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ABSTRACT

It was proved that the problem of perturbed planar os-
cillations of a rigid-body in a circular orbit is nonitegr-
able. Two types of perturbations were considered: solar radi-
ations pressure and the third body torques. In the second
part of the paper example of chaotic rotations of a symmetric
rigid body in a circular orbit was given. It was shown nume-
rically that the phase space is divided into two separate
regions of chaotic and ordered motions.

1, INTRODUCTION

There are many examples of simple dynamical systems
with the so called chaotic bebhaviour. The main problems con-
nected with such a behaviour seem to be still open. We will
not discuss all possible mechanisms that lead to complex str-
ucture of phase curves and cause nonitegrability. The method
of the separatrices splitting {8] was chosen as a tool for
proving nonitegrability. In the cases considered here this
method is effective and allows to obtain some information
about 'nature' of chaos of the dynamical system.

Poincar€ [12] was the first who discovered that transve-
rsal crossing of asymptotic surfaces of unstable periodic so-~
lution leads to complex structure of phase curves. Melnikov's
result [11] allowed to formulate theorems about nonitegrabi-
lity of systems with transversal homoclinic (heteroclinic)
orbits (see [19],[20],[3]). Below, we shortly describe basic
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points of the method employed that will be uses later on.
Proofs and details can be found in the cited references.

Let us consider 2n-periodic hamiltonian system with one
degree of freedom. Hamiltonian function is assumed to ba ana-
lytic with respect to its arguments and depends on small par-
ameter:

H= H(x,t,e) = B (X) + el (x,t)+..., x = (q,p) )

We assume that unperturbed_system (e = 0) possess hyperbolic
equilibrium X, = 0_and let x(t) be double asymptotic soluti-
on to x, i.e. lim x(t) = x5 as t » ¢ = 1In the extended pha-
se space (x,t), we have two asymptotic surfaces W, W found
by solutions tending asymptotically to X, as t » =« and

t + + « , respectively. In the unperturbéd system they are
doubled (coincide). For e¢ small enough , there exists hyper-
bolic 2m-periodic solution xe(t). In general, its asympto-

tic surfaces Ws, W; do not coincide and cross transversely.

Points belonging to both of the surfaces are called homocli-
nic., Condition for transversal crossing of the separatrices
can be expressed in terms of Melnikov's integral. Namely, if
function:

M(t ) = S {Ho,Hl}(fc(t - t,),t)dt (2)

has simple zero then perturbed asymptotic surfaces cross

transversely and hamiltonian system (1) is nonitegrable. In

such situation, for the Poincaré's map P€ of perturbed sys~

tem following statements are valid:

1. Pe has invariant structurally stable Cantor set A,

2. For some N < o | Pf, on invariant set A is topologica-
l1ly conjugate to a shift on two symbols.

Invariant set A contains:

1. A countable infinity of periodic orbits (including orb-
its with arbitrarily long period).

2. An uncountable infinity of nonperiodic orbits.
3. A dense orbit.

The explanation why, and in what sense, dynamics on A can
be interpreted as chaotic, one can find in [7].

More detailed study of some problems presented in this
paper one can find in (101,
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2. PERTURBED PLANAR OSCILATION OF A RIGID SATELLITE

In this section we give few examples of nonitegrability
of perturbed planar oscilation of a satellite in a circular
orbit.

2,1 Perturbation due to eccentricity of the orbit

Let us consider a rigid body 'in an elliptic orbit (see
Fig, 1). Equation of its planar oscilation has the form [13:

Ly /2

Fig. 1: Planar oscillation of a satellite in elliptic orbit.
a2 a5 . 2
(1+ e cos(v)) — - 2e sin(v) i + n” sin(§) = 4e sin(v)
v
dv (3)

vhere e is the eccentricity, v is the true anomaly, and n > O
is the parameter characterizing mass distribution of the body.
This equation can be expressed in the Hamiltonian form:
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H = '12'[113?'(:'55?7 - 2(1+e cos(v))1Z - (1+e cos(v))In? cos(q).

Eccentricity will be considered as small parameter. Hamilton-
ian function can be represented in the form (1) where:

B =5 ©-2)° - n° cos@), B = - [(©%4) + 0’ cos(a)kos(v)

Unperturbed hyperbolic equilibrium solution (e = 0) is given
by:

q(v) = 7, p(v) = 2.

One can easily find two double asymptotic solutions to this
equilibrium:

k4 _ 2n
P (v) _ 2 ch(nv) '’
i k4 sh(nv) + 2
sin(q (v)) = * » c0s(q"(v)) = —5—— - 1.
ch® (nv) ch™ (nv)

Using method of residuals it is possible to calculate Melni-
kov's integral for both homoclinic loops:

Mi(vo) J {HO,Hl}(qi(v-vo), pi(v—vo ), v)dv

-—O0

_ 47 _m 3 .
= ———-—-h( ) [ +th( 5 ) + i ]51n(\)o).
S 2n

Thus, it is easy to see, that one pair of asymptotic surfaces
(with sign plus) crosses transversely for any value of parame-
ter n > 0 and the system is nonitegrable., The second pair of
asymptotic surfaces also crosses transversely when n # 7/ln 7,
If n = 7n/ln 7 then splitting of the separatrices has order
smaller than e, Calculations presented above repeat those of
Burov [41,[5] (we corrected some misprints). It should be also
noted that equation equivalent to (3) was used by Wisdom and
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co-workers [18] as the model of spin-orbit coupling for Hy-
perion. Numerical study of this equation allowed them to show
chaotic rotation of Hyperion - known as the most evidend exa-
mple of chaotic motion in the solar system.

2.2 Solar radiation perturbations

Let us consider rigid satellite in a circular orbit that
lies in the ecliptic plane (see Fig. 2). We assume that tor-
que caused by radiation pressure is perpendicular to the or-
bital plane (center of resultant radiation force lies on x'
axis). We neglect shadowing effect. Fguation of planar oscil-
lations of the satellite has the form:

Yy

AT
N

ig. 2: Perturbed planar oscillation of a satellite in circu-
lar orbit. Solar radiation pressure perturbations.
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d29

da
This equation is equivalent to the Hamilton's equations:

+ = n2 sin(20) + % e sin(@+) = O.

dg _ 28 dp _ _2H
d«g  ?p ' do 2q )
where Hemiltonian function is given by:

2

H = g— - n2 cos(q) - € cos( % +a ).,

Snall parameter e¢ is proportional to the solar radiation
torque, parameter n depends on mass distribution of the sat-
ellite and q = 0/2. Unperturbed equations (4) (¢ = 0) have
hyperbolic equilibrium solution:

Q@) = v , p(e) = O

and there exist two double asymptotic solutions:

2n

+
p ()= ¢ EETFETI'

sin(a®(@)) = ¢ 2B 0o5(q% (@) = —2— - 1.
ch™ (na) ch™ (na)

We can calculate Melnikov's integrals:

Mi(ao) = {Z {Ho,lil}(qi(a— ay), pi(ot-Oto),ct)010L
= —2__rtn( 5~ ) -1lsin(a).
nsh( Ty ) n °

It is easy to observe that for any values of parameter n the
above function has simple zero. Thus, both pairs of asympto-
tic surfaces cross transversely and equations (4) are nonit-
egrable.

It should be moted that solar radiation torque depends
strongly on satellite geometry. If the torque is caused by
flat surfaces like big antennas or solar batteries then
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right bhand sides of differential equations describing rota-
tional motion of the satellite are only piecewise smooth. In
these cases, for analysis of motion, special techniques shou-
1d be used (see [141,[151). Example of investigation of pla-
nar oscillation of an umbrella like satellite under influence
of gravitational and solar radiation torques can be found [2].

2.3 Third body perturbations

Let us consider rotational motion of a rigid body in a
circular orbit under influence of central body M and 'moon'
m whose orbit is assumed also circular and coplanar with orb-
it of the body (see Fig, 3). We approximate influence of
'moon' resolving potential of the torque with respect to the
r/R ratio, where r is the radius of the body orbit and R is
radius of 'moon' orbit. For planar oscillations we obtained
following equation:

Fig.3: Perturbed planar oscillation of a satellite in circular
orbit. Third body perturbations.
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g_g + % n2 sin(20) - % n? sin(v-20) = 0
dv
where
Q
2 1 2 B-A
v =Qt, O 2(2;-05), n =3(5;) <
Q
2 2 m
6'\'(5'1") i’

91 and 92 are angular orbital velocities of the body and

‘moon', respectively. As in previous cases we can write this
equation in the form of Hamilton's equations with Hamilton-
ian function: :

2 .
H = E’Z - n2 cos(q) - en2 cos(v-q)
where q = 20,

0) has hyperbolic equilibrium solu-

Unperturbed system (e
tion

q(v) =7 , p(v)= O

and two double asymptotic solutions:

2n

1]

sh(nv

+ 2
,eos(q (v))= - 1.

ch” (nv) ch™ (nv)

4

sin(g¥(v)) =

Calculations show that Melnikov's integral in this case is:

Mi(vo) =s° {Ho.Hl}(qi(v-vo).pt(v-vo),v)dv
2mn2 2 n 1
= ——T-—[{4(n +1) + nlth( 55 ) - Y ]sin(\)o).
sh( oy )

This result shows that both pairs of asymptotic surfaces
cross transversely and the system is nonitegrable. We note
that the third body perturbations can be introduced in various
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ways. For example, one can consider the case when mass cen-
ter of the body moves in infinitesimal periodic orbit around
a libration point of the restricted three body problem. Sich
a case for small periodic orbit around L, was analyzed in
(6] where similar results were obtained.

3. CHAOTIC ROTATIONS OF SYMMETRIC RIGID BODY IN A CIRCULAR
ORBIT

In this section we consider a symmetric rigid body in a
circular orbit. As the generalized coordinates we choose Eu-
ler angles of the type 3-2-1, One coordinate ig§ cyclic (beca-
use of the body symmetry). Using standard technique one ob-~
tains Hamiltonian function depending on two parameters:

2

py *+ v sin(q,) p
H= % { 1 2 }2 + —% ~-py *+ g-(a—l)cosz(ql)
cos(qy)
x cosz(qz) (5)
where

S S §
B!Y m ’
o

wp,w, are the projection of absolute angular velocity of the

body onto symmetry axis and orbital angular velocity,respec-
tively. We will investigate the case when vy = O and o = 4/3,
There is special reason to investigate thoroughly this case.
Skolsky in his paper [16] studying stability of regular
precessions (equilibria of vector field generated by (5))
made two remarkable hypotheses:

1, Casesa =1, vy = 0and a = 4/3, vy = 0 are transcendental.
2, The case Y =0, a = 4/3 is integrable.

First hypothesis states that stability of equilibrium can not
be determined by coefficients of normal form of any finite
order (for detailed discussion of this problem see [ 9])., The
second one is based on the fact that the case o =1, vy = 0
is evidently integrable, so one can expect integrability in
connection with transcendental cases of stability. We try to
make some analytical approach in order to prove (non)integr-
ability however, without success.

As an alternative we chose numerical ekploration of the

problem. For convenience we transformed the bhamiltonian (5)
to the form:
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2
__Egl__.}z P2
2

+ - 2py +} (1+cOS(q1))cos2(q2)
cos(qy)

_ 1
H—i-{

by means of canonical change of variables (now hamiltonian
is 2n-periodic with respect to 4 ). We restrict our analysis
to the surface of constant energy H= 0. This surface is com-
pact. In the (ql qz,pz) coordinates space equation H= O

defines bounded region, symmetric with respect to p2 = O pla-
ne. Figure 4 shows upper boundary of this region.

At first, we generated Poincaré (global) cross section
(see Fig. 5). As the plane of cross section we chose q = 7.
It is visible that on the plane of cross section there are
two regions: chaotic in the central part of figure and order-
ed one in upper and lower parts (symmetric curves in upper
and lower part of figure belong to one phase curve; all points
in chaotic region belong to one phase curve). We found this
feature of the cross section as untypical. Normally (e.g.
Hennon-Heiles system) in the chaotic region there are 'islands
of ordered regions. In order to investigate this question we
fix two windows (two squares in Fig. 5) one in the chaotic
and second in the ordered region, Fig. 6 and Fig. 7 show that
there are no chaotic parts. This and other tests made seem
to support our statement about separation of the phase space
into two regions. We also used Liapunov exponents to test if
there is no ordered region in the chaotic part. Results are
shown in Fig. 8, they also shows strict separation of the
phase space.

Another interesting feature of the system can be observ-
ed if cross section plane is fixed on different places on qi
axis (Figs. 9-11)., When the plane of cross section is placed
in lower values of g axis then order region is smaller., For
the case q; = m/3 it totally disappear. (In all figures
where cross-section is shown position of plane of cross sec-
tion is marked by ql)

All these numerical observations seem to have some impor-
tance to the so called 'coexistence' problem formulated by
J-M. Strelcyn [171. It consist on proving frequently observ-
ed mnumerically chaotic and ordered behaviour of a dynamical
system. In the system investigated above, all results seem to
support hypothesis that we have here 'simple coexistence'.
First explicit example of this kind of coexistence (for diff-
eomorfisms) was proved in [131].
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Fig. 5: Poincaré cross section. Two squares denote windows for more precise

investigations.
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Fig. 6: Enlargement of chaotic window. Points belong to orbit different
than this on Fig. 5.
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Fig. 7: Enlargement of ordered window.
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Fig. 8: Maximal Liapunov exponent as function of point on the cross
section plane. For generation 30 x 30 grid of points was used.
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