SUBSPACES OF RIEMANNIAN SPACES
RICHARD BLUM

Summary. In this paper, results obtained by the author for Riemannian
Spaces V, imbedded in Euclidean Spaces Ey (3;4) are extended to V, imbedded
in VN.

The first section is introductory. In §2 the general result is obtained. This is
the establishment of a certain dependency among the three basic sets of
equations of the V, with respect to the Vy, namely the equations of Gauss,
Codazzi and Kuehne. In §3 it is assumed that Vy is of constant curvature with
N = n -+ 1. This case is discussed with the help of a generalization of the
type number 7 introduced by Thomas (10).

Throughout the paper the conventional tensor notation has been adopted.
Capital latin indices vary from 1 to N, small latin indices from 1 to %, and
small greek indices from 1 to » = N — n. Whenever an index occurs twice in
an expression, the summation with respect to that index has to be performed,
except when otherwise stated. This summation convention is not restricted to

indices with opposite (i.e. one of covariant and the other of contravariant)
character.

1. Introduction. We consider a Vy given by the positive definite metric:
€)) dS? = A;,dXdX7 |A] #0

in which the A4;; are continuous functions of the XZ, having continuous
partial derivatives up to the third order; and a V, whose metric

2) ds? = a;dxtdx? (n < N)
satisfies similar conditions with respect to the x%.
A set of necessary conditions for the V, to be imbedded! in the Vy is given

by the following equations (8, no. 47), known respectively as the equations
of Gauss, Codazzi and Kuehne:

(D) Gigr = rimr — Oaiabaist — bajibaie) — RroxeX X X5XT = 0,
(D) Carige = batesre — bating — (ainbsiiy — toaipiin)
+RrxbaXX5X 5 = 0,
(III)  Keapris = taprig — tapis i T (batiysis — byalstvels)

+0" (baiiibsr 1y — bainibpiii) + Rrsxrbati XX 5 = 0.

Received December 31, 1954. This paper was prepared while the author attended the
Research Institute of the Canadian Mathematical Congress in the summer 1954.
1Throughout this paper, by “imbedding” is meant Jocal and <sometrical imbedding.
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Here, 7,:; and Rk are the components of the covariant curvature tensor
in V, and Vy respectively. The & are N — 7 contravariant vectors in Vy of
unit length, perpendicular to one another and to the V,. The by);; = ba);; are
coefficients of the fundamental forms of the second kind and fas;; = — fgajs
are the ““torsions’’. The index after the comma denotes covariant differentiation
with respect to the tensor a;; given by (2).

If Vy is of constant curvature K, we have

Risxe = Ko(A A sr — A 124 5x),
and equations (I), (II), (III) become:
(I Gigr = rimr — (barabarji — batibarn) — Ko(@ua;i — avaz) = 0,
(') Catisn = batije = batin,g — (tpaisbpre; — toatbpiin) =0,

(ITI")  Kapriy = tapri,; — taplsi + (halitysls — byaltagli)
+a** (bairibs1; — bairsbpiii) = 0.

It can be shown that in this case the equations (I’), (II’), (III’) are both
necessary and sufficient conditions for the V, to be imbedded in the Vy. For a
similar problem, see (10, pp. 178-182).

As in the case of a V, in an Ey (3;4) the question arises at this point
whether all the equations (I), (II), (III) are independent. The following
section is devoted to answering this question.

2. Independence considerations. The lefthand sides of (I), (II), (III)
are obviously tensors in the 1V, which depend in general also upon the Vy.
They are denoted by G5 Coijr; Kagii; and named respectively the tensors
of Gauss, Codazzi and Kuehne of the V, with respect to the Vy (3, p. 167f).
We can now reformulate the statement in §1 in the following way:

A necessary condition for the V, to be imbedded in the Vy is that the tensors
of Gauss, Codazzi and Kuehne of the V, with respect to the Vy should vanish.

We are thus able to consider directly the tensors just introduced and certain
combinations of their covariant derivatives. This will lead us to discover in
certain cases how many of the conditions (I), (II), (III) are independent.

We define (4;6):

(A) Gijklm = Gijkl,m + G'i]’lm,k + Gijmk,lr
(B) Calijkl = Calijlc,l + Calikl,j + Calilj,ky
(@) Kagriw = Kagrijx + Kagijn,s + Kagixs,s-

These tensors will be appropriately named the ‘“‘derived tensors’ of Gauss,
Codazzi and Kuehne of the V, with respect to the Vy. If we perform the
indicated calculations, we obtain:
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(A') Gijklm = - balikcaljlm - balilCaljmk - bzx]imcaljkl
+ baljkca[ilm + ba[leaHmk + ba]jmcalikly
B Carisr = toa1 1Co1ix1 t+ t8a1xCaii1s + toa1iCpiis

—bg11;Kpa1vr — g1 auKpai1; — bp111Kpalsn
+amp(balijpikl + balmkailj + balmleiﬂc)v

(C) Kagiip = talilsim t+ a1 iKsins + bainKos14
"‘tvﬂliK'raljk - t*/ﬂlevalki - t’YﬂIkK'yalij
+a" (bainiCsipix + bainiCsions + bainiCaipis)
_amp(bﬂlmica[pjk + bﬂlmjca]pki + bﬁlmkcalpij)-

We notice that these derived tensors? do not depend explicitly upon the
Vy, the last terms from (I), (II), (III) having disappeared. They have there-
fore the same form as the corresponding derived tensors of the V, with respect
to an Ey (6, p. 90). This remarkable fact enables us to extend the results of
(3; 4; 6) to the present case.

These results are essentially based upon the consideration of the tensors
(A", (B, (C) and the number of their components. Thus if, for instance,
the Gauss tensor G;;;; vanishes in V,, then the derived Gauss tensor G is
also zero and (A’) becomes a system of linear and homogenous equations in
the C, i; which reduces, of course, the number of independent components
of the Codazzi tensors Cuji5. [t is thus possible that, under conditions to be
specified below, all the components of the Codazzi tensors C, ;5 vanish as a
result of the vanishing of Gauss’ tensor G ;. Similar considerations are valid
with respect to (B’) and (C).

It is necessary at this point to list the number of components of the different
tensors introduced so far (2; 3, pp. 170, 174; 6, p. 91):

Gigr-..nt(n*—1)/12

Catijr- - . vn(n® — 1)/3

Kaﬁlij . e V(V - 1) n(n - 1)/4

Gijgim - - - 120 — )(n — 2)/24

Cotijr - -vn(n? — 1)(n — 2)/8

Kagiijo - .v(v — Dnn — 1)(n — 2)/12

We mention also the result by Burstin (7) that, under our assumptions, every
V, can be imbedded in every Vy provided that N > in(n + 1) orv = N — »n
>in(n — 1). It is therefore sufficient to choose n(n — 1)/2 as the upper
limit for ».

We are now in the position to enunciate the following two theorems:

2The equations obtained by equating (4’) and (B’) to zero were first used by Allendoerfer (1)
in the case of a V5, in an Ey to reduce the number of independent equations of (II) and (III).
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THEOREM 2.1 If the equations (I) are satisfied by a set of solutions for by sy,
for which the ranks of the matrices of the linear systems:

(A”) Gijklm = — balikCaljlm - balilCaljmk - balimcaljkl

+bﬂl]ﬂ€Ca|ilm + baljlcalimk + baljmcalikl = 0,
(B") Catirr = — bg14Kpai1x1 — bs1aKsatry — bs111Kpai e = 0,
have maximum value,® then

(a) for 0 < v < $n(n — 2), all equations (11) and (111) are a consequence of
equations (1);
(b) for in(n — 2) < v < $n(n — 1), a system of

gn(n® — Dy — 3n(n — 2)]

of equations (I1) are independent. The remainder of equations (11) and all the
equations (I11) are a consequence of this system and equations (I).

THEOREM 2.2. If the equations (1) are satisfied by a set of solutions for by
for which the ranks, v and v', of the matrices of (A’') and (B"") have not both
maximum values, then

mn?—1) —r

of equations (I1) and
e —-1nn—-1) —7

of equations (111) remain independent.

From the table on the previous page it is seen that the matrix of (A’’) has
smn?(m? — 1)(n — 2) rows and 3vn(n? — 1) columns and the matrix of (B”)
has fvn(n® — 1)(n — 2) rows and $v(v — 1) (2 — 1) columns. By comparing
the two sets of numbers, Theorems 2.1 and 2.2 are readily verified.

In view of this theorem it would seem important to determine the actual
ranks of the matrices of (A’") and (B”’) in terms of certain numerical invariants
of the V,. Except for the particular case treated in the next section, the author
has not succeeded in this task.

In the formation of the tensor G, we made use of Bianchi’s identities:

Timim + Tigimp + Vigmk,1 = 0.

(Because of this, of course, the number of components of G equals the
number of Bianchi’s identities (2).)

But Bianchi’s identities are a complete set of identities of order one of the
tensor of curvature (5). We have therefore the result:

Equations (A') are the only ones between the components of Cu i, Which can
be obtained as a consequence of the validity of equations (I).

3A rectangular matrix with s rows and ¢ columns has maximum rank 7 if 7 equals the smaller
of the two numbers s, ¢.
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III. It can be seen from equations (I’), (II"), (III') that the problem of
imbedding a V, in a Vy with constant curvature K, is equivalent to the prob-
lem of imbedding a V,, in a Euclidean Ey, provided that we substitute for the
curvature tensor 7;;,; of the V, the tensor:

ik — Ko(aikajl - ailajk)'
We shall also assume IV = # + 1 in which case (I"), (I1"), (I1I") reduce to:

an Gijkl = Tigr — (bikbjl - bubjk) - KO(aikajl - ailajlc) = 0,
(IIH) Cijk = bij,lc - bik.j = 0,

and (A”), (B”) to

(A" Gijpim = — b4Cyim — b4:Coms — binCrr
+bjkcilm + bjlcimk + bjmc'lkl = 0.

Let 7 be the rank of the matrix
”rijkl - KO(aikajl - aiﬂjk)”

where one of the indices, say <, indicates the rows and the other three indices
the columns of the matrix.

It can then be shown that, because of (I’’), r is also the rank of the matrix
[16:5]] (10, p. 184).

The integer 7 can be considered as an invariant of the V, with respect to a
Va1 of constant curvature K, (in the neighbourhood of the point under
consideration). It was introduced by Thomas (10, loc. cit.) for a V, with
respect to an E, 5.

For r = 0, it follows from (I’') that the V, is of constant curvature K,.
7 = 1 is impossible. For the remaining values of 7 we shall prove

TureoreM 3.1. 7 > 4. 4l the equations (I1'") are a consequence of equations
(I”).

THEOREM 3.2. 7 =3. Of the equations (I1"), five remain independent.
The remainder of the equations (11'") are a consequence of these and equations

.

TueoreM 3.3. 7 = 2. Of the equations (I11""), 3n — 4 remain independent.
The remainder of the equations (11'") are a consequence of these and equations

(I").

Proof. For the values of b;; in the point under consideration we can, by a
suitable coordinate transformation, obtain:4

bi1=0 (1’¢]’)’
(3) by #0 t=12,...,7),
b11=0 (i=T+1,...,n).

“From here to the end of this section, a repeated index does not indicate a summation.
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For these values, and taking in consideration the basic identities of the
tensor Gjxm (which follow readily from its definition):

Gijklm = - Gjiklm
thklm = Gijlmk = thmkl = - Gijkml = - Gijmlk = - Gijlkm
the system (A’’’) reduces to:
(4) Gtﬂcli = - biicﬂcl =0,
(%) Gijign = — buCy5 — bucm =0,
where 4, 7, k, [ are all distinct, 7 =1,2,...7and j, %k, 1 =1,2,...n.
Proof of 3.1. 7 > 4. From (4) we find then

Cjkl =0,
and from (5) follows
CJ.N=0 (j='r+1,7+2,...,n).
For j < 7, we obtain from (5), by substituting first < for £ and then j for k:
0+ bkkcjjl + bjjckkl =0,
(6) bxCiii + 0 + 8::Ciry = 0,
bucuz + bucuz + 0= 0,
for distinct ¢, §, k, Iwith 1,7,k =1,2,...,7and! =1,2,...,n.
The determinant of (6) being different from zero it follows that
Cinu=0 GCElLii=1,2,...,751=1,2,...,n).
This completes the proof for the case r > 4 because C,;; = 0 follows from
ar”.
Proof of 3.2. 7 = 3. From (4) we obtain
Cjkl=0 (j?fk?fl=l,2,...,n)

provided that at least one of the indices j, &, /, is larger than 3. But the three
remaining components of this type, namely Cis;, Ca31, and Ciis, satisfy an
identity (which follows easily from (I1'")):

Cig3 + Cos1 + C312 = 0.

Thus only two of these components (e.g., Cis3, C231) remain independent.
From (5) we have

ij;=0 (j=4,5,...,n;l=1,2,...,n).
From (G) we obtain fors =1,j =2,k = 3:

0 + b33C221 + bzzcasz = 0,
(M) b33C11; + 0 + 511C33; = 0, (l=4,5,...,n).
b22Ci1y + 611Cs3, + 0 = 0

https://doi.org/10.4153/CJM-1955-048-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1955-048-1

RIEMANNIAN SUBSPACES 451

We have therefore as above:

Cin=0 (G=1,231=4,5...,n).
From (5) we obtain for ¢, j, I = 1, 2, 3 in turn:

b33C221 + 022Cs31 = 0,

b33C11s + 51:Cs32 = 0,

b22C113 + 811Ca23 = 0.

It follows from these equations that three components of the type Ci;;
(¢ # 1 =1,2,3) are independent (e.g., Ci13, Cas3, Cs31).

Therefore, in the case under consideration fivze components of the tensor
C.; remain independent, namely Cias, Cas1, Cr1z, Coosy Cast.

Proof of 3.3. v = 2. From (4) we obtain
Cpi=0, G=k#1=12,...,n),

provided that at least two of the indices are larger than 2. The remaining
components of this type are Ciz;, Cay1, Ci12 among which we have (as before)
the identity

Cizi + Conn + Ci2 = 0, (l =3, 4»-.-,”)-
It follows therefore that 2#n — 4 of these components (e.g., Cia;, Cau;

!l =3,4,...,n) remain independent.
From (5) we have

C;i1 =0, (G=38,4...,m1=12,...,n),
and

b22C111 + 011Ca2; = 0, (t=3,4,...,n).
Thus the n — 2 components Ci1; (or Ca2;) (! = 3,4, ..., n) are independent.

The two components Ci12 and Cssy are also independent because they do
not occur in any of the equations (5).

Therefore, in the case under consideration, 3(z — 2) +2 =3z — 4
components of the tensor C;; remain independent, namely, Ciia, Ca21, Cizy,
Cau, Ci1y (l =3,4,..., n)

The case 7 > 4 of Theorem 3.1 was proved by Thomas (10, §5) for a V,
in an E,;1. In its general form but also for a ¥, in an E, 1, it was established
by the present author (3, pp. 196ff). Here the same line of proof has been
adopted.

It is remarkable that in the case + = 3, the number of independent compo-
nents of the tensor C,; does not depend upon the number of dimensions of
Vo
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