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Abstract

Given a morphism T from a Banach algebra B to a commutative Banach algebra A, a multiplication is
defined on the Cartesian product space A× B perturbing the coordinatewise product resulting in a new
Banach algebra A×T B. The Arens regularity as well as amenability (together with its various avatars)
ofA×T B are shown to be stable with respect to T .
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1. Introduction

Let A and B be algebras, let T : B→A be an algebra homomorphism, and let A
be assumed commutative throughout. (It suffices to assume that the range of T is
contained in the centre ofA.) We define a product onA× B as follows:

(a, b)(a′, b′) = (aa′ + T (b)a′ + T (b′)a, bb′) ((a, b), (a′, b′) ∈ A × B).

Then the Cartesian product space A× B is an associative, not necessarily
commutative, algebra with this product. We denote A× B with this product by
A×T B. If A and B are Banach algebras and if ‖T‖ ≤ 1, then A×T B is a Banach
algebra with the norm

‖(a, b)‖ = ‖a‖ + ‖b‖ ((a, b) ∈ A ×T B).

We note that A is a closed ideal of A×T B and (A×T B)/A is isometrically
isomorphic to B. When T = 0, this gives the coordinatewise product. Thus ×T is
the perturbation of the coordinatewise product induced by T . Besides giving a new
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method of constructing Banach algebras, the product ×T has relevance in at least the
following two situations.

(a) Let A be unital, and let θ : B→ C be a multiplicative linear functional. Define
T : B→A as T (x) = θ(x)e (x ∈ B). Then the above product coincides with the product
investigated by Lau [11]. This product is of relevance in Lau algebras arising in
harmonic analysis and providing an abstract setting for several Banach algebras of
harmonic analysis. A Lau algebra (called an F-algebra in [11]) is a pair (A, M),
where A is a complex Banach algebra; M is a W∗-algebra and A is the predual of
M such that the identity e of M is a multiplicative linear functional on A. Examples
of Lau algebras include the group algebra L1(G), the measure algebra M(G) and the
Fourier algebra A(G) of a locally compact group G [11]; the Fourier–Stieltjes algebra
of a topological group [12]; the measure algebra M(S ) of a locally compact semigroup
or a hypergroup; as well as the predual algebra of a Hopf von Neumann algebra [16].
The Banach algebra M ×T A, T :A→ M being T (x) = e(x)e, encodes a Lau algebra
(A, M).

(b) In the framework of Brown–Douglas–Fillmore theory [4], given an extension
of compact operators K(H) on a separable Hilbert space H by the abelian C∗-
algebra C(X) of continuous functions on a compact space X manifested by a short

exact sequence 0 −→K(H)
i
−−→A

ϕ
−−→C(X) −→ 0 of C∗-algebras, the above product

produces a Banach ∗-algebra C(X) ×ϕ A encoding the extension. This aspect of the
extension is yet to be explored.

The purpose of the present paper is to determine the Gel’fand space of A×T B

which turns out to be nontrivial even though A×T B need not be commutative
and to discuss the Arens regularity as well as the amenability of A×T B. These
topics are central to the general theory of Banach algebras [3]; and are of current
relevance [3, 5, 6]. Arens [1, 2] showed that the given product on a Banach algebra
A induces two canonical products on the second dual A′′ of A; and A is Arens
regular if these two products coincide. We prove in Theorem 3.1 that for an Arens
regular commutative Banach algebra A, A×T B is Arens regular if and only if B is
Arens regular, thereby showing Arens regularity to be independent of T . A Banach
algebra is amenable if any bounded derivation of A into the dual E′ of a Banach A-
module E is inner in the sense that it is of the form δx, δx(a) = a · x − x · a (a ∈ A),
for some x ∈ E′. Replacing E′ by the dualA′ (which is anA-module) results in weak
amenability. There are closely related notions like approximate amenability, weak
approximate amenability, and cyclic amenability. It is shown in Theorem 4.1 that
A×T B is amenable (weakly amenable, approximately amenable, weak approximately
amenable, cyclic amenable, approximate cyclic amenable, respectively) if and only if
A and B also are. A localised version is also discussed in Theorem 4.2. These results
provide analogues for the perturbed product ×T of the results for the Lau product
proved recently in [13]. In fact, the present paper and the arguments herein are
inspired by [13]. The message of the paper is that the notions of Arens regularity
and amenability are fairly stable with respect to Cartesian product.
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2. Gel’fand space and geometrisation of ×T

T 2.1. LetA be a commutative Banach algebra with the Gel’fand space ∆(A),
let B be a Banach algebra, and let T : B→A be a homomorphism with ‖T‖ ≤ 1.
Then ∆(A×T B) = {(ϕ, ϕ ◦ T ) : ϕ ∈ ∆(A)} ∪̇ {(0, ψ) : ψ ∈ ∆(B)}, a disjoint union, and
E := {(ϕ, ϕ ◦ T ) : ϕ ∈ ∆(A)} and F := {(0, ψ) : ψ ∈ ∆(B)} are closed in ∆(A×T B).

P. It is easy to see that

{(ϕ, ϕ ◦ T ) : ϕ ∈ ∆(A)} ∪ {(0, ψ) : ψ ∈ ∆(B)} ⊂ ∆(A×T B).

Conversely, let (ϕ, ψ) ∈ ∆(A×T B). Then

(ϕ, ψ)[(a, b)(a′, b′)] = (ϕ, ψ)(a, b)(ϕ, ψ)(a′, b′)

gives

ϕ(aa′ + T (b′)a + T (b)a′) + ψ(bb′) = ϕ(a)ϕ(a′) + ϕ(a)ψ(b′) + ϕ(a′)ψ(b) + ψ(b)ψ(b′).

Taking b = b′ = 0, we get ϕ(aa′) = ϕ(a)ϕ(a′), and taking a = a′ = 0, we get ψ(bb′) =

ψ(b)ψ(b′).
First let ϕ , 0. Then

ϕ(T (b))ϕ(a′) + ϕ(T (b′))ϕ(a) = ϕ(a′)ψ(b) + ϕ(a)ψ(b′).

Taking a = a′ and b = b′, we get ϕ(T (b)) = ψ(b). Hence ψ = ϕ ◦ T .
Suppose that ϕ = 0. Then (0, ψ) ∈ ∆(A× B).
Thus E ∪̇ F = ∆(A×T B). Let (ϕ0, ϕ0 ◦ T ) ∈ E. Then there exists a ∈ A such that

ϕ0(a) , 0. Let ε = |ϕ0(a)|/2, and U = U((ϕ0, ϕ0 ◦ T ), ε, (a, 0)). Then

U = {(ϕ, ψ) ∈ ∆(A×T B) : |(ϕ, ψ)(a, 0) − (ϕ0, ϕ0 ◦ T )(a, 0)| < ε}

= {(ϕ, ψ) ∈ ∆(A×T B) : |ϕ(a) − ϕ0(a)| < ε}.

If (0, ψ) ∈ U, then |ϕ0(a)| < ε, which is not possible. Hence U ⊂ E. This shows that E
is open in ∆(A×T B) and hence F is closed in ∆(A×T B).

Let (0, ψ) ∈ ∆(A×T B) be in the closure of E. Then there is a net ((ϕα, ϕα ◦ T )) ⊂ E
converging to (0, ψ), that is,

ϕα(a) + ϕα ◦ T (b)→ ψ(b) ((a, b) ∈ A ×T B).

In particular, taking b = 0, ϕα(a)→ 0 (a ∈ A). Taking a = 0, ϕα ◦ T (b)→ ψ(b) (b ∈ B).
Since ϕα→ 0, we have ϕα ◦ T → 0, that is, ψ = 0. This is a contradiction. Hence E is
closed in ∆(A×T B). �

C 2.2. LetA and B be commutative Banach algebras, and let T : B→A be
an algebra homomorphism with ‖T‖ ≤ 1. Then A×T B is semisimple if and only if
bothA and B are semisimple.
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P. Let A×T B be semisimple. Let a ∈ A be such that ϕ(a) = 0 (ϕ ∈ ∆(A)).
Then (ϕ, ϕ ◦ T )(a, 0) = 0 (ϕ ∈ ∆(A)) and (0, ψ)(a, 0) = 0 (ψ ∈ ∆(B)). Since A×T B

is semisimple, a = 0. Therefore A is semisimple. It also follows by an analogous
argument that B is semisimple.

Let (a, b) ∈ A ×T B be such that (ϕ, ψ)(a, b) = 0 ((ϕ, ψ) ∈ ∆(A×T B)). In
particular, ψ(b) = (0, ψ)(a, b) = 0 (ψ ∈ ∆(B)). Since B is semisimple, it follows that
b = 0. Since b = 0, we have ϕ(a) = 0 (ϕ ∈ ∆(A)). SinceA is semisimple, a = 0. Hence
A×T B is semisimple. �

Since A is a closed ideal of A×T B and (A×T B)/A is isometrically isomorphic
to B, it follows from Theorems 4.2.6 and 4.3.8 in [8] thatA×T B is regular if and only
if bothA and B are regular.

Theorem 2.1 shows that given locally compact Hausdorff spaces X and Y and a
proper continuous map h : X→ Y (that is, a continuous map for which the preimage
under h of any compact set in Y is compact in X), the product X ×h Y defined below
gives a geometrisation of the perturbed product ×T :

X ×h Y := {(x, h(x)) : x ∈ X} ∪ {(0, y) : y ∈ Y}.

3. Arens regularity

Let A be a Banach algebra. Let A′ and A′′ be the dual and second dual Banach
spaces, respectively. Let a ∈ A, λ ∈ A′ and Φ, Ψ ∈ A′′. Then λ · a and a · λ are
defined as λ · a(x) = λ(ax) (x ∈ A) and a · λ(x) = λ(xa) (x ∈ A), making A′ an A-
module. NowA′′ is anA′-module by

〈a, Φ · λ〉 = 〈Φ, λ · a〉, 〈a, λ · Φ〉 = 〈Φ, a · λ〉.

This defines two Arens products � and ^ onA′′ as

〈Φ � Ψ, λ〉 = 〈Φ, Ψ · λ〉, 〈Φ ^ Ψ, λ〉 = 〈Ψ, λ · Φ〉,

makingA′′ a Banach algebra with each. For each Ψ ∈ A′′, the maps LΨ : Φ 7→ Ψ ^ Φ

and RΨ : Φ 7→ Φ � Ψ are continuous on (A′′, σ), where σ ≡ σ(A′′,A′) denotes the
weak∗-topology onA′′ by the duality 〈A′,A′′〉. The products � and^ are respectively
the first and second Arens products on A′′. The algebra A is Arens regular if these
products coincide onA′′.

The left and right topological centres ofA′′ are defined by

Z
(`)
t (A′′) = {Φ ∈ A′′ : Φ � Ψ = Φ ^ Ψ (Ψ ∈ A′′)},

Z
(r)
t (A′′) = {Φ ∈ A′′ : Ψ � Φ = Ψ ^ Φ (Ψ ∈ A′′)}.

The Banach algebra A is left strongly Arens irregular if Z(`)
t (A′′) =A, right strongly

Arens irregular if Z(r)
t (A′′) =A, and strongly Arens irregular if it is both left and right

strongly Arens irregular.
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Let T :A→B be a continuous algebra homomorphism. Define T ′ : B′→A′ as
T ′(λ) = λ ◦ T , and T ′′ :A′′→B′′ as T ′′(F) = F ◦ T ′. Then by [3, p. 251] both
T ′′ : (A′′, �)→ (B′′, �) and T ′′ : (A′′, ^)→ (B′′, ^) are continuous homomorphisms.
If ‖T‖ ≤ 1, then ‖T ′′‖ ≤ 1 in both the cases.

Let A be a commutative Banach algebra. Then A is Arens regular if and only if
(A′′, �) is commutative [3].

T 3.1. LetA and B be Banach algebras, and letA be commutative and Arens
regular. Let T : B→A be an algebra homomorphism with norm at most 1.

(1) Suppose thatA′′, B′′, and (A×T B)′′ are equipped with their first (respectively,
second) Arens products. Then

(A×T B)′′ �A′′ ×T ′′ B
′′ (isometric isomorphism).

(2) Let Zt be either a left or a right topological centre ofA′′. Then Zt((A×T B)′′) =

A′′ ×T ′′ Zt(B′′). In particular,A×T B is Arens regular if and only if B is Arens
regular.

P. (1) Since A is commutative and Arens regular, (A′′, �) is commutative.
The first Arens product on A′′ ×T ′′ B

′′ is given as follows. Let (Φ, Ψ), (Φ′, Ψ′) ∈
A′′ ×T ′′ B

′′. Then

(Φ, Ψ)(Φ′, Ψ′) := (Φ � Φ′ + T ′′(Ψ′) � Φ + T ′′(Ψ) � Φ′, Ψ � Ψ′). (3.1)

We compute the Arens product � on (A×T B)′′. For this purpose let (a, b) ∈
A ×T B, (φ, ψ) ∈ A′ × B′, and (Φ, Ψ), (Φ′, Ψ′) ∈ A′′ × B′′. Let (a′, b′) ∈ A ×T B.
Then

((φ, ψ) · (a, b))(a′, b′) = (φ, ψ)((a, b)(a′, b′))

= (φ, ψ)(aa′ + T (b)a′ + T (b′)a, bb′)

= φ(aa′ + T (b)a′ + T (b′)a) + φ(bb′)

= (φ · a + φ · T (b))(a′) + (T ′(φ · a) + ψ · b)(b′)

= (φ · a + φ · T (b), T ′(φ · a) + ψ · b)(a′, b′).

Therefore
(φ, ψ) · (a, b) = (φ · a + φ · T (b), T ′(φ · a) + ψ · b).

Also

((Φ, Ψ) · (φ, ψ))(a, b) = (Φ, Ψ)((φ, ψ) · (a, b))

= (Φ, Ψ)(φ · a + φ · T (b), T ′(φ · a) + ψ · b)

= Φ(φ · a + φ · T (b)) + Ψ(T ′(φ · a) + ψ · b)

= Φ(φ · a + φ · T (b)) + Ψ ◦ T ′(φ · a) + Ψ(ψ · b)

= Φ(φ · a + φ · T (b)) + T ′′(Ψ)(φ · a) + Ψ(ψ · b)

= (Φ · φ + T ′′(Ψ) · φ)(a) + (T ′(Φ · φ) + Ψ · ψ)(b)

= (Φ · φ + T ′′(Ψ) · φ, T ′(Φ · φ) + Ψ · ψ)(a, b).

https://doi.org/10.1017/S000497271200055X Published online by Cambridge University Press

https://doi.org/10.1017/S000497271200055X


200 S. J. Bhatt and P. A. Dabhi [6]

Therefore

(Φ, Ψ) · (φ, ψ) = (Φ · φ + T ′′(Ψ) · φ, T ′(Φ · φ) + Ψ · ψ).

Now

((Φ, Ψ) � (Φ′, Ψ′))(φ, ψ) = (Φ, Ψ)((Φ′, Ψ′) · (φ, ψ))

= (Φ, Ψ)(Φ′ · φ + T ′′(Ψ′) · φ, T ′(Φ′ · φ) + Ψ′ · ψ)

= Φ(Φ′ · φ + T ′′(Ψ′) · φ) + Ψ(T ′(Φ′ · φ) + Ψ′ · ψ)

= Φ(Φ′ · φ + T ′′(Ψ′) · φ) + T ′′(Ψ)(Φ′ · φ) + (Ψ′ · ψ)

= (Φ � Φ′ + Φ � T ′′(Ψ′) + Φ′ � T ′′(Ψ))(φ) + (Ψ � Ψ′)(ψ)

= (Φ � Φ′ + Φ � T ′′(Ψ′) + Φ′ � T ′′(Ψ), Ψ � Ψ′)(φ, ψ).

Therefore

(Φ, Ψ) � (Φ′, Ψ′) = (Φ � Φ′ + Φ � T ′′(Ψ′) + Φ′ � T ′′(Ψ), Ψ � Ψ′),

which is the same as (3.1). Calculations for the second Arens product are analogous.
(2) Since A is commutative and Arens regular, A′′ = Z(`)(A′′) = Z(r)(A′′). Let

(Φ, Ψ) ∈ Z(`)((A×T B)′′) = Z(`)(A′′ ×T ′′ B
′′). Then for any (Φ′, Ψ′) ∈ A′′ ×T ′′ B

′′,
(Φ, Ψ) � (Φ′, Ψ′) = (Φ, Ψ) ^ (Φ′, Ψ′), that is,

(Φ � Φ′ + Φ � T ′′(Ψ′) + Φ′ � T ′′(Ψ), Ψ � Ψ′)

= (Φ ^ Φ′ + Φ ^ T ′′(Ψ′) + Φ′ ^ T ′′(Ψ), Ψ ^ Ψ′).

In particular, Ψ � Ψ′ = Ψ ^ Ψ′ for every Ψ′ ∈ B′′. Therefore

Z
(`)(A′′ ×T ′′ B

′′) ⊂A′′ ×T ′′ Z
(`)(B′′).

Conversely, assume that (Φ, Ψ) ∈ A′′ ×T ′′ Z
(`)(B′′). Since A′′ = Z(`)(A′′), it follows

that (Φ, Ψ) � (Φ′, Ψ′) = (Φ, Ψ) ^ (Φ′, Ψ′) for every (Φ′, Ψ′) ∈ A′′ ×T ′′ B
′′, that is,

(Φ, Ψ) ∈ Z(`)(A′′ ×T ′′ B
′′). Therefore A′′ ×T ′′ Z

(`)(B′′) ⊂ Z(`)(A′′ ×T ′′ B
′′). This

means that Z(`)((A×T B)′′) =A′′ ×T ′′ Z
(`)(B′′). It also follows that A×T B is Arens

regular if and only if B is regular. �

4. Amenability

Let A be a Banach algebra, and let E be a Banach A-module. A bounded E-
derivation is a bounded linear map D :A→ E such that

D(ab) = (Da) · b + a · (Db) (a, b ∈ A).

The set of all bounded E-derivations onA is denoted byZ1(A, E).
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Given x ∈ E, let δx :A→ E be given by δx(a) = a · x − x · a (a ∈ A). Then δx ∈

Z1(A, E). The derivation δx is called an inner E-derivation. Let B1(A, E) be the set
of all inner E-derivations. Let

H1(A, E) =Z1(A, E)/B1(A, E).

ThenH1(A, E) is the first cohomology group of A with coefficients in E.
A Banach algebra A is amenable if H1(A, E′) = {0} for every Banach A-module

E and it is weakly amenable if H1(A,A′) = {0}. By [3, Proposition 2.8.59], a
Banach algebra A is amenable if and only if for each Banach A-module E and each
D ∈ Z1(A, E), there exists a bounded net (xα) in E such that

D(a) = lim
α

(a · xα − xα · a) (a ∈ A).

If I is a closed ideal ofA, then, by [3, Proposition 2.8.66],A is amenable if I andA/I
are amenable andA is weakly amenable if I andA/I are weakly amenable.

A derivation D :A→ E is approximately inner if there exists a net (xα) ⊂ E such
that D(a) = limα(a · xα − xα · a) (a ∈ A). The algebraA is approximately amenable if
for each Banach A-module E every bounded derivation D :A→ E is approximately
inner and A is approximately weakly amenable if every bounded derivation D :A→
A′ is approximately inner. By [6, Proposition 2.2 (iii)], if I is a closed ideal in a
Banach algebraA, I is weakly amenable andA/I is approximately weakly amenable,
thenA is approximately weakly amenable.

A derivation D :A→A′ is cyclic if D(a)(b) + D(b)(a) = 0 (a, b ∈ A). Every inner
derivation from A to A′ is cyclic. A Banach algebra A is cyclic amenable if every
cyclic derivation is inner.

A Banach algebra A is approximately cyclic amenable if every cyclic derivation
D :A→A′ is approximately inner.

The following theorem exhibits the stability of amenability with respect to
the product ×T . Looking to the elementary nature of product ×T , the proof
is quite elementary, avoiding deeper results in amenability such as its functorial
properties [15].

T 4.1. Let A be a commutative Banach algebra, let B be a Banach algebra,
and let T : B→A be an algebra homomorphism with ‖T‖ ≤ 1. Then:

(1) A×T B is amenable if and only if bothA and B are amenable;
(2) A×T B is weakly amenable if and only if bothA and B are weakly amenable;
(3) A×T B is approximately weakly amenable if and only if both A and B are

approximately weakly amenable;
(4) A×T B is cyclic amenable if and only if bothA and B are cyclic amenable;
(5) A×T B is approximately cyclic amenable if and only if both A and B are

approximately cyclic amenable.

P. (1) Assume that both A and B are amenable. Since I is a closed ideal in
A×T B and (A×T B)/A � B,A×T B is amenable.
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Conversely, assume that A×T B is amenable. Let E be a Banach A-module, and
let d :A→ E be a bounded derivation. We may consider this map as d :A× {0} →
E × {0}. We note that E × {0} is a Banach A×T B-module. Let P :A×T B be
defined as

P(a, b) = (a + T (b), 0) ((a, b) ∈ A ×T B).

Then D = d ◦ P :A×T B→ E × {0} is a bounded derivation on A×T B. Since
A×T B is amenable, there exists a bounded net ((xα, 0)) in E × {0} such that

D(a, b) = lim
α

((a, b) · (xα, 0) − (xα, 0) · (a, b)) ((a, b) ∈ A ×T B).

In particular,

d(a) = d(a, 0) = D(a, 0) = lim
α

((a, 0) · (xα, 0) − (xα, 0) · (a, 0))

= lim
α

(a · xα − xα · a).

HenceA is amenable.
Similarly, by taking P :A×T B→ {0} × E as P(a, b) = (0, b) it follows that B is

amenable.

(2) Assume that both A and B are weakly amenable. Since I is a closed ideal in
A×T B and (A×T B)/A � B,A×T B is weakly amenable.

Conversely, let A×T B be weakly amenable. Let d :A→A′ be a continuous
derivation. Let P :A×T B→A be defined as

P(a, b) = a + T (b) ((a, b) ∈ A ×T B).

Let D = P′ ◦ d ◦ P. Then D is a derivation of A×T B to A′ × B′. Since A×T B is
weakly amenable, there exists (ϕ, ψ) inA′ × B′ such that D = δ(ϕ,ψ).

Let a, a′ ∈ A. Then

〈d(a), a′〉 = 〈P′ ◦ dP(a, 0), (a′, 0)〉 = 〈(a, 0) · (ϕ, ψ) − (ϕ, ψ) · (a, 0), (a′, 0)〉

= 〈a · ϕ − ϕ · a, a′〉 = 0 (asA is commutative).

HenceZ1(A,A′) = {0}, that is,A is weakly amenable.
Let d : B→B′ be a continuous derivation. Let P :A×T B→B be defined as

P(a, b) = b ((a, b) ∈ A ×T B).

Let D = P′ ◦ d ◦ P. Then D is a derivation of A×T B to A′ × B′. Since A× B is
weakly amenable, there exists (ϕ, ψ) ∈ A′ × B′ such that D = δ(ϕ,ψ).

Let b, b′ ∈ B. Then

〈d(b), b′〉 = 〈P′ ◦ d ◦ P(0, b), (0, b′)〉

= 〈(0, b) · (ϕ, ψ) − (ϕ, ψ) · (0, b), (0, b′)〉

= 〈b · ψ − ψ · b, b′〉.

Hence d = δψ. Therefore B is weakly amenable.
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(3) Assume that both A and B are approximately weakly amenable. Since A
is commutative, it is weakly amenable. Since A is a closed ideal in A×T B and
(A×T B)/A � B,A×T B is approximately weakly amenable.

Conversely, assume that A×T B is approximately weakly amenable. Let d :
A→A′ be a continuous derivation. Then D = P′ ◦ d ◦ P is a continuous derivation
of A×T B. Since A×T B is weakly approximately amenable, there exists a net
((ϕα, ψα)) ⊂A′ × B′ such that

D(a, b) = lim
α

((a, b) · (ϕα, ψα) − (ϕα, ψα) · (a, b)) ((a, b) ∈ A ×T B).

Now

〈d(a), a′〉 = 〈D(a, 0), (a′, 0)〉

= 〈lim
α

((a, 0) · (ϕα, ψα) − (ϕα, ψα) · (a, 0)), (a′, 0)〉

= 〈lim
α

(a · ϕα − ϕα · a), a′〉 = 0.

Therefore d = 0. HenceA is approximately weakly amenable.
The proof of approximately weak amenability of B is analogous to the above.
(4) Let A and B be cyclic amenable. Let D :A×T B→A

′ × B′ be a bounded
cyclic derivation. Then D|A :A→A′ and D|B : B→B′ are cyclic derivations. Since
A is commutative, D|A = 0, and since B is cyclic amenable, there exists ψ ∈ B′ such
that D|B(0, b) = (0, b) · (0, ψ) − (0, ψ) · (0, b) (b ∈ B). Let (a, b) ∈ A ×T B. Then

D(a, b) = D(a, 0) + D(0, b)

= b · ψ − ψ · b

= (a, b) · (0, ψ) − (0, ψ) · (a, b).

ThereforeA×T B is cyclic amenable.
Conversely, assume that A×T B is cyclic amenable. Let d :A→A′ be a cyclic

derivation. Then d can be considered as a map d :A× {0} →A′ × {0} ⊂ A′ × B′.
Let P :A×T B→A be defined as P(a, b) = (a + T (b), 0) ((a, b) ∈ A ×T B). Then
d ◦ P :A×T B→A

′ × {0} ⊂ A′ × B′ is a cyclic derivation. Since A×T B is cyclic
amenable, there exists (ϕ, ψ) ∈ A′ × B′ such that

d ◦ P(a, b) = (a, b) · (ϕ, ψ) − (ϕ, ψ) · (a, b) ((a, b) ∈ A ×T B).

Let a ∈ A. Then

d(a) = d ◦ P(a, 0) = (a, 0) · (ϕ, ψ) − (ϕ, ψ) · (a, 0)

= a · ϕ − ϕ · a = 0 (asA is commutative).

ThereforeA is cyclic amenable. Similarly, one can show that B is cyclic amenable.
(5) Let A and B be approximately cyclic amenable. Let D :A×T B→A

′ × B′

be a bounded cyclic derivation. Then D|A :A→A′ and D|B : B→B′ are cyclic
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derivations. Since A is commutative, D|A = 0, and since B is approximately cyclic
amenable, there exists a net (ψα) in B′ such that D|B(0, b) = limα((0, b) · (0, ψα) −
(0, ψα) · (0, b)) (b ∈ B). Let (a, b) ∈ A ×T B. Then

D(a, b) = D(a, 0) + D(0, b)

= lim
α

(b · ψα − ψα · b)

= lim
α

((a, b) · (0, ψα) − (0, ψα) · (a, b)).

ThereforeA×T B is approximately cyclic amenable.
Conversely, assume thatA×T B is approximately cyclic amenable. Let d :A→A′

be a cyclic derivation. Then d can be considered as a map d :A× {0} →A′ × {0} ⊂
A′ × B′. Let P :A×T B→A be defined as P(a, b) = (a + T (b), 0) ((a, b) ∈ A ×T B).
Then d ◦ P :A×T B→A

′ × {0} ⊂ A′ × B′ is a cyclic derivation. Since A×T B is
cyclic amenable, there exists a net (ϕα, ψα) inA′ × B′ such that

d ◦ P(a, b) = lim
α

((a, b) · (ϕα, ψα) − (ϕα, ψα) · (a, b)) ((a, b) ∈ A ×T B).

Let a ∈ A. Then

d(a) = d ◦ P(a, 0) = lim
α

((a, 0) · (ϕα, ψα) − (ϕα, ψα) · (a, 0))

= lim
α

(a · ϕα − ϕα · a) = 0 (asA is commutative).

Therefore A is approximately cyclic amenable. Similarly, one can show that B is
approximately cyclic amenable. �

There is a localised version of amenability of much recent interest, namely character
amenability [7, 9, 10, 14]. Let ϕ ∈ ∆(A). Following [5],A is ϕ-inner amenable if there
exists m ∈ A′′ such that m(ϕ) = 1 and m � a = a � m (a ∈ A). Such an m is called ϕ-
inner mean. A Banach algebraA is character inner amenable ifA is ϕ-inner amenable
for all ϕ ∈ ∆(A). We note that every commutative Banach algebra is character inner
amenable.

T 4.2. Let A be a commutative Banach algebra, B be a Banach algebra, and
let T : B→A be an algebra homomorphism with ‖T‖ ≤ 1.

(1) A×T B is (ϕ, ϕ ◦ T )-inner amenable for all ϕ ∈ ∆(A). If (m, n) is a (ϕ, ϕ ◦ T )-
inner mean and n(ϕ ◦ T ) , 0, then B is ϕ ◦ T-inner amenable.

(2) For all ψ ∈ ∆(B), A×T B is (0, ψ)-inner amenable if and only if B is ψ-inner
amenable.

(3) A×T B is character inner amenable if and only ifB is character inner amenable.

P. (1) Let ϕ ∈ ∆(A). Since A is commutative, there exists m ∈ A′′ such that
m(ϕ) = 1 and m � a = a � m for all a ∈ A. Then (m, 0)(ϕ, ϕ ◦ T ) = 1 and since A is
commutative, (m, 0) � (a, b) = (a, b) � (m, 0) for all (a, b) ∈ A ×T B, that is, A×T B

is (ϕ, ϕ ◦ T )-inner amenable.
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Let (m, n) be a (ϕ, ϕ ◦ T )-inner mean and n(ϕ ◦ T ) , 0. Then it follows that
(n/n(ϕ ◦ T ))(ϕ ◦ T ) = 1 and (n/n(ϕ ◦ T )) � b = b � (n/n(ϕ ◦ T )) for all b ∈ B, that is,
B is ϕ ◦ T -inner amenable.

(2) The proof is analogous to that of (1).
(3) Assume that B is character amenable. Let (ϕ, ψ) ∈ ∆(A×T B). First let ϕ = 0.

SinceB is character amenable, there exists n ∈ B′′ such that n(ψ) = 1 and n � b = b � n
for all b ∈ B. Now

(0, n)((0, ψ)) = n(ψ) = 1, (0, n) � (a, b) = (T ′′(n) � a, n � b)

and
(a, b) � (0, n) = (T ′′(n) � a, b � n).

Since A is commutative, m � a = a � m for every m ∈ A′′ and a ∈ A. Hence (0, n) is
a (0, ψ)- inner mean forA×T B.

Second, assume that ϕ , 0. Then (ϕ, ψ) = (ϕ, ϕ ◦ T ). Since A is character inner
amenable, there exists m ∈ A′′ such that m(ϕ) = 1 and m � a = a � m for every m ∈ A′′.
Now

(m, 0)((ϕ, ϕ ◦ T )) = m(ϕ) = 1,

(m, 0) � (a, b) = (m � a + T (b) � m, 0) = (a, b) � (m, 0).

HenceA×T B is character inner amenable.
Conversely, assume that A×T B is character inner amenable. Let ψ ∈ ∆(B).

Then there exists (m, n) ∈ A′′ ×T ′′ B
′′ such that (m, n)((0, ψ)) = n(ψ) = 1 and

(m, n) � (a, b) = (a, b) � (m, n) ((a, b) ∈ A ×T B). It follows that n(ψ) = 1 and n � b =

b � n (b ∈ B), that is, n is a ψ-inner mean for B. �
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