in the monoamine oxidase A (MAO-A) gene.
MAO-A is an enzyme that is central to the catabolism of a number
of neurotransmitters, including serotonin. The activity of MAO-A

influences serotonin levels: high levels of MAO-A activity can lead
to decreased serotonin availability, and low MAO-A activity can
result in increased serotonin levels. High levels of MAO-A are
controlled by the MAO-A-H genotype, which has been stated
to partially differentiate resilience in men (Holz et al., 2020).
Specifically, a lower emotional sensitivity in the amygdala (Alia-
Klein et al., 2009; Lee & Ham, 2008; Meyer-Lindenberg et al.,
2006), along with increased recruitment of PFC-based (ACC,
vmPFC) cognitive control networks, was reported in individuals
with the MAO-A-H genotype (Fan et al., 2003; Meyer-Lindenberg
et al., 2006; Passamonti et al., 2008; Passamonti et al., 2006).
Furthermore, it has been observed that the unfavorable genotype
(i.e., 3 versus 4 repeats, with 3R variant resulting in lower MAO-A
activity) and environmental adversity can co-act, substantiating
themanifestation of negative outcomes such as reactive aggression;
importantly, these effects appear to be sex-specific (Byrd &
Manuck, 2014; Caspi et al., 2002). Thus, genetic variants associated
with stress reactivity and resilience might exert sex-specific effects
(Holz, Boecker, Buchmann, et al., 2016), substantiating well-
known sex differences in response to adversity.

Variations in several genes participating in the turnover of
dopamine have also been investigated. The catechol-o-methyl-
transferase Val158Met polymorphism (rs4680) regulates the
extra-synaptic dopamine degradation due to its impact on the
catechol-o-methyltransferase enzyme (Holz et al., 2020). There are
numerous studies of the association between this polymorphism
and various relevant brain structures, although the results are
somewhat difficult to interpret. The literature reports the poly-
morphism’s associations, specifically with the Val allele, with
lower punishment-related VS activity (Schmack et al., 2008);
alleviated activation during reward anticipation (Dreher et al.,
2009; Yacubian et al., 2007); potentiated activity of the nucleus
accumbens, the ACC and the right inferior PL during reward
receipt (Camara et al., 2010); as well as and null findings (Forbes
et al., 2009). The polymorphism has also been reported to
differentiate the impact of ELS in the reward circuit, with lower
activity in the VS and ACC with increasing levels of childhood
adversity in Val carriers and the opposite effect for Met
homozygotes (Boecker-Schlier et al., 2016). Variations in the
dopamine receptor DRD4, specifically, its D4 version (Van Tol
et al., 1992) and a VNTR containing 3 to 11 repeats in the
dopamine transporter DAT (also known as SLC6A3) gene has
been associated with individual differences in reward process-
ing, ostensibly by acting on VS ventral striatal activity (Aarts
et al., 2010; Dreher et al., 2009; Filbey et al., 2008; Forbes et al.,
2009; Hahn et al., 2011; McClernon et al., 2007; Nikolova et al.,
2011; Paloyelis et al., 2012; Wittmann et al., 2013), although
there are some contradictory findings (Hoogman et al., 2013).
Moreover, in DRD4 resilience scores were associated with the
CC and CT genotypes of rs1800955 (Cicchetti & Rogosch,
2012) and the 7r7r and 4r7r genotypes of the VNTR (Das
et al., 2011).

Variants in CRHR1 and OXTR genes have received less
attention, although both have been associated with resilience
scores. The relevant variation in CRHR1 was captured not with a
single polymorphism but with a combination of them, suggesting
that the TAT haplotype might contribute to the biological
foundation of resilience (Cicchetti & Rogosch, 2012). The OXTR
polymorphism rs53576 has also been associated with resilience,
although there is a disagreement on what particular genotype, GG
(Cicchetti & Rogosch, 2012) or AA (Bradley et al., 2013), carried
the signal.
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Other candidate genes, selected due to their specific biological
function, have been considered. Among them are genes coding for
brain-derived neurotrophic factor (BDNF), FK506 binding protein
5 (FKBP5), and regulator of G-protein signaling 2. BDNF confirms
the survival of existing neurons and supports the growth and
differentiation of new neurons and synapses, being especially
active in the areas of the brain, substantiating learning, memory,
and higher thinking. It has been reported that the GG genotype of
its rs6265 polymorphism contributed to resilience (Nederhof et al.,
2010; van Winkel et al., 2014), but perhaps only in Caucasians
(Niitsu et al., 2018). The FKBP5 gene encodes a protein FKBP51, a
member of the immunophilin protein family and known for its role
in immunoregulation and basic cellular processes involving
protein folding and trafficking. The protein binds to the
immunosuppressants FK506 and rapamycin, mediates calcineurin
inhibition, and regulates the affinity of the glucocorticoid receptor
(GR) for cortisol (Binder, 2009; Denny et al., 2000; Wochnik et al.,
2005). In fact, FKBP51 co-chaperones to GR directly affect its
sensitivity to circulating glucocorticoids; thus, an important role of
the FKBP51 protein is the regulation of stress responsivity. Loss of
FKBP51 in gamma-aminobutyric-acid or glutamate neurons leads
to negative outcomes, especially under high-risk environments
(van Doeselaar et al., 2023). The rs1360780 polymorphism in this
gene appears to differentiate glucocorticoid resistance of the GR in
the CC genotype (Binder et al., 2008), generating a more effective
negative feedback loop thought to be stimulated by glucocorticoid,
coupled with a more rapid stress adaptation in the face of adversity
(Matosin et al., 2018; Zannas et al., 2016) and a blunted threat-
induced amygdala activity in the context ELS (Holz et al., 2015;
VanZomeren-Dohm et al., 2015; White et al., 2012). Finally, the
regulator of G-protein signaling 2 gene encodes the Regulator of G-
protein Signaling 2 protein, which modulates the activity of G
proteins, where the GG genotype of the rs4606 polymorphism has
been reported to contribute to resilience in Black parents (Dunn
et al., 2014).

Of note is that, to date, seemingly only two genome-wide
association studies (GWAS) have been conducted. The first one
featured resilience conceptualized through a self-report of
perceived resilience collected on almost 15,000 US Army soldiers
of European descent (Stein et al., 2019). There were three results at
the genome-wide level of significance. The first signal was within a
locus on an intergenic region on chromosome 4 upstream from the
DCLK2 (Doublecortin-Like Kinase 2) gene (4 SNPs in linkage
disequilibrium; top SNP: rs4260523 [p= 5.65× 10−9] is an eQTL in
frontal cortex), which is a member of the doublecortin family of
kinases that promote survival and regeneration of injured neurons.
The second signal was in the gene KLHL36 (Kelch-Like Family
Member 36) at p= 1.89 × 10−6. A polygenic risk score (PGS,
a weighted additive score of all alleles that demonstrated
associations with a trait in the framework of GWAS, reflecting a
substantial amount of the trait-associated variance with a single
measure) derived from the self-assessed resilience GWAS was not
significantly associated with outcome-based resilience. In addition,
when a subsample of soldiers (N= 581) exposed to the highest level
of deployment stress was extracted, genome-wide significant
association with outcome-based resilience was registered for one
locus (top SNP: rs12580015 [p= 2.37 × 10−8]) on chromosome
12 downstream from SLC15A5 (solute carrier family 15 member 5).
Notably, the estimate for the heritability of resilience was 16%. The
second study (Cusack, Aliev, et al., 2023) used a previously utilized
(Amstadter et al., 2016; Cusack, Bountress, et al., 2023) discrepancy-
based indicator of resilience, calculated based on the information on

trauma exposure and a checklist of psychiatric symptoms
(depression and anxiety). Heritability estimates for resilience did
not differ from zero. Zero variants met genome-wide level of
significance, but nine passed the suggestive association threshold
and mapped onto three genes: SEZ6L (a protein-coding gene that
contributes to specialized endoplasmic reticulum functions in
neurons), LINC02112 (Long Intergenic Non-Protein Coding
RNA 2112), and FRK (fyn related Src family tyrosine kinase), and
one cluster of genes (NKAIN3, GGH, TTPA, YTHDF3-AS1) on
chromosome 8 related to metabolization and transport of various
vitamins and minerals. Whereas for SEZ6L and the chromosome
8 cluster, the associations presented meaningful interpretations,
but these were not obvious for the two other genes. Importantly,
none of these candidates have been implicated in resilience earlier.
Finally, researchers utilized PGS previously established for alcohol
dependency, alcohol consumption, and PTSD. They demonstrated
genetic overlap between resilience and AD, as well as resilience
and PTSD.

The interactive notion of resilience is well suited for genome-
wide G × E studies (Genome Environment Wide Interactions
Studies [GEWIS]) to identify gene variants that are able to
differentiate individual responses to adverse environmental
stimuli. Although there are some GEWIS primarily with negative
outcomes (e.g., depression) and adverse life events, their results are
difficult to interpret (Arnau-Soler et al., 2019; Coleman et al., 2020;
Dunn et al., 2016; Ikeda et al., 2016; Otowa et al., 2016; Suppli et al.,
2022). By virtue of their design, GEWIS requires large sample sizes
and documented stressful life events. To thwart power issue, the
field put forward the usage of PGS, which are constructed
separately for different outcomes, for example, depression
(Halldorsdottir et al., 2019; Mullins et al., 2016; Peyrot et al.,
2018) and schizophrenia (Hess et al., 2024). Unfortunately, the
results are mixed. Specifically, studies on depression do not
support the presence of interaction between depression PGS and
the environment (Elbau et al., 2019). On the contrary, the outlook
for schizophrenia appears to be promising. There has also been an
attempt to consider trauma exposure as a ubiquitous trans-
diagnostic risk factor for multiple negative outcomes.

In the spirit of Garmezy’s work with families with high-risk
individuals who do not manifest the disorder, researchers (Hess
et al., 2024; Hess et al., 2021) developed a framework to hoard
GWAS data and then excavate them for common genetic variants
that protect high-risk individuals from schizophrenia; this work
resulted in the derivation of the first-ever “polygenic resilience
score” for schizophrenia. This reinforces the assumption that
common variants that are not in linkage disequilibrium with
known schizophrenia risk alleles might exert a protective effect.
If so, this work can turn the table for genetic researchers who,
instead of searching for and investigating risk alleles, will do so for
protective alleles (Hess et al., 2021). This, in turn, can inspire new
approaches to intervention.

Importantly, there are additional indicators of engagement at
the molecular level, specifically through the human methylome,
which reflects the dynamic response of the genome to the
environment. Recent research has pinpointed genetic impacts on
DNA methylation, shedding light on the regulatory processes
underlying gene expression and disease risk. Importantly,
approximately 34.2% of CpGs, the foundational unit of the
methylome, are affected by SNPs. These genetic variants act either
directly (cis-acting) or within 1 megabase of the tested CpG
(Villicaña et al., 2023). Importantly, it has been demonstrated that
it is possible to construct a risk resilience score based on epigenetic
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markers (Magwai et al., 2021). Thus, specific CpG sites exhibited
significant correlations with resilience and were predominantly
enriched in genes pivotal to neural plasticity, stress response, and
immune function. Alterations in the methylation patterns of these
genes potentially impact an individual’s coping mechanisms in the
face of stressors. Moreover, the constructed methylation risk
resilience score demonstrated efficacy in distinguishing between
low- and high-resilience individuals, indicating that methylation
signatures can be used for such differentiation (Lu et al., 2023).
Interestingly, the final model included three methylation probes
(cg18565204, cg17682313, and cg07167608) in the genes (AARS,
FBXW7, and LINC01107, respectively) that have not been flagged
in any other study as candidate genes for resilience before. Yet,
similar to the research on structural variance described above,
there are candidate genes featured in numerous epigenetic studies.
DNA methylation of theMHC, DNMT3A, DNMT3B, NR3C1, and
FKBP5 genes has been reported to be significantly associated with
posttraumatic stress disorder and resilience (Mehta et al., 2020;
Miller et al., 2020). It has also been hypothesized that epigenetic
mechanisms that substantiate the etiology of anxiety disorders and,
possibly, conference to resilience, can be either shared or
overlapping (Schiele & Domschke, 2018). Nonetheless, unlike
the case with research into the structural variation associated with
resilience that can be investigated with any source of DNA, there is
a serious concern regarding the source of DNA for epigenetic
studies. To explain, as specialized cells respond to physiological
and environmental stimuli differently, themodulation experienced
and exerted by neurons can be specific to brain function (Moore
et al., 2013) and, thus, not generalizable to other cell types (e.g.,
blood and saliva). Although there is a correlation between
methylation profiles of different cell types, its value is far from
one (Braun et al., 2019; Chen et al., 2017; Magwai et al., 2021;
Thompson et al., 2013). The degree to which alteredmethylation in
the peripheral blood or saliva may reflect biomarkers of resilience
is still an open question.

Finally, although still preliminary, the extant research provides
the foundation for further exploration of such targets as
neuropeptide Y (see below), glutamate and gamma-amino-
butyric-acid (as mentioned above), and a class of potassium
channels family Q (KCNQ channels), which are responsible for the
muscarinic currents in neurons (Tan et al., 2020).

Thus, given the profile of the results so far, it seems plausible
that there are specific sources of individual differences in the
genome that substantiate, either through structural or through
functional variation, individual differences in resilience. Yet, the
pattern results for the genome are even more “quilt-ish” than
it is for the brain. Thus, the ensemble of candidate genes,
although reasonable in theory, does not get consistently implicated
in practice, questioning the robustness of individual results. The
completed GWAS do not engage the hypothesized candidate genes
and do not replicate each other’s findings. The only gene that has
been independently implicated in genetic and epigenetic studies of
resilience is FKBP5, but, as discussed above, its encoded protein
lacks brain or behavior specificity as it has a generic role in
immunoregulation and basic cellular processes involving protein
folding and trafficking. To conclude, in general, more data are
needed to clarify the current footprint of the involvement of the
genome in the emergence and manifestation of resilience. As a
practical consideration, it is recommended to sample wholistically,
both through the variation in the genome and methylome, to
generate the needed unbiased data while readiness to perform is
documented under different stressogenic situations.

Resilience in the body

The large body of literature associating various physiological
indicators of bodily functioning and circulating biomarkers
(e.g., hormones, neuropeptides, neurotransmitters) with resilience
vs. vulnerability to psychological distress has already been
discussed in a number of reviews of different types (Charney,
2004; McEwen, 2016; Osório et al., 2017; Watanabe & Takeda,
2022); the review of this literature is outside of the range of the
present essay. Here, only selected indicators and biomarkers are
mentioned in the context of the discussion above.

Peripheral biomarkers
There are numerous physiological indicators that are used to
understand how individuals respond to stress and gauge their
resilience (Chen et al., 2015; Daskalakis et al., 2016; Palmfeldt et al.,
2016; Walker et al., 2017). The main indicators are autonomic
measures, like heart rate variability (HRV), which reflects the
body’s stress adaptation by showing how the vagal control of heart
rate changes in response to environmental changes. Vagally
mediated HRV is employed as an index used to evaluate the extent
of top-down appraisals, mediated by cortical-subcortical pathways,
shape brainstem activity and autonomic responses in the periphery
of the organism (Gillie & Thayer, 2014; Thayer et al., 2012). Higher
scores on trait resilience psychometric scales have been observed in
individuals with high vagally mediated HRV at rest (Souza et al.,
2013). Conversely, chronic reductions in vagal activity, as indicated
by HRV, have been consistently associated with psychopathology
(Clamor et al., 2016; Gillie & Thayer, 2014). It is worth noting that
HRV has been connected to individual differences in brain
morphology, particularly ACC (Carnevali et al., 2018). Moreover,
there have been reports on the associations between regional brain
morphometric characteristics, specifically cortical thickness, and
resting state vagally mediated HRV (Winkelmann et al., 2017).
Some studies have used the dexamethasone suppression test
(DST), where the DST suppression rate indicated stress resilience
(Ma et al., 2016). The DST serves to assess the activation of the
HPA axis, an integral system in physiological arousal and
physiological stress (Fink, 2017). However, there is a lack of
compelling evidence that supports the DST as a distinct measure
of resilience rather than simply physiological arousal (O’Donohue
et al., 2021).

The discussion regarding the correlation between these
biomarkers and stress resilience is limited, particularly in studies
that incorporate multiple biomarkers without a defined total stress
resilience score or an examination of the individual relationship
between each marker and resilience (Carlson et al., 2012; Hoge
et al., 2018; Schneider et al., 2013; Smeets, 2010). Importantly,
many psychobiological factors interact to promote resilience
(Feder et al., 2009). Because of this interaction, it is unclear whether
a few of these indicators, analyzed separately in response to one
stressor, can cumulatively quantify resilience. Similarly, it is
unclear whether, when sampled across multiple contexts,
situations, and tasks, they provide a convergent indicator of
resilience.

Circulating biomarkers
Circulating biomarkers (CB) are biomarkers that circulate
cell-free in plasma/serum and include nucleic acids, extracellular
vesicles, proteins, and metabolites. CB may provide early
indicators of maladaptive responses to external and internal
stressors and can be used to monitor (neuro)physiological status
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ongoingly. Specifically, there are four types of CB, which are
essential in understanding the dynamic response to stress and
resilience. Recent reviews have provided a comprehensive account
of the role of CB in resilience (Beckner et al., 2022; Charney, 2004;
O’Donohue et al., 2021); here, the main points of these reviews are
summarized and expanded to include the most recent data.

Neuroendocrine biomarkers are key to both stress adaptation –
cortisol, epinephrine, and norepinephrine – and to countering
stress-induced effects of the HPA axis and regulation of synaptic
plasticity – neuropeptide Y and BDNF. These markers can be
sampled through a variety of cell types. For example, cortisol can be
sampled through blood, saliva, urine, and hair, among other cells.
It has been demonstrated that serum cortisol concentrations can
increase by more than 250% under severe stress, both physical
(Morgan, Wang, Southwick, et al., 2000) and psychological
(Morgan, Wang, Mason, et al., 2000) duress. Higher cortisol
concentration while under stress was associated with poorer
cognitive performance (Lieberman et al., 2005). Similarly, higher
cortisol concentration at baseline was a significant predictor of
dropout from short survival training (Vaara et al., 2020). However,
higher baseline cortisol was predictive of successful selection for
performance in a long, high-demand selection course and
positively correlated with self-reported grit and resilience
(Farina et al., 2019). Salivary cortisol also has been shown to be
a useful biomarker of resilience (Nishimi et al., 2022). It is
important to note that both blood and saliva cortisol are marked by
significant variability between and within people (Hruschka et al.,
2005), across and within studies (Kudielka et al., 2009), and across
time (Kudielka et al., 2009) limiting the interpretability and
generalizability of results (Hayes et al., 2016). This massive
variability potentially limits the utilization of cortisol both cross-
sectionally and longitudinally. Importantly, research has reported
the modulating role of physical fitness, where individuals with
higher, compared to lower, fitness exhibited lower norepinephrine
and higher neuropeptide Y 24-hr post-stress (Szivak et al., 2018).
In addition, stress has been reported to exert a negative impact on
circulating BDNF, decreasing its amount (Beckner et al., 2021;
Henning et al., 2014; Suzuki et al., 2014) and dampening cognitive
performance (Beckner et al., 2021; Gepner et al., 2018).

Inflammatory cytokines are soluble protein messenger mole-
cules secreted by immune cells, adipose tissue, and a number of
other organs. Pro-inflammatory cytokines (interleukin 6 – IL-6,
IL-1β, and tumor necrosis factor TNF-α) trigger or heighten
inflammation by relaying messages coordinating an immune
response. Anti-inflammatory cytokines (IL-4 and IL-10) stop or
lessen inflammation by relayingmessages that prevent an excessive
immune response that can lead to tissue damage. Previous research
has indicated that prolonged exercise, inadequate training
recovery, or excessive training stress can lead to an increase in
circulating levels of IL-6 and TNF-α (Jürimäe et al., 2011; Main
et al., 2010). They are commonly observed in conjunction with
exercise-induced muscle damage (Smith, 2000) and have a
detrimental effect on mood state (Booth et al., 2006). As such,
modifications in circulating inflammatory levels could poten-
tially offer a means of tracking physiological and psychological
pressure and indirectly evaluating physiological resilience.
Moreover, the profile of the inflammatory response, as reviewed
recently, at least at this point, is inconsistent (Chester et al., 2013;
Li et al., 2014) and indicates the sensitivity of the response not
only to external stressogenic characteristics but also to individual
characteristics. This inconsistency calls for more research
(Beckner et al., 2022).

Furthermore, as summarized by Beckner et al. (2022), stress
influences the biological activity of hormones. Importantly, it has
been observed that both strenuous physical effort and caloric
deficit can lead to alterations in IGF-I binding proteins and
sex-hormone binding globulin. These proteins are essential to
regulate the bioavailability of IGF-I and testosterone, respectively
(Hamarsland et al., 2018; Henning et al., 2014). A 70% decline in
testosterone concentration coupled with a 46% increase in sex-
hormone binding globulin was observed during strenuous training
(Henning et al., 2014). Dehydroepiandrosterone (DHEA) is an
endogenous hormone and a precursor to testosterone. DHEA’s
role is to modulate the adverse effects of elevated cortisol, thereby
providing beneficial behavioral and neurotrophic effects (Morgan
et al., 2009; Morgan et al., 2004; Taylor et al., 2007). The adrenal
cortex secretes DHEA, which can be converted into dehydroe-
piandrosterone sulfate (DHEA-S) by sulfotransferase in the
adrenals, liver, and small intestine, which accounts for the majority
of DHEA in circulation as a result of its longer biological half-life
(15–30 mins vs. 7–10 h, respectively) (Morgan et al., 2009). These
hormones are commonly known as DHEA(s) collectively, unless
otherwise specified, due to their ability to produce similar
physiological effects (Morgan et al., 2009). Given that DHEA-S
can counter some of the catabolic effects of cortisol, examining the
ratio of these two hormones rather than absolute abundance has
been used as an assessment of hormonal imbalance or vulnerability
to stress (Wu et al., 2013). It has been demonstrated that baseline
DHEA concentration was a predictor of human performance
(Morgan et al., 2009). Additionally, Morgan et al. (2004) reported a
substantial elevation in DHEA and DHEA-S concentrations from
baseline in response to survival training, which remained elevated
at 24-h post-training. Trainees exhibiting higher DHEA(S)-
salivary cortisol ratios during stress achieved higher performance
scores (Morgan et al., 2009).

Similarly to the assortment of physiological indicators tied to
resilience, there is a multiplicity of circulating biomarkers relevant
for measuring resilience. It is crucial to comprehend this multitude
and apply appropriate data reduction measures. For example,
Handley et al. (2023) demonstrated the practicality of using latent
profile analysis to capture heterogeneity in diurnal cortisol and
diurnal DHEA, potentially as a protective mechanism against
cortisol levels (Charney, 2004). Additionally, research has
demonstrated that a childhood neuroendocrine profile charac-
terized by high diurnal cortisol alongside low diurnal DHEA was
specifically linked to improved adaptive functioning during the
transition to adulthood (Handley et al., 2024).

In lieu of conclusion

As exemplified at the opening of this section, the field has not yet
converged on the definition of resilience. So, why not offer one
more? This proposed definition might open additional oppor-
tunities to study resilience, in Cicchetti’s words (2020, p. 7), “as
multidimensional spanning psychosocial and neurobiological
factors.” To remind the reader where this essay started, resilience
is viewed here as an integration over a dynamic sampling of
readiness. For clarification, readiness is the state of being
physically, cognitively, emotionally, and behaviorally ready to
perform optimally during a task. During development, a child
encounters various tasks, gains experience in dealing with various
situations, and trains to perform in different contexts, albeit
environments, events, and circumstances are never wholly
predictable. Resilience is then the capacity to exhibit readiness
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near-continuously across multiple contexts, situations, and tasks
by withstanding or quickly recovering from physical and cognitive
challenges. As readiness can be sampled through a variety of
different indicators for a given task, in a given situation, and in a
particular context, observing and assessing readiness throughout
development (naturalistically or as repeatedly simulated exper-
imentally) via integration over these repeated samplings can
generate an index of resilience, which, in turn, can dynamically
fluctuate and impact readiness as dictated by the notion of the
adaptive cycle model describing the dynamics of complex systems
(Holling, 1986).

The proposed definition of resilience through readiness allows
the establishment of a paradigm for hypothesis generation and data
collection and interpretation. The proposed paradigm emerges
from the availability of wearable and portable devices that permit
registering readiness online, in real-time, across multiple contexts,
situations, and tasks. Correspondingly, this review intended to
restate, from a slightly different perspective, what Cicchetti and
colleagues repeatedly stated (Cicchetti, 2013), namely that a
multidisciplinary approach integrating genetic, brain-imaging,
physiological, and behavioral sampling could offer novel insights
into and robust predictions of pathways to resilience to
psychological stress in the face of adversity.

First, with regard to the brain, neuroimaging studies indicate
that neural markers of readiness and resilience can be obtained
with EEG and/or fNIRS. Currently, the number of such studies in
the field of resilience is limited (Jauny et al., 2022; Lawler et al.,
2021). To illustrate, elements of readiness, such as alertness, can be
detected in near real-time through EEG, potentially utilizing a
small number of sensors (Jagannathan et al., 2018; Jung et al.,
1997). Furthermore, EEG researchers have discovered readiness
potentials, which encompass changes in EEG data that transpire
roughly 2 seconds prior to a voluntary action. Variations in
cognitive load give rise to differences in readiness potentials (Baker
et al., 2011), making them a potential neural indicator to monitor a
participant’s approach to their peak cognitive performance
capacity. Moreover, using fNIRS has facilitated the exploration
of neural correlates associated with alertness. Notably, this
investigation primarily examined distinctions between task
conditions post-task instead of real-time identification of alertness
(Herrmann et al., 2008). Studies on resilience using EEG exist, but
they are limited in both scope and number (LaGoy et al., 2022;
Polusny et al., 2021; Watanabe & Takeda, 2022). Combining EEG
and fNIRS in wearable devices, which have or are about to become
commercially available, to capture both time and localization of the
brain activities, recording in natural and staged experimental
situations will generate discrete data sets across which the
emergence of resilience can be derived.

Second, with regard to the genome, the indicators of low
heritability of resilience, the quilt-like nature of the obtained
findings on the role of structural genetic variation as opposed to the
evidence that the emergence of resilience is substantiated by
epigenetic mechanisms, also necessitates repeated and dynamic
acquisition of the genetic data. Such data acquisition is now
possible with Oxford Nanopore Technologies, ONT (Lin et al.,
2021), which has revolutionized DNA sequencing with their very
compact long-read sequencers, offering access to longer DNA
fragments compared to previous generations of sequencers. ONT’s
nanopore sequencing technology enhances epigenetic methylation
profiling in several ways. Firstly, it allows for the direct detection of
modifications, eliminating the need for specialized library
preparation steps like bisulfite conversion. Modifications such as

5mC, 5hmC, 6mA, BrdU inDNA, andm6A in RNA can be directly
identified at single-nucleotide resolution. Moreover, training base-
calling algorithms enable the detection of other natural or synthetic
epigenetic modifications. Secondly, nanopore sequencing excels in
5mC detection, offering gold-standard calling with more even
genomic coverage, less GC bias, and shorter analysis runtimes
compared to traditional bisulfite sequencing. Lastly, the long reads
and direct modification detection capabilities of nanopore
sequencing enable the characterization of methylation in repeat-
rich regions, including large repetitive arrays in the human genome
previously unexplored with short-read sequencing. In summary,
ONT’s nanopore sequencers empower researchers to delve deeper
into epigenetic modifications with unprecedented accuracy, longer
reads, and streamlined sample processing. Thus, each of these
devices can contribute valuable data separately in understanding
the (neuro)physiological bases of readiness and resilience.

Finally, although reviewed in this essay only briefly, multiple
studies indicate that peripheral physiological markers of response
to stimuli may be predictive of individual resilience. Hence,
resilience is closely linked to particular physiological indicators
that serve as mediators during periods of stress (Maier et al., 2006).
As an example, (Tutunji et al., 2023) have shown that HRV and
other metrics derived from wearable devices, including Empatica
E4 and other biosensors, possess the capability to accurately
predict long-term stress levels. This discovery underscores the
significance of these markers in resilience studies. In addition,
a “readiness score” has been established by leveraging the
predictive power of physiological markers such as HRV, skin
temperature (ST), and accelerometry (Carper et al., 2020). The
significance of these markers in evaluating individual readiness is
highlighted by this score, which is calculated based on body stress,
sleep quality, and physical activity (Oura Team, 2024). Likewise,
the study conducted by Lee and Chun (2021) found associations
between ST and skin conductivity, as measured by the Empatica E4
device, and individual alertness levels, specifically among office
workers who were drowsy compared to those who were not. The
assessment of cognitive states, particularly in safety-critical
scenarios like driving, greatly benefits from the use of physiological
markers, such as blood volume pulse, skin conductivity, ST, and
respiration. These markers were found to be instrumental in
predicting states of alertness, emphasizing their importance (Riani
et al., 2020). Additionally, they also possess the ability to generalize
across various situations, generating a comprehensive resilience
index by sampling alertness and readiness.

Such an approach to resilience as a process that integrates
readiness to everything, including adversity, across multiple
contexts, situations, and tasks appears to be instrumental for a
rapid generation of relevant data and now, at least instrumenta-
tion-wide, appears to be realistic. In addition to these dynamic
studies, it is important to consider and implement longitudinal
studies, which are greatly warranted as a possible window into
temporal causality so it could be established whether resilience
traits arise when the necessary neurobiological foundation is
assembled, whether the needed biological system arises to follow
the emergence of resilience, or whether these are coupled processes
(Holz, Boecker-Schlier, et al., 2018; Laucht et al., 2000; Moreno-
López et al., 2020; Morgan et al., 2014).

Finally, citing (again!) Denckla et al. (2020, p. 7), “Research on
resilience is rooted in the field of developmental psychopathology.
Scientists adhering to a developmental psychopathology frame-
work emphasize the importance of incorporating multiple levels of
analysis into their research. This approach states that different
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systems contribute to development and that these systems
bidirectionally influence each other to contribute to outcomes.”
In many ways, the future of research on resilience is tightly
connected to the future of developmental psychopathology. Both
are relatively young concepts representing relatively young fields
(or a unified field) of research. In their acceleration into the future,
hand-in-hand, the “ordinary magic” (Masten, 2001) of resilience
will be, no doubt, better understood but never trivialized.
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