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We present new scaling expressions, including high-Reynolds-number (Re) predictions,
for all Reynolds stress components in the entire flow domain of turbulent channel and
pipe flows. In Part 1 (She et al., J. Fluid Mech., vol. 827, 2017, pp. 322–356), based
on the dilation symmetry of the mean Navier–Stokes equation a four-layer formula of
the Reynolds shear stress length `12 – and hence also the entire mean velocity profile
(MVP) – was obtained. Here, random dilations on the second-order balance equations
for all the Reynolds stresses (shear stress −u′v′, and normal stresses u′u′, v′v′, w′w′)
are analysed layer by layer, and similar four-layer formulae of the corresponding stress
length functions `11, `22, `33 (hence the three turbulence intensities) are obtained for
turbulent channel and pipe flows. In particular, direct numerical simulation (DNS)
data are shown to agree well with the four-layer formulae for `12 and `22 – which
have the celebrated linear scalings in the logarithmic layer, i.e. `12≈ κy and `22≈ κ22y.
However, data show an invariant peak location for w′w′, which theoretically leads to
an anomalous scaling in `33 in the log layer only, namely `33 ∝ y1−γ with γ ≈ 0.07.
Furthermore, another mesolayer modification of `11 yields the experimentally observed
location and magnitude of the outer peak of u′u′. The resulting −u′v′, u′u′, v′v′ and
w′w′ are all in good agreement with DNS and experimental data in the entire flow
domain. Our additional results include: (1) the maximum turbulent production is
located at y+ ≈ 12; (2) the location of peak value −u′v′p has a scaling transition
from 5.7Re1/3

τ to 1.5Re1/2
τ at Reτ ≈ 3000, with a 1 + u′v′+p scaling transition from

8.5Re−2/3
τ to 3.0Re−1/2

τ (Reτ the friction Reynolds number); (3) the peak value
w′w′+p ≈ 0.84Re0.14

τ (1 − 48/Reτ ); (4) the outer peak of u′u′ emerges above Reτ ≈ 104

with its location scaling as 1.1Re1/2
τ and its magnitude scaling as 2.8Re0.09

τ ; (5) an
alternative derivation of the log law of Townsend (1976, The Structure of Turbulent
Shear Flow, Cambridge University Press), namely, u′u′+ ≈ −1.25 ln y + 1.63 and
w′w′+ ≈−0.41 ln y+ 1.00 in the bulk.
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1. Introduction
The mean effect of turbulence is the primary question in turbulent flows, and

mean quantities in wall-bounded turbulent flows have been studied for centuries.
Yet even for canonical flows, e.g. turbulent channel, pipe and boundary layer flows,
predictions of mean profiles continue to remain a challenge (Marusic et al. 2010b;
Smits & Marusic 2013). There have been numerous theoretical attempts to predict
the mean velocity scaling (Wosnik, Castillo & George 2000; Monkewitz, Chauhan
& Nagib 2007; Jones, Nickels & Marusic 2008; L’vov, Procaccia & Rudenko 2008;
Nagib & Chauhan 2008; Klewicki 2013; Luchini 2017), but much fewer on the
Reynolds stresses (including turbulence intensities u′u′, v′v′ and w′w′ in streamwise x,
wall-normal y and spanwise z directions, respectively). For the stresses, an important
conceptual model is the wall-attached hypothesis by Townsend (1976). It suggests
quantitative descriptions for turbulent eddies (in a statistical sense) and leads to
constant profiles for active motions (−u′v′, v′v′) and log profiles for inactive motions
(u′u′, w′w′) in the bulk flow (Davidson et al. 2011), i.e.

−u′v′+ = B12, (1.1)

v′v′
+
= B22, (1.2)

u′u′+ = B11 − A11 ln y, (1.3)

w′w′+ = B33 − A33 ln y, (1.4)

where A11, A33, B11, B12, B22 and B33 are all constants, + denotes values in wall units,
and y is the wall distance normalized by half-channel height or pipe radius R. This
hypothesis has received acute attention recently (Marusic & Kunkel 2003; Davidson &
Krogstad 2009; Meneveau & Marusic 2013; Vassilicos et al. 2015; Laval et al. 2017),
and has been tested and even further developed against more accurate measurements
– both DNS and experiment (Morrison, McKeon & Smits 2004; Hultmark et al. 2012;
Rosenberg et al. 2013; Sillero, Jimenez & Moser 2013; Lee & Moser 2015; Willert
et al. 2017).

Although Perry & Chong (1982) and Perry, Henbest & Chong (1986) further
developed a derivation of the u′u′ log profile by invoking the k−1

x spectrum, such a
spectrum was found only at small Reynolds number (Reτ 6 3300) in Princeton/ONR
Superpipe (Rosenberg et al. 2013); in contrast, the log profile of u′u′ is observed only
at high Reynolds number (Reτ > 20 000) (Hultmark et al. 2012). Also, for channels,
Lee & Moser (2015) found the k−1

x spectrum in their simulation (Reτ ≈ 5200), but
no log profile of u′u′. Thus, building the log profile on the k−1

x spectrum is not well
founded (Hultmark 2012); we have an alternative explanation for the log profile as
discussed later. In addition to the log profile (restricted in a narrow flow domain),
composite formulae for the entire u′u′ profile were proposed by Marusic & Kunkel
(2003) and Smits (2010) utilizing the wall-attached eddy concept. Panton (2007)
postulated a u′u′ model for the entire channel flow using the composite asymptotic
expansions, and Alfredsson, Segalini & Orlu (2011), Alfredsson, Orlu & Segalini
(2012) developed an inner–outer model for u′u′ in a turbulent boundary layer (TBL)
based on the mean velocity scaling. All the above-mentioned composite formulae
involve many free parameters and are difficult to extend to other stress components
or other flows (Smits 2010).

The Re-scaling of u′u′ peaks (location and magnitude) is also controversial (Örlü
& Alfredsson 2013): for the inner peak, while the Princeton pipe shows an invariant
magnitude for Reτ above 3300 (Hultmark et al. 2012), recent pipe data in the
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CICLoPE facility (Willert et al. 2017) show an increasing magnitude with increasing
Re up to Reτ ≈ 40 000. It is unclear whether this growth is solely due to a finite Re
effect, or it suggests that the viscous scaling is invalid for fluctuations (Degraaff &
Eaton 2000; Buschmann, Indinger & Gadelhak 2009) since the inner–outer interactions
are very effective (Hutchins & Marusic 2007b; Marusic, Mathis & Hutchins 2010a;
McKeon 2017). For the outer peak, McKeon & Sharma (2010) and Moarref et al.
(2013) developed a ‘critical layer’ framework to understand its y-location scaling
in pipes (argued to scale as Re2/3

τ ). Moreover, there are efforts devoted to identify
the characteristic flow structures (Jimenez 2012), e.g. the large scale motions (LSM)
(Adrian 2007) and very large scale motions (VLSM) (Hutchins & Marusic 2007a,b),
which are suggested to lead to the emergence of the outer peak (Hultmark et al.
2013; Vincenti et al. 2013; Vallikivi, Ganapathisubramani & Smits 2015).

While considerable efforts have been devoted to studies of u′u′, much less attention
has been given to other Reynolds stress components; the study of these components is
essential to unveil how fluctuations in different directions are coupled. In She, Chen
& Hussain (2017) (hereafter cited as Part 1), we obtained a four-layer (consisting of
viscous sublayer, buffer layer, bulk layer and core layer) formula for the Reynolds
shear stress length `12 (defined later) – and hence also the entire mean velocity profile
(MVP) – by employing the dilation symmetry of the mean Navier–Stokes equation.
Here, random dilations on the second-order balance equations for all the Reynolds
stresses (shear stress −u′v′, and normal stresses u′u′, v′v′, w′w′) are analysed layer by
layer. Similar four-layer formulae of the corresponding stress length functions `11, `22,
`33 are obtained for turbulent channel and pipe flows (exactly parallel flows), leading
to analytical descriptions of all three Reynolds normal stresses (or intensities) in the
entire flow domain.

In particular, DNS data agree well with the four-layer formulae for `12 and `22,
while anomalous scaling modifications are needed for `11 and `33 in the log layer.
The resulting −u′v′, u′u′, v′v′ and w′w′ are all in good agreement with DNS as well
as experimental data in the entire flow domain. Furthermore, the aforementioned y-
scaling as well as the Re-scaling of the peak values and locations of all the stress
components are formulated in terms of the multilayer parameters (layer thicknesses
and scaling exponents), enabling new predictions. For example, as we show below,
the peak location of −u′v′ can be given as a function of the von Kármán constant
κ (note the recently reported κ = 0.446 ± 0.008 in CICLoPE experiments by Nagib
et al. (2017) – quite consistent with our κ ≈ 0.45 in Part 1) and the buffer layer
thickness y+buf , and it has a scaling transition from Re1/3

τ to Re1/2
τ at a critical Rec

τ ≈

3000. The Re1/2
τ scaling was also found in Sreenivasan (1988); however, the Re1/3

τ

scaling for small Re is new – agreeing well with DNS data. Furthermore, previously
argued log profiles of inactive motions are obtained as local flow approximations, with
a theoretical determination of its coefficients: A11 = 1.25, B11 = 1.63, and A33 = 0.41,
B33=1.00; these values are very close to the empirical values of A11=1.25, B11=1.61
by Hultmark et al. (2012), and of A33= 0.387 and B33= 1.08 by Lee & Moser (2015).
Moreover, predictions of all Reynolds stress profiles at Re one decade larger than
current available data – i.e. −u′v′, v′v′ and w′w′ at Reτ = 50 000, and u′u′ at Reτ = 106

– are also presented in this paper, awaiting future measurements for validation. Note
that the current work characterizes the physically sound multilayer structure for all the
Reynolds stresses, smoothly varying in space, needing no spectral description, and thus
involving far fewer parameters than the previous models.

The paper is organized as follows. Section 2 presents the Lie-group analysis for the
second-order balance equations of channel and pipe flows, which extends the analysis
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reported in Part 1. In §§ 3 and 4, we validate the four-layer predictions for −u′v′ and
v′v′, respectively. Results of w′w′ with an additional anomalous scaling modification
are presented in § 5. Section 6 discusses u′u′. Section 7 contains a summary with
future perspectives.

2. Random dilation for the balance equations
This section is devoted to a complete treatment of the mean momentum equation

and the second-order balance equations for the four Reynolds stresses under a random
dilation transformation. The goal is to discover dilation groups with enough parameters
which leave balance equations invariant in different regions of y, and then to define
the multilayer structure for the length functions. The basic idea is that the length
functions represent the spatial scales of (statistical) turbulent eddies, whose variations
in each of the layers are assumed to be self-similar viz. satisfying dilation invariance.
We further ask to what extent the dilation invariance of these lengths can be related to
the symmetry of the balance equations, as the symmetry enables a general expression
for dilation invariants. Then, noting that the power law is just a specific expression
of dilation invariance, two more expressions (ansatze) are postulated in Part 1 – one
describing the defect power law in the bulk flow region (i.e. dilation symmetry broken
in the length but retained in its derivative), and the other describing a generalized
invariance across two adjacent layers. These ansatze are also validated here, leading to
composite formulae for the length functions and quantitative descriptions of Reynolds
stresses in the entire flow domain.

Taking channel flow for example, the ensemble-averaged mean momentum and
Reynolds stress equations are

∂2U+

∂y+2
−
∂u′v′+

∂y+
=−

1
Reτ

, (2.1a)

−u′v′+
∂U+

∂y+
− u′

∂p′

∂x

+

−
∂

∂y+

(
1
2

u′u′v′+
)
− |∇u′|+

2
+

∂2

∂y+2

(
1
2

u′2
+

)
= 0, (2.1b)

−v′
∂p′

∂y

+

−
∂

∂y+

(
1
2
v′v′v′

+

)
− |∇v′|+

2
+

∂2

∂y+2

(
1
2
v′2
+

)
= 0, (2.1c)

−w′
∂p′

∂z

+

−
∂

∂y+

(
1
2

w′w′v′+
)
− |∇w′|+

2
+

∂2

∂y+2

(
1
2

w′2
+

)
= 0, (2.1d)

−
1
2
v′v′

+ ∂U+

∂y+
−

1
2

u′
∂p′

∂y

+

−
1
2
v′
∂p′

∂x

+

−
∂

∂y+

(
1
2

u′v′v′+
)

− |∇u′ · ∇v′|+ +
∂2

∂y+2

(
1
2

u′v′+
)
= 0. (2.1e)

Here, Reτ ≡ uτδ/ν is the friction Reynolds number (uτ is the friction velocity and δ
is the pipe radius or half-channel height), the overbar indicates space (x and z) and
time (t) average, and superscript ′ indicates fluctuation.

In Part 1, a multilayer structure for stress length `12 (see below) is proposed to
accurately quantify the mean velocity profile (MVP), which involves three layer
thicknesses measured from DNS data of MVP as y+sub = 9.7 (for the sublayer),
y+buf = 41 (for the buffer layer) and rcore = 0.27 (for the central core layer normalized
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FIGURE 1. (Colour online) (a) Budget of u′u′ (2.1b). (b) Compensated plot of `11, `12,
`22 and `33 (normalized by the half-channel height) divided by 1− r4 (Part 1). Note that
the bulk layer (between y+buf and rcore) has nearly constant values. Thicknesses of viscous
sublayer (y+sub= 9.7), buffer layer (y+buf = 41) and core layer (rcore= 0.27) shown by dashed
lines. Data from DNS channel flow at Reτ = 940 (Hoyas & Jimenez 2006).

with δ for channels and pipes). In Part 1, we also showed that they quantify the
transitions of balances between different mechanisms (captured in the turbulent kinetic
energy equation) in different layers, and symmetry analysis of budget equations in
different layers are performed here. Figure 1(a) shows the wall-normal variation of
various terms in (2.1b) for u′u′, where the dominant balancing mechanism changes
as y+ increases. In particular, there is a shift from a diffusion–dissipation balance
close to the wall to a production–dissipation balance for y+ & y+sub. Further away
from the wall, the pressure–strain term becomes more important and takes over
dissipation at y+ ≈ y+buf , representing significant redistribution of the kinetic energy
from the streamwise to the normal and spanwise directions. For y+ & y+buf , the
net production (subtracting the mean shear production by the pressure–strain term)
then balances the dissipation, where turbulent transport is negligible. However, near
the centre r . rcore (r = 1 − y being the distance from the centreline normalized
by the half-channel height), turbulent transport takes over production to balance
dissipation and pressure–strain – which defines a core layer. Such shifts in the
balancing mechanism give rise to the aforementioned four-layer structure. (Note that
the current four layers are different from those defined by Wei et al. (2005) and
Klewicki et al. (2012) from the balance of the mean momentum equation). Here, the
multilayer structure is also visible by the compensated plot (divided by 1 − r4) of
the lengths (Part 1), as shown in figure 1(b). Below, we present a detailed symmetry
analysis for all balance equations like we did for the mean momentum equation
in Part 1, so as to develop an analytical framework enabling quantification of the
Reynolds stress distributions.

Note a common difficulty in the classical Lie-group analysis: namely, the lack of
free group parameters to predict (or explain) scaling laws. In order to circumvent this
difficulty, physical considerations are typically invoked to add to the parameters. This
has been practiced in the derivation of the Blasius solution for the laminar boundary
layer (Cantwell 2002) and similarity solutions for sink-flow boundary layer (Chen &
Hussain 2017), where an inhomogeneous dilation is introduced under the boundary
layer approximation. Below, to enlarge the group parameter space, a three-step
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406 X. Chen, F. Hussain and Z.-S. She

symmetry analysis is developed: first, we carry out a statistical symmetry analysis
by employing random dilations. Second, we define a locally valid dilation group
by neglecting unimportant terms in the balance equations. Third, we postulate the
existence of a set of key similarity variables (hence order function) whose invariants
are locally constants (hence having power laws), or satisfy simple invariant ansatze.
The lengths introduced in (2.3a,b) are such similarity variables. Note that their power
laws can be validated by empirical data via an a priori test (i.e. without symmetry
analysis), as shown in figure 1(b); the symmetry analysis below establishes the
connections between the local power laws and the balance mechanisms represented
by the budget equations. The specified length functions then lead to the Reynolds
stress distributions.

Specifically, the random dilation transformation is introduced as follows:

x∗i = qixi, U∗ = λUU, Re∗τ = λRReτ , u′∗i = λiu′i, p′∗ = λpp′, (2.2a−e)

where superscript ∗ indicates transformed variables (all variables are normalized by
wall units and the superscript + is omitted); qi, λU and λR are non-random, while
λi and λp are random variables with zero mean. Note that (2.2) is reasonable since
turbulent fluctuations are random. The dilation correlation coefficients of {λi} such
as λi...λk – which are independent of correlations between velocities and pressure –
provide extra group parameters enabling the study of the dilation symmetry of the
(infinite) hierarchy of high-order correlation equations (Oberlack 2001; Marati et al.
2006; Oberlack & Rosteck 2010; Frewer & Khujadze 2016). For example, for the
second-order correlations, λ1λ2 differs from λ1λ1 and λ2λ2; note that in situations
when λ1λ1 and λ2λ2 are equal (see later), λ1λ2 can still be different. This allows
different dilations on the Reynolds normal and shear stresses, as shown later.

In this paper, four lengths are defined by the mean shear S+ = ∂U+/∂y+ and the
Reynolds stresses W+ij = |u′iu′j|+ (where || denotes the absolute value, particularly for
u′1u′2 or u′v′ since it is negative in shear flows):

`+12 =W+12
1/2
/S+, `+ii =W+ii

1/2
/S+, (2.3a,b)

W+12 = (`
+

12S+)2, W+ii = (`
+

ii S+)2, (2.3c,d)

where i = 1, 2, 3 (no summation for indices unless otherwise stated). Under the
dilations (2.2), the stresses and the lengths are dilated as

W+∗ij = λiλjW+ij , `+∗ij =

(√
λiλjq2/λU

)
`+ij . (2.3e,f )

Note that these lengths, forming a family of multiple components, characterize
different sets of eddies contributing to anisotropic transport of the Reynolds stress
tensor. They are considered here as similarity variables satisfying three dilation
invariant ansatze, similar to `12 in Part 1. The local dilation invariance actually
indicates that turbulent eddies are self-similar; namely, within each layer, eddies’
characteristic scales at different y-locations are related by a simple power law. The
previous linear y-scaling of the wall-attached eddy size in the log layer (Alamo et al.
2006; Jimenez 2012) is only one of the layers, and the linear scaling can be derived
by the dilation symmetry analysis as below. Across different layers, eddies’ scales
obey a generalized power law, following the third ansatz postulated in Part 1, so that
we establish a multilayer similarity of the eddies across the entire flow domain.
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Below, we apply (2.2) to (2.1a–e) to obtain concrete expressions for the lengths in
(2.3e, f ). Particularly, the linear scaling in the log layer is obtained by equating the
dilation coefficients of all terms in (2.1). In the viscous sublayer, and bulk and core
layers, we remove some unimportant terms so as to reduce the symmetry constraints,
and hence to increase the freedom of new scaling. In the buffer layer, two large
terms (i.e. dissipation and diffusion) are of opposite sign and hence combined so as
to capture the higher-order term in (2.1b). This way, different directional dilations
are obtained in the viscous sublayer, and buffer, bulk and core layers, where the
balance mechanism in each layer is different. The local power-law exponents for all
the lengths can be determined using expansion or other theoretical arguments as in
Part 1, and a generalized Lie-group ansatz (i.e. the third ansatz in Part 1) connects
power laws of adjacent layers together, so as to yield the four-layer composite profile
for each length in the entire flow domain.

2.1. Homogeneous dilations in the log layer
Substituting (2.2) into (2.1a)–(2.1e) and requiring the same proportional coefficients
for all the terms in the equations (needed to obtain invariant transformed equations)
yield the following relations for the correlations of random dilation variables {λi}:

λU/q2
2 = λ1λ2/q2 = 1/λR, (2.4a)

λ1λ2λU/q2 = λ1λp/q1 = λ1λ1λ2/q2 = λ1λ1/q2
1 = λ1λ1/q2

2 = λ1λ1/q2
3, (2.4b)

λ2λp/q2 = λ2λ2λ2/q2 = λ2λ2/q2
1 = λ2λ2/q2

2 = λ2λ2/q2
3, (2.4c)

λ3λp/q3 = λ3λ3λ2/q2 = λ3λ3/q2
1 = λ3λ3/q2

2 = λ3λ3/q2
3, (2.4d)

λ2λ2λU/q2 = λ1λp/q2 = λ2λp/q1 = λ1λ2λ2/q2 = λ1λ2/q2
1 = λ1λ2/q2

2 = λ1λ2/q2
3. (2.4e)

These necessarily require homogeneous dilations in the three directions, i.e. q1= q2=

q3 = q, and also
λU = 1/q, λR = q3, (2.5a,b)

λ1λ1 = λ2λ2 = λ1λ2 = 1/q2, (2.5c)

λ1λp = λ2λp = λ1λ2λ2 = λ1λ1λ2 = λ2λ2λ2 = 1/q3. (2.5d)

Accordingly, the Reynolds stresses W+ij are dilated by a factor of λiλj=1/q2 (for i, j,=
1, 2), and the mean shear S by a factor of λU/q= 1/q2, so that the length functions,
according to definitions in (2.3a,b), are dilated as

`+∗ij =

√
λiλj/(λU/q)`+ij = q`+ij . (2.6)

In this case, the dilation invariants consisting of y+ and `+ij are

Ilog
ij = `

+

ij /y
+. (2.7)

Following Part 1, we assume constant dilation invariants (i.e. Iij = const.) to obtain
possible (or candidate) solutions of the balance equations, i.e.

`+ij = Ilog
ij y+, Ilog

ij = const. (2.8)
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This is the standard (canonical) case where no direction is preferred, and all the
lengths `ij scale as the wall distance (y) – also a simple consequence of dimensional
analysis.

In particular, the well-known W+12 ≈ 1 gives rise to S+ ≈ 1/(Ilog
12 y+) and hence the

mean velocity U+ ≈ (1/Ilog
12 ) log y+ + B; this shows that the Kármán constant is just

one of our dilation invariants: Ilog
12 . Note that the dilation invariance of W+12 actually is

broken since W+12 ≈ 1 against W+∗12 =W+12/q2 (unless q= 1, which would indicate no
dilation), but the length function `12 still holds its dilation invariance: `+∗12 = q`+12 (this
is why `ij, not Wij, is chosen as the similarity variable). This is also found in other
layers that we study below.

More interestingly, from (2.8) and (2.3c,d), W+ii = W+12(I
log
ii /I

log
12 )

2, indicating that
all the Reynolds normal stresses are constants in the log layer (since W+12 ≈ 1).
These constants are parts of the so-called ‘inertial-range’ description, widely used in
engineering models (Wilcox 2006). The present analysis shows that they arise from
a dilation symmetry homogeneous in all directions (when all terms in the balance
equations are under the same dilation). Note that the constancy of W+11 and W+33
are against Townsend’s log law of inactive motions in (1.3) and (1.4), where more
discussions on this issue will be presented later.

Also note that the above analysis shows that dilations of W11, W22 and W12 are
linked, because of the production and pressure–strain terms in the corresponding
equations. In contrast, dilation on W33 seems to be independent of those on W11 or
W22 (hence is free), since no term in the spanwise kinetic energy equation is coupled
with other equations. Here, invoking the isotropic turbulence assumption, `33 satisfies
the same dilation as `11 or `22; this argument also applies to the core layer. However,
near the wall, the isotropic condition is invalid, and dilations on these lengths should
be different. In fact, the homogeneous dilation symmetry is partially broken near the
wall since some terms in the balance equations are unimportant. We explore such
possibilities below. The analysis will first treat `ij (for i, j = 1, 2) and then focus
on `33.

2.2. Directional dilations in the viscous sublayer

Near the wall, compared to ∂2
y , the ∂2

x and ∂2
z terms can be ignored (i.e. the boundary

layer approximation). This enables us to drop the λiλj/q2
1 and λiλj/q2

3 terms in (2.4),
and hence all qi are not needed to be equal. In this case, let us choose λU and
q2 as two independent dilation parameters, then all the other dilation parameters are
determined from the remnant of (2.4):

λR = q2
2/λU, λ1λ2 = λU/q2, λ1λ1 = λ

2
U, λ2λ2 = 1/q2

2, q1 = 1/λU. (2.9a)

λ1λp = λ1λ2λ2 = λU/q2
2, λ2λp = λ2λ2λ2 = 1/q3

2, λ1λ1λ2 = λ
2
U/q2. (2.9b)

Therefore, the lengths are dilated as

`+∗11 = q2`
+

11, `+∗12 =
√

q2/λU`
+

12, `+∗22 = (1/λU)`
+

22. (2.10a−c)

Since `+∗12 = q3/2
2 `+12 was obtained in the viscous sublayer due to the scaling `+12∝ y+3/2

(Part 1), we thus have λU = q−2
2 from the second equation of (2.10), and hence `+∗22 =

q2
2`
+

22. Then, the corresponding dilation invariants are

Isub
11 = `

+

11/y
+, Isub

12 = `
+

12/y
+3/2, Isub

22 = `
+

22/y
+2. (2.11a−c)
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Following the first invariant ansatz (i.e. assuming constant invariants) in Part 1, local
power laws in the viscous sublayer are obtained as

`+11 = Isub
11 y+, `+12 = Isub

12 y+3/2, `+22 = Isub
22 y+2. (2.12a−c)

This shows that by random dilation of approximate balance equations, we can obtain
different power laws for the length functions, in contrast to the uniform linear scaling
(2.8) for all the lengths in log layer.

2.3. Directional dilations in the buffer layer
The dominant balancing mechanisms in the buffer layer are different from those in the
viscous sublayer. While (2.1a), (2.1c) and (2.1d) remain the same as in the viscous
sublayer (i.e. ignoring ∂2

x and ∂2
z in dissipations), both (2.1e) and (2.1b) are different.

For the Reynolds shear stress equation (2.1e), diffusion and dissipation are very small
(Pope 2000), and hence ignored. For the streamwise stress equation (2.1b), a special
consideration is given below.

Recall that in Part 1, we defined an eddy shear length `+ν :

`+ν = (W
+

12/S
+)3/4/ε1/4

ν , (2.13)

where εν = (|∇u′|+
2
− ∂2u′u′/∂y+2) is the net viscous effect (a sum of viscous

diffusion and dissipation) and ν+T = W+12/S+ is the eddy viscosity. In the viscous
sublayer, W+12/S+ ∝ y+3 and εν ∝ y+ (since the leading order expansions of |∇u′|+

2

and ∂2(u′u′)/∂y+2 – which are non-zero values – exactly balance each other (see
figure 1a), leaving the first expansion term as a order of y+). Thus, the expansion
for the eddy shear length is `+ν ≈ cνy+2

+ h.o.t. (where h.o.t. denotes higher-order
terms.) Here, using the same buffer layer approximation `+ν ≈ cνy+2 as in Part 1, the
net viscous effect is approximated as

εν =
W+3

12

S+3`+4
ν

=
W+3

12

S+3(cνy+2 + h.o.t.)4
≈

W+3
12

S+3(cνy+2)4
. (2.14)

Substituting (2.14) into (2.1b) yields

0≈ S+W+12 − u′∂xp′
+

− ∂y+

(
1
2

u′u′v′+
)
−

W+3
12

S+3(cνy+2)4
, (2.15)

which will replace (2.1b) to be the approximate streamwise stress equation for the
dilation analysis (explained later).

Applying (2.2) to the newly obtained approximated equations yields the following
constraints on the correlations of dilation parameters:

λR = q2
2/λU, λ1λ2 = λU/q2, λU = 1/q3

2, q1 = q2
2λ2λ2/λU. (2.16a)

λ1λp = λ1λ2λ2 = λUλ2λ2, λ2λp = λ2λ2λ2 = q2(λ2λ2)
2, λ1λ1λ2 = λ

2
U/q2. (2.16b)

Therefore, the lengths are dilated as

`+∗11 = q11`
+

11, `+∗12 = q2
2`
+

12, `+∗22 = q22`
+

22, (2.17a−c)
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where q11 = q2

√
λ1λ1/λU and q22 = q2

√
λ2λ2/λU are two free parameters, since λ1λ1

and λ2λ2 are free.
Under the constant dilation ansatz, equation (2.17) further leads to

`+11 = Ibuf
11 y+β11, `+12 = Ibuf

12 y+2, `+22 = Ibuf
22 y+β22, (2.18a−c)

where q11= qβ11
2 and q22= qβ22

2 are substituted in. Note that `+12= Ibuf
12 y+2 in the second

equation of (2.18) has been obtained in Part 1. Further arguments are invoked to
determine the values of β11 and β22. Consider the following ratios:

`+11/`
+

12 = (I
buf
11 /I

buf
12 )y

+(β11−2), `+22/`
+

12 = (I
buf
22 /I

buf
12 )y

+(β22−2). (2.19a,b)

From (2.12), `+11/`
+

12∝ 1/y+1/2 and `+22/`
+

12∝ y+1/2 in the viscous sublayer. We assume
that the two ratios representing the geometrical feature (e.g. a two-dimensional shape
in the x–y plane) of near-wall eddies remain invariant from the sublayer to the buffer
layer – so that β11 = 3/2 and β22 = 5/2 in (2.19). The mechanism for these invariant
scalings is not clear yet, and is to be studied in future.

Note that the free parameter q11 originates from the approximation (2.15). Without
this approximation, repeating the same analysis would yield λ1λ1 = λ

2
U, q11 = q2, and

hence `+11 ∝ y+ – the same scaling as in the viscous sublayer (2.12). However, this
contradicts the plot in figure 1(b), where `+11 shows a distinct scaling transition from
the viscous sublayer to the buffer layer. Thus, the approximation (2.14) (hence (2.15))
is necessary.

2.4. Homogeneous dilations in the core layer
Similar to Part 1, we change the independent variable from the wall distance y+ to
the distance from the centreline r = 1− y+/Reτ , with the corresponding outer scales
in the other two directions, namely, x̃= x+/Reτ and z̃= z+/Reτ . Also, we introduce a
velocity defect U+d = U+c − U+ (subscript c indicates centreline value) to replace the
mean velocity in the balance equations, so that the centreline condition U+d = 0 – in
analogy to U+ = 0 at the wall – remains unchanged under dilation. Note that if one
applies (2.2) (also changing U+ to U+d , x+ to x̃, y+ to r and z+ to z̃) to the balance
equations scaled in outer units, one would obtain uniform dilations λ1λ2 = λiλi = qi
and hence the same power law for all the lengths. However, this contradicts the centre
asymptotes:

`12 ∝ 1/
√

r; `ii ∝ 1/r (2.20a,b)

(i= 1, 2, 3), explained as follows. In the limit r→ 0, using Taylor expansion, U+d ∼ r2

(due to the mirror symmetry ∂rU+ = 0 at r= 0), and W+12 ≈ r, thus `+12 =
√

W+12/S+ ∝
1/
√

r; on the other hand, the well-known fact u′iu′i→Ci> 0 leads to `+ii =
√

W+ii /S+∝
1/r near the centre. Hence, we obtain (2.20), where `ij = `

+

ij /Reτ .
To obtain (2.20) from symmetry analysis, additional physical considerations are

needed. As we know, when r→ 0, mean shear S+ is much smaller than W+12 and
hence can be ignored in the mean momentum equation; meanwhile, for the stress
equations, production and viscous diffusion terms approach zero and can be ignored
also, whilst turbulent transport, pressure–strain and dissipation are the dominant terms.
Note that for W+12, dissipation is much smaller than pressure–strain and turbulent
transport (Pope 2000) hence also ignored. Thus, approximate balance equations for
the core layer are obtained as
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∂W+12

∂r
+ 1≈ 0, (2.21a)

0≈−u′
∂p′

∂ x̃

+

+
∂

∂r

(
1
2

u′u′v′+
)
−

1
Reτ
|∇u′|+

2
, (2.21b)

0≈−v′
∂p′

∂r

+

+
∂

∂r

(
1
2
v′v′v′

+

)
−

1
Reτ
|∇v′|+

2
, (2.21c)

0≈−w′
∂p′

∂ z̃

+

+
∂

∂r

(
1
2

w′w′v′+
)
−

1
Reτ
|∇w′|+

2
, (2.21d)

0≈
1
2

u′
∂p′

∂r

+

−
1
2
v′
∂p′

∂ x̃

+

+
∂

∂r

(
1
2

u′v′v′+
)
. (2.21e)

Applying (2.2) to (2.21), one obtains a particular dilation:

q1 = q2 = q3 = q= λ1λ2, (2.22a)

λ1λp = λ2λp = λ1λ2λ2, λiλp = λiλiλ2 = λiλi/(qλR). (2.22b)

Therefore, the lengths are dilated as

`∗12 = (
√

q3/λU)`12, `∗ii =

(
q
√
λiλi/λU

)
`ii. (2.23a,b)

Now, we show that the result (2.23) is consistent with the expansion solution (2.20)
in the core layer. Note that as r→ 0, U+d ∼ r2, thus λU = q2. Moreover, u′iu′i→ Ci >
0, which gives λiλi = 1. Further, with λ1λ2 = q in (2.22a) (consistent with W+12 ∼ r),
equation (2.23) leads to `∗12= (1/

√
q)`12, `∗ii= (1/q)`ii, and hence `12∼ r−1/2, `ii∼ r−1.

Therefore, we have the following power laws for the core layer (i= 1, 2, 3):

`12 = Icore
12 /
√

r, `ii = Icore
ii /r. (2.24a,b)

2.5. Homogeneous dilations in the bulk layer
Unlike in the core layer, productions in the bulk are the dominant terms in the stress
equations and hence cannot be ignored. Thus, by including u′v′+∂rU+ in (2.21b) and
v′v′

+
∂rU+ in (2.21e), and applying (2.2) to the new balance equations, one obtains

q1 = q2 = q3 = q= λ1λ2 = λ1λ1 = λ2λ2, λR = 1/(qλU), (2.25a)

λ1λp = λ2λp = λ2λ2λ2 = λ1λ1λ2 = qλU. (2.25b)

Therefore, the lengths are dilated as

`∗ij = (q
3/2/λU)`ij (2.26)

for i, j= 1, 2. Note that dilation on `33 is the same as `ij in (2.26) under the isotropic
turbulence assumption.

Denote λU = q3/2−α so that lengths obey the following dilations in the bulk flow:

r∗ = eεr, `∗ij = eαε`ij. (2.27a,b)
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Sublayer Buffer Bulk Core

`12 y3/2 y2 1− r4 r−1/2

`11 y y3/2 1− r4 r−1

`22 y2 y5/2 1− r4 r−1

`33 y y2 1− r4 r−1

TABLE 1. A summary of the canonical scaling in the four layers of turbulent channels.
Note that the log layer is contained in the bulk layer since 1− r4

∝ y as r = 1− y→ 1
(towards the wall). For pipe flows, the scalings are the same as for channels except for
`ij ∝ 1− r5 in the bulk layer of pipes.

Now, following the second ansatz in Part 1, the differential invariants of the lengths
are assumed to be constants in the bulk layer, leading to

(d/dr)`ij = Iijrα−1, (2.28)

(where Iij are constants). After integration with respect to r, equation (2.28) leads to

`ij = bij −
Iijrα

α
. (2.29)

Furthermore, in the limit r→ 1 (to the wall), all lengths go to zero, then we readily
obtain (for i= 1, 2, 3)

`12 = I′12(1− rα); `ii = I′ii(1− rα). (2.30a,b)

Note that all the lengths in (2.30) asymptotes to the linear y scaling (since 1− rα =
1− (1− y)α→ αy), hence matching the linear scaling (2.8) in the log layer. Also, as
explained in Part 1 and Chen, Hussain & She (2016b), α= 4 for channels and 5 for
pipes.

2.6. A summary of canonical dilation structure
The above scalings obtained in each layer for `12, `11 and `22 are summarized in
table 1. Then, following exactly the same matching procedure in Part 1 (using the
third ansatz and the multiplicative rule; see appendix A), we readily obtain the
following multilayer formula of lengths for channels:

`+12 = c12y+3/2

(
1+

(
y+

y+sub

)4
)1/8(

1+
(

y+

y+buf

)4
)−1/4

1− r4

4(1− r)

(
1+

(rcore

r

)2
)1/4

, (2.31)

`+11 = c11y+
(

1+
(

y+

y+sub

)4
)1/8 (

1+
(

y+

y+buf

)4
)−1/8

1− r4

4(1− r)

(
1+

(rcore

r

)2
)1/2

, (2.32)

`+22 = c22y+2

(
1+

(
y+

y+sub

)4
)1/8(

1+
(

y+

y+buf

)4
)−3/8

1− r4

4(1− r)

(
1+

(rcore

r

)2
)1/2

. (2.33)

Note that (2.31) has been obtained in Part 1, and the lengths in the above equations
(2.31)–(2.33) are the same for both channels and pipes – except for the bulk factor
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being (1− r5)/5(1− r) in pipes. Here, cij (i, j = 1, 2) are the global proportionality
coefficients (represented by Kármán-like constants κij defined later), which may have
a moderate Re dependence, and are responsible for the finite Re-scaling for the peak
magnitude of Reynolds stresses (see detailed analysis below).

The above equations therefore lead to

α11 =
`+11

`+12
=

√
W+11√
W+12

= c1

(
1+

(
y+buf

y+

)4
)1/8 (

1+
(rcore

r

)2
)1/4

, (2.34)

α22 =
`+22

`+12
=

√
W+22√
W+12

= c2

(
1+

(
y+buf

y+

)4
)−1/8 (

1+
(rcore

r

)2
)1/4

, (2.35)

where c1 = c11/(c12y+1/2
buf ) and c2 = c22y+1/2

buf /c12. Note that α11 and α22 have been
introduced and studied for compressible turbulent boundary layers (Morkovin 1962;
Bradshaw 1977; Zhang et al. 2012). The two ratios can be interpreted to describe
the relative sizes of turbulent eddies associated with different fluctuation components,
which have simple scaling properties as follows. In the near-wall region, equation
(2.34) yields α11 ∝ 1/

√
y+ as y+→ 0, because W+11 ∝ y+2 and W+12 ∝ y+3. In the core

layer, W+12 ≈ r and W+11 = const., hence α11 ∝ 1/
√

r. In the overlap region, i.e. y+� 1
and r→ 1, fluctuations are nearly isotropic; hence α11≈ const. (an anomalous scaling
modification will be introduced for the emergence of outer peak of u′u′, as explained
later). Similarly, for α22, equation (2.35) yields α22 ∝

√
y+ as y+→ 0, due to v′ ∝ y2;

the overlap region and core layer scaling of α22 are the same as α11. Also note
that the exponent 2 of the core layer factor (rcore/r)2 in (2.34) and (2.35) leads to a
parabolic profile for each Reynolds normal stress, i.e. W+ii −W+iic∝ r2, hence satisfying
mirror symmetry at the centreline.

The above analysis of α11 and α22 also applies to α33 (≡
√

W+33/W
+

12). As W+33∝ y+2

and W+12 ∝ y+3 when y+→ 0, one has α33 ∝ 1/
√

y+. Near the centre, α33 ∝ 1/
√

r due
to a non-zero value of W+33 at r = 0. In the overlap region, the isotropic turbulence
assumption implies the same scaling for all quantities, and hence a constant α33 (an
anomalous scaling modification will be introduced later). Since all the scalings in
these three layers are the same as those of α11, we expect that α33 takes the same
functional form as α11 in (2.34). However, there is a significant difference between
W+11 and W+33 in their balance mechanisms: the (net) production–dissipation balance
of W+11 occurs until above the buffer layer thickness (hence the overlap region) –
in contrast to the pressure–strain–dissipation balance of W+33 just above the sublayer
thickness. Because of this difference, the scaling transition to the overlap region occurs
earlier at y+sub for α33, in contrast to at y+buf for α11. Thus, the expression for α33 is

α33 =
`+33

`+12
=

√
W+33√
W+12

= c3

(
1+

(
y+sub

y+

)4
)1/8 (

1+
(rcore

r

)2
)1/4

. (2.36)

Multiplying α33 with `+12 yields

`+33 = c33y+
(

1+
(

y+

y+sub

)4
)1/4 (

1+
(

y+

y+buf

)4
)−1/4

1− r4

4(1− r)

(
1+

(rcore

r

)2
)1/2

,

(2.37)
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where c33 = c3c12y+1/2
sub . The local scaling of (2.37) is also summarized in table 1.

Figure 1(b) shows the compensated plot for all lengths divided by 1 − r4, where a
typical four-layer structure is clearly visible.

In the sections below, we will compare above formulae with data. It turns
out that two normal fluctuation-related components, i.e. W+12 and W+22 (related to
active motions), follow exactly the canonical four-layer description. The two other
components W+11 and W+33 (related to inactive motions) show notable departures from
the four-layer descriptions (which lead to constant W+11 and W+33 in the bulk), but are
readily improved by the aforementioned, slight modifications of the scalings in the
log layer.

3. Reynolds shear stress W+12

Integrating the mean momentum equation with respect to the wall distance

S+ +W+12 = 1− y+/Reτ = r, (3.1)

and solving it yields a quadratic expression for the Reynolds shear stress W+12:

W+12 = r− S+ = r
[

1− 2/
(

1+
√

1+ 4r`+2
12

)]
, (3.2)

where `+12 is given in (2.31). According to Part 1, the parameter c12 in (2.31) is

c12 = `0/(y
+3/2
sub Zcore), `0 = κy+2

sub/y
+

buf , Zcore = (1+ r2
core)

1/4, (3.3a−c)

where y+sub = 9.7, κ = 0.45, y+buf = 41 and rcore = 0.27. Thus, equation (3.3) gives `0 ≈

1.03, Zcore≈ 1.02 and c12≈ 0.033. Figure 2 shows that the corresponding W+12 profiles
compare well with data, with the departure bounded within ±0.01. Note that Part 1
found y+buf and rcore weakly dependent on Re for the description of MVP; however,
they are not sensitive to Re for the description of W+12 and hence are kept constants
through this paper. Below, we discuss two interesting issues: namely, the location of
maximum production, and the scaling of the W+12 peak value and its location.

3.1. Location of maximum production

Near the wall, the mean momentum equation (3.1) leads to S+ +W+12 ≈ 1. Thus, the
production S+W+12 ≈ S+(1 − S+) has its maximum value of 1/4, located at the y+max

where S+ =W+12 = 1/2. Then `+12 =
√

W+12/S+ =
√

2 at y+max.
On the other hand, as the wall is approached, i.e. y+ → 0, equation (2.31)

asymptotes to its sublayer expression:

`+12 = `0(y+/y+sub)
3/2
≈ (y+/y+sub)

3/2. (3.4)

Then, letting `+12 =
√

2 in (3.4), one has

y+max =
3
√

2y+sub ≈ 12.2, (3.5)

which is very close to the documented value of approximately 12 (Kim, Moin &
Moser 1987; Pope 2000). The result y+max ≈ 12.2 can be inverted to measure the
sublayer thickness y+sub ≈ 9.7.
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FIGURE 2. (Colour online) Reynolds shear stress profiles by (3.2) (solid lines) compared
with DNS data (symbols) for channel flows in coordinates y+ (a) and y+/Reτ (b). The
departure between data and our theory (i.e. W+Theory

12 −W+DNS
12 ) is shown in (c,d), which

is bounded within ±0.01. DNS channel data from Iwamoto, Suzuki & Kasagi (2002) for
Reτ = 300, 650, Hoyas & Jimenez (2006) for Reτ = 940, 2000; Lee & Moser (2015) at
Reτ = 5200. Also included are the prediction of W+12 for Reτ = 50 000, awaiting future
verification.

Note that W+12 predicted by (3.4) also agrees with data in most of the flow domain
(not shown here) – except for the buffer layer. This is because: (1) for the outer region,
equation (3.4) yields `+12� 1, which leads to W+12 ≈ r – a good approximation in the
entire outer flow; (2) for the inner region, equation (3.4) gives an accurate description
of W+12 in the viscous sublayer. However, for the buffer layer, the simple sublayer
formula (3.4) is insufficient and needs to be extended to predict how W+12 approaches
its peak value, addressed below.

3.2. Scaling for the peak of Reynolds shear stress

To determine the peak of W12, equation (3.2) is approximated to W+12 ≈ r −
√

r/`+12
(since `+12� 1 as y+� y+sub). Further, with r= 1− y+/Reτ , we have:

W+12 ≈ 1− y+/Reτ − 1/`+12 (3.6)

(the 1/Reτ term in
√

r is small and ignored). Letting ∂y+W+12= 0 using (3.6), one has
the following relation at the peak location (i.e. y+12p) of W+12:

Re−1
τ =

˙̀+
12/`

+2
12 . (3.7)

Here, the superscript dot indicates derivative with respect to y+.
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FIGURE 3. (Colour online) Scaling for the peak of Reynolds shear stress: (a) location;
(b) magnitude defect. Solid lines denote (3.9a) and (3.10a) for low Re, and dashed lines
denote (3.9b) and (3.10b) for high Re. Symbols are DNS data: squares from Iwamoto
et al. (2002) for Reτ = 300, 400 and 650 (channel); circles from Hoyas & Jimenez (2006)
for Reτ = 940 and 2000 (channel); stars from Wu & Moin (2008) for Reτ = 1142 (pipe);
cross from Ahn et al. (2015) for Reτ = 3008 (pipe); and diamonds from Lee & Moser
(2015) for Reτ = 550, 1000 and 5200 (channel).

By substituting the stress length (2.31) into (3.7) we can solve for y+12p, which is
located in the buffer layer for small Re, but in the log layer for large Re. Since `+12
from (2.31) has the following two simple asymptotes:

`+12 ≈ (κ/y
+

buf )y+2, for y+sub� y+12p . y+buf , (3.8a)

`+12 ≈ κy+, for y+buf � y+12p� Reτ , (3.8b)

then y+12p – obtained by substituting (3.8) into (3.7) – has the following two scalings:

y+12p = Re1/3
τ (2y+buf /κ)

1/3
≈ 5.7Re1/3

τ , (3.9a)

y+12p = Re1/2
τ /
√
κ ≈ 1.5Re1/2

τ . (3.9b)

The Re1/2
τ scaling has been found before (Sreenivasan 1988; Sreenivasan & Sahay

1997; Klewicki et al. 2012; Lee & Moser 2015), but the Re1/3
τ scaling for small Re

is new. The latter Re1/3
τ scaling is very close to the Re0.372

τ scaling found by Ahn, Lee
& Sung (2017) from DNS channel and pipe data. Figure 3(a) shows that these two
scalings are in good agreement with data. Note that the scaling transition from Re1/3

τ

to Re1/2
τ – which occurs around Reτ = 4κy+2

buf ≈ 3000 obtained by equalling (3.9a)
with (3.9b) – is not sharp.

Also, the small departure of the peak value of W+12 from unity shows a scaling
transition (figure 3b), explained as follows. Substituting (3.8) and (3.9) back into (3.6)
yields the departure:

1−W+12p = 3(y+buf /4κ)1/3Re−2/3
τ ≈ 8.5Re−2/3

τ , (3.10a)

1−W+12p = (2/
√
κ)Re−1/2

τ ≈ 3.0Re−1/2
τ . (3.10b)
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FIGURE 4. (Colour online) Validation of (2.33) against DNS data for `+22 as a function
of y+ (a) and y+/Reτ (b) with y+sub = 9.7, y+buf = 41 (the same as for `+12), κ22 = 0.52 and
r22core= 0.3. Inset of (a) shows the compensated plot of `Theory

22 /`DNS
22 using (2.33) and DNS

data, which are close to the unity in almost the entire flow region.

These scalings agree well with data (figure 3b). Note that (3.10) also predicts the Re-
dependence of B12 in (1.1) since B12 =W+12p (the plateau of W+12 in the log layer is
well represented by its peak value).

4. Wall-normal Reynolds stress W+22

The wall-normal Reynolds stress W22 (or the wall-normal fluctuation intensity) is
related to the Reynolds shear stress W12 by

W+22 =W+12`
+2
22 /`

+2
12 , (4.1)

which can then be obtained by the formulae developed in the above sections (i.e. (3.2),
(2.31) and (2.33)). A direct test of the theoretical `+22 at two Re values (Reτ = 940 and
5200) is shown in figure 4, where the agreement is very good. Note that the parameter
c22 (or equivalently κ22 introduced below) is easily measured by the peak value of
W+22 from DNS data. Similarly, the core layer thickness rcore of `+22 in (2.33) – now
denoted as r22core – is measured to be 0.3 from the centreline value of W+22, which is
10 % larger than rcore= 0.27 for `+12 (explained later). With these two new parameters,
the resulting W+22 profiles agree well with data (figure 5).

4.1. Measurement of κ22

Let us consider the scaling of the peak value of W+22 for asymptotically large Re. Let
c22 = c′22/

√
1+ r2

22core in (2.33) so that `+22 ≈ c′22y+2 for y+→ 0. On the other hand,
for y+� y+buf , we obtain the linear scalings: `+12 ≈ κy+ and `+22 ≈ κ22y+, where κ22 =

c′22y+3/2
buf /y

+1/2
sub . Accordingly, W+22 ≈W+12(κ22/κ)

2. Thus, its peak value is

W+22p ≈W+12pκ
2
22/κ

2. (4.2)

Therefore,
κ22 ≈ κ

√
W+22p/W

+

12p. (4.3)
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FIGURE 5. (Colour online) Wall-normal Reynolds stress profiles by (4.1) compared with
data. Also included are predictions at Reτ = 50 000. The departure between data and our
theory (i.e. W+Theory

22 − W+DNS
22 ) is shown in (c,d), which is bounded within ±0.1. For

legend, see figure 2.

This yields a method to measure the new constant κ22. For Reτ = 5200, with κ = 0.45,
we predict W+12p≈ 0.96 from (3.10b). Then, with the measured W+22p≈ 1.29 from data
at Reτ = 5200 (Lee & Moser 2015), we obtain κ22 ≈ 0.52≈ 1.16κ .

Note that according to W+22 ≈W+12(κ22/κ)
2, W+22 should reach its peak at the same

location as the peak of W+12 for large Re; i.e. y+22p =
√

Reτ/κ . However, Re for the
current data is not high enough to show such a scaling, and higher-Re data are needed
to test it.

4.2. Measurement of r22core

Near the centreline (as r → 0), `+12 ≈ (κ/4)(1+ r2
core/r

2)1/4 from (2.31), and `+22 ≈

(κ22/4)(1+ r2
22core/r

2)1/2 from (2.33). Further, with W+12 ≈ r, the centreline value is
given as

W+22c =W+12(`
+

22/`
+

12)
2
≈ κ2

22r2
22core/(κ

2rcore), (4.4)

which leads to
r22core ≈ (W+22crcore)

1/2(κ/κ22). (4.5)

Thus, with rcore = 0.27, κ = 0.45, as well as κ22 ≈ 0.52 and W+22c ≈ 0.47 from DNS
data (Lee & Moser 2015), we have r22core ≈ 0.3. This also results in κ22 ≈ 0.78W+1/2

22c .
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¶33/¶12

FIGURE 6. (Colour online) Canonical four-layer `33 of (2.37) compared with data: (a)
compensated plot of `33 divided by 1 − r4; (b) compensated plot of `33 divided by `12
showing an anomalous scaling in the bulk flow region. As explained in the text, the
anomalous scaling exponent 0.07 results from (5.5). Symbols denote DNS channel data
at Reτ = 940 (Hoyas & Jimenez 2006) and Reτ = 5200 (Lee & Moser 2015).

Note that if one imposes r22core = rcore = 0.27, the resulting W+22c from (4.4) would
underpredict the data by 20 % at Reτ = 5200. For the smallest Reτ (= 300), DNS
data shows W+22c ≈ 0.39 (Iwamoto et al. 2002), so that (4.5) leads to r22core ≈ 0.28.
Therefore, r22core varies mildly with increasing Reτ (for a moderate Reτ range).

Substituting κ22 ≈ 0.52 and r22core ≈ 0.3 into (2.33), where c22 = κ22y+1/2
sub /[y+3

buf (1 +
r2

22core)]
1/2, the resulting W+22 profiles from (4.1) are shown in figure 5. The agreement

is quite good, with the departure bounded within ±0.1. Note that for the smallest
Reτ (= 300), there is a slight overestimation of the peak magnitude. This small
departure can be easily rectified by κ22 ≈ 0.50 at Reτ = 300; hence κ22 slightly
changes for moderate Re.

5. Spanwise Reynolds stress W+33

The spanwise Reynolds stress W33 is related to the Reynolds shear stress W12 by

W+33 =W+12`
+2
33 /`

+2
12 . (5.1)

In (2.37), all the layer thicknesses of `33 are the same as those of `12; then c33 is the
only free parameter. Again, let c33 = c′33/

√
1+ r2

core so that `+33 ≈ c′33y+ as y+→ 0 (or
r→ 1), and c′33 = κ33y+sub/y

+

buf so that `+33 ≈ κ33y+ as y+� y+buf . Comparison of `+33 in
(2.37) with data at two values of Re (Reτ = 940 and 5200) is shown in figure 6(a),
which shows good agreement with data in the near-wall and core regions, but reveals
notable differences in the bulk layer. The reason is analysed below.

5.1. Anomalous scaling and invariant peak location

Note that the deviation in figure 6(a) occurs in the log layer where `+33 ≈ κ33y+.
However, as shown by the ratio α33= `

+

33/`
+

12 (see figure 6b), the linear scaling of `+33
is invalid since α33 ∝ 1/y+0.07 – otherwise α33 would be a constant equalling κ33/κ .
This deviation thus suggests an anomalous scaling modification of `33 – via a change
of (1+ (y+/y+buf )

4)−1/4 in (2.37) to (1+ (y+/y+buf )
4)−(1+γ )/4 – so that `+33 ∝ y+(1−γ ), and
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hence α33 ∝ 1/y+γ in the log layer (y+� y+buf ). In other words, `33 is modified to

`′33 = c33y+
(

1+
(

y+

y+sub

)4
)1/4 (

1+
(

y+

y+buf

)4
)−(1+γ )/4

1− r4

4(1− r)

(
1+

(rcore

r

)2
)1/2

,

(5.2)
and hence

W+33 =W+12`
′2
33/`

+2
12 . (5.3)

Here, γ is the so-called anomalous scaling exponent, and its value 0.07 – shown in
figure 6(b) – can be theoretically determined by the peak location of W+33. Note that
if γ = 0 (i.e. no anomalous scaling), W+33≈W+12(κ33/κ)

2 in the log layer, and thus the
peak location of W+33 (i.e. y+33p) should follow that of W+12 (i.e. y+12p) – both y+33p and
y+12p increasing rapidly with increasing Re. However, a careful examination of DNS
data (from Reτ = 650 to 5200) shows that y+33p remains almost constant, i.e. y+33p≈ 46,
in sharp contrast to increasing y+12p in figure 3. This constancy of y+33p is actually due
to the existence of the anomalous scaling γ 6= 0, and enables the determination of
γ ≈ 0.07, as below.

In fact, for y+ ' y+buf where y+33p is located, we have `+12 ≈ (κy+2/y+buf )[1 +
(y+/y+buf )

4
]
−1/4 from (2.31), and hence an approximation of W+12 is obtained from

(3.6), i.e. W+12 ≈ 1− y+/Reτ − y+buf /(κy+2) (note that the (y+/y+buf )
4 term is very small

for W+12 and hence ignored). Similarly, `′33 ≈ (κ33y+2/y+buf )[1+ (y+/y
+

buf )
4
]
−(1+γ )/4 from

(5.2), and thus we have

W+33 =W+12(`
′

33/`
+

12)
2
≈ (κ33/κ)

2

(
1−

y+

Reτ
−

y+buf

κy+2

)(
1+

(
y+

y+buf

)4
)−γ /2

. (5.4)

Then, solving ∂y+W+33 = 0 at y+33p using (5.4) yields the following result:

γ =
[2y+buf /(κy+3

33p)− 1/Reτ ](y+4
buf + y+4

33p)

2y+3
33p[1− y+33p/Reτ − y+buf /(κy+2

33p)]
≈ 0.05σ−2(1+ σ−4), (5.5)

where σ = y+33p/y
+

buf , and y+buf = 41 and κ = 0.45 are substituted in (and the 1/Reτ
term is small and ignored). As explained before, if y+33p follows the scaling of y+12p,
then σ =

√
Reτ/κ/y+buf , and (5.5) leads to γ ≈ 0.05κ2y+2

buf /Reτ → 0 (e.g. γ ≈ 0.003 at
Reτ = 5200), hence indicating no anomalous scaling. In contrast, DNS data show an
invariant peak location y+33p≈ 46, then σ ≈ 1.12, and (5.5) yields a constant γ ≈ 0.07 –
the value shown in figure 6(b). In order words, the invariant peak location leads to the
existence of the anomalous scaling. It would be intriguing to test if γ = 0.07 remains
invariant at higher Re values.

Now, the only unknown parameter in (5.2) is c33, which is c33 = y+subκ33/

(
√

1+ r2
corey

+

buf ). Below, κ33 is determined, hence yielding c33.

5.2. Scaling of κ33 and of the W+33 peak value

Note that for y+� y+buf , W+12≈ r, then (5.3) leads to a simple expression for the outer
profile of W+33:

W+33Outer ≈ r`′233/`
+2
12 ≈

(κ33

κ

)2
(

y+buf

y+

)2γ (
r2
+ r2

core

1+ r2
core

)1/2

. (5.6)
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FIGURE 7. (Colour online) (a) Peak value W+33p of DNS data compared with prediction by
(5.10) (line) showing good agreement. Symbols are the same as in figure 3. (b) Diagnostic
function Γ33 =−ydW+33/dy showing an approximate plateau Γ33 = 0.41± 0.04 for 0.02 6
y6 0.14. Symbols are DNS data at Reτ = 5200 (Lee & Moser 2015). Solid line indicates
(5.12), whose minimum value Γ33min ≈ 0.41 obtained in (5.15) – dashed line – represents
well the plateau value.

According to Townsend’s Re-similarity hypothesis (Townsend 1976) (namely, mean
properties in the outer flow region are self-similar, independent of viscous effects, and
hence Re), one should expect that W+33Outer depends only on r, with no dependence on
Re. Then, requiring a zero exponent of Reτ for W+33Outer in (5.6), we readily obtain
κ33 ∝ Reγτ .

We denote κ33 = κ
′

33Reγτ , where κ ′33 is a Re-independent constant, which can be
measured by W+33 at the centreline. Letting r= 0, equation (5.6) becomes

W+33c ≈ (κ
′

33/κ)
2y+2γ

buf rcore/

√
1+ r2

core. (5.7)

Therefore,
κ ′33 = κW+1/2

33c (1+ r2
core)

1/4/(y+γbuf r
1/2
core). (5.8)

Using κ = 0.45, y+buf = 41, rcore = 0.27, γ = 0.07 and the centreline value W+33c ≈ 0.4
by current DNS data (Hoyas & Jimenez 2006; Lee & Moser 2015), we thus have
κ ′33 ≈ 0.43, and hence

κ33 = κ
′

33Reγτ ≈ 0.43Re0.07
τ . (5.9)

Furthermore, substituting κ = 0.45, y+buf = 41, γ = 0.07, y+ = y+33p = σy+buf (with σ =
1.12) and (5.9) into (5.4), one readily obtains the peak value of W+33 as

W+33p = (κ ′33/κ)
2Re2γ

τ (1+ σ
4)−γ /2[1− 41σ/Reτ − 1/(41κσ 2)]

≈ 0.84Re0.14
τ (1− 48/Reτ ). (5.10)

To emphasize, in (5.10), κ ′33 only affects the magnitude of W+33p, while the Reτ scaling
of W+33p is due to the anomalous scaling exponent γ . Figure 7(a) shows that (5.10)
agrees well with the data. Note that the downward curve in the figure 7(a) is due
to the 48/Reτ term in (5.10), which becomes negligible at large Re, when W+33p ≈

0.84Re0.14
τ . Thus, although the peak location y+33p is invariant, the peak value W+33p

increases with increasing Re.
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5.3. Townsend’s log profile for W+33

Note that the outer profile (5.6) has a power-law asymptote towards the wall, i.e.

W+33 ≈ y+2γ
buf (κ

′

33/κ)
2/y2γ , y= 1− r. (5.11)

This power law is conceptually different from the Townsend’s log law (Townsend
1976) in (1.4). Reminiscent of the debate on the mean velocity scaling (Barenblatt
1993), a new debate between the power law and log law on the W+33 scaling may
arise. However, as both (5.11) and (1.4) represent data in limited but different flow
domains, such a debate is really not meaningful and may not be resolved due to their
unspecified y-ranges. Here, since we already have a global expression (5.6) which
extends (5.11) to the centreline and describes W+33 for the entire outer flow domain,
it is more interesting to see if the present formalism (5.6) can yield the log law with
its two coefficients quantitatively determined.

This is achieved via the diagnostic function of the log profile, Γ33=−ydyW+33, which
is calculated using (5.6) as

Γ33 =
y+2γ

buf (κ
′

33/κ)
2√

1+ r2
core

(
2γ
√
(1− y)2 + r2

core

y2γ
+

(1− y)y1−2γ√
(1− y)2 + r2

core

)
. (5.12)

Note that as y� 1 in the log region, equation (5.12) is further approximated to

Γ33 ≈
y+2γ

buf (κ
′

33/κ)
2√

1+ r2
core

y−2γ

(
2γ
√

1+ r2
core +

y√
1+ r2

core

)
. (5.13)

Solving dΓ33/dy= 0 using (5.13), we get the y-location of the minimum Γ33, i.e.

y33min ≈ (1+ r2
core)(2γ )

2
≈ 0.021, (5.14)

and the corresponding minimum value Γ33min is

Γ33min ≈ 2γ (1+ 2γ ) y+2γ
buf (κ

′

33/κ)
2(1− y33min)y

−2γ
33min ≈ 0.412. (5.15)

This calculation shows that physical quantities such as y+buf , κ ′33, κ , γ and rcore
contribute to the slope of the log law. It is interesting to observe that both y33min
and Γ33min (i.e. log-law slope) are independent of Re. Note that this Re-independent
value is meaningful only in the log layer because of (5.6), which requires that
y+33min > y+buf (= 41). This implies that only for Reτ > y+buf /y33min ≈ 2000 does the
log-law behaviour of W+33 become notable, as the data confirm (see figure 8b).
Figure 7(b) shows that data agree well with our analytic expressions (5.12), (5.14)
and (5.15); in particular, a plateau Γ33 = 0.41 ± 0.04 appears in figure 7(b) in the
range 0.018 6 y 6 0.14, very close to our prediction of Γ33min = 0.412. Then, it is
demonstrated that (5.6) indeed implies an (locally approximate) log law with its slope
A33 = Γ33min ≈ 0.41.

Furthermore, the additive constant B33 can also be estimated by matching (5.6) with
(1.4) at the position y= y33min. That is, substituting y= y33Γ = 0.021 into (5.6) yields
W+33Γ ≈ 2.58, and hence the additive constant B33 = W+33Γ + A33 ln y33Γ . Therefore,
equation (5.6) theoretically leads to

A33 = Γ33min ≈ 0.41, B33 =W+33Γ + A33 ln y33Γ ≈ 1.00, (5.16a,b)
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FIGURE 8. (Colour online) Validation of (5.3) – solid lines – for spanwise Reynolds stress
profiles compared with data. Also included is the prediction of W+33 at Reτ = 50 000. Note
the log profile (1.4) – dotted line in (b) – agreeing well with data and with (5.3); its slope
A33≈ 0.41 and the additive constant B33≈ 1.00 are theoretically determined in (5.16). The
departure between data and our theory (i.e. W+Theory

33 −W+DNS
33 ) is shown in (c,d), which is

bounded within ±0.15. For legend, see figure 2.

which are very close to the empirical fitting values A33= 0.387 and B33≈ 1.08 by Lee
& Moser (2015). Thus, from (5.6) we obtain a (approximate) log law, hence presenting
an alternative derivation of Townsend’s log law.

Figure 8 shows the resulting W+33 profiles by (5.2) – using (5.9) – and (5.3), in
good agreement with data. The departure is bounded within ±0.15. To emphasize, for
all the predictions in figures 7 and 8, quite surprisingly, only two new parameters
are introduced for `33, i.e. γ = 0.07 in (5.5) (or the peak location y+33p ≈ 46) and
κ ′33 = 0.43 in (5.8), both fixed for all Re. To our knowledge, this is the first time an
analytical W+33 profile for the entire flow domain has been obtained. Moreover, the log
profile (1.4) with its slope and additive constant determined in (5.16) is also plotted
in figure 8(b), which agrees not only with DNS data, but also with (5.3). A prediction
at Reτ = 50 000 is included in the figure, awaiting future measurements for validation.

6. Streamwise Reynolds stress W11

The canonical formula for `+11 in (2.32) and hence W+11:

W+11 =W+12`
+2
11 /`

+2
12 (6.1)
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FIGURE 9. (Colour online) Canonical four-layer formula (2.32) (a) and the resulting W+11
profiles (6.1) (b) compared with data, showing an underestimation in the bulk flow region
at Reτ = 5200.

are compared with data in figure 9. While the inner peak is characterized well, W+11 is
underestimated in the bulk (particularly for high Re) where an modification is needed.
Below we separately discuss the inner and outer regions.

6.1. Inner profile of W+11

As in the preceding sections, we let c11= c′11/
√

1+ r2
core in (2.32) so that `+11≈ c′11y+ as

y+→ 0, and let c′11= κ11

√
y+sub/y

+

buf so that `+11≈ κ11y+ as y+� y+buf . Since (3.4) shows

that `+12 ≈ (y+/y
+

sub)
3/2, we have W+12 ≈ 1− 2/[1+

√
1+ 4(y+/y+sub)

3] (where y+/Reτ is
small and ignored). Thus, W+11 for the inner flow region is approximated as

W+11Inner =W+12`
+2
11 /`

+2
12 ≈

22.3κ2
11

y∗

[
1−

2

1+
√

1+ 4(y∗)3

]
, (6.2)

where y+3
sub/y

+

buf ≈ 22.3 and y∗ ≡ y+/y+sub = y+/9.7 have been substituted into (6.2).
Solving dW+11/dy∗ = 0 using (6.2), the inner peak location y∗c is then obtained:

y∗c ≈
3
√

2, (6.3)

and hence y+11pi=
3
√

2y+sub (scaled in viscous units). This estimation of y+11pi, coinciding
with the location of maximum production in (3.5), is independent of κ11 and close to
the value y+ ≈ 14 observed from data (Pope 2000; Lee & Moser 2015).

Moreover, the inner peak value is found to be determined by κ11 by substituting
(6.3) into (6.2), i.e.

W+11pi ≈ 8.8κ2
11, or κ11 =

√
W+11pi/8.8. (6.4a,b)

Thus, κ11 can be obtained from the measured inner peak value of W+11pi. Figure 10(a)
shows the measured κ11 based on the DNS data and the Princeton pipe data (Hultmark
et al. 2012). It seems that κ11 saturates to a constant value around 1.02 (due to
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FIGURE 10. (Colour online) (a) Measurement of κ11 by the inner peak value W+11pi using
(6.4). Dashed line denotes κ11 = 1.02 resulting from W+11pi = 9.2 for Princeton pipe; solid
line results from the empirical observation W+11pi=3.66+0.642 ln Reτ (Lee & Moser 2015).
Data: hexagon – Princeton pipe (Hultmark et al. 2012); other symbols are the same as in
figure 3 for DNS data. (b) Predictions of outer peak location y+11po (left axis) using (6.13a)
– dashed line – and of peak value W+11po (right axis) using (6.13b) – solid line; circles are
Princeton pipe data and triangles are CICLoPE data; open – y+11po, solid – W+11po.

W+11pi ≈ 9.2) for Reτ & 5000 of the Princeton pipe. However, if W+11pi continues to
grow with increasing Re, as that observed in TBL (Degraaff & Eaton 2000; Metzger
et al. 2001; Hutchins et al. 2009; Sillero et al. 2013), so also will κ11 – according
to (6.4). Issues related to this saturation are further discussed below.

Note that current channel flow DNS data show a logarithmic growth of W+11pi as
Reτ increases (Lozano-Duran & Jimenez 2014; Lee & Moser 2015), which was also
observed in TBL (Klewicki & Falco 1990; Degraaff & Eaton 2000; Metzger et al.
2001; Hutchins et al. 2009; Sillero et al. 2013; Marusic et al. 2015). Using the
empirical formula W+11pi = 3.63 + 0.65 ln Reτ by Lozano-Duran & Jimenez (2014) or
3.66+ 0.642 ln Reτ by Lee & Moser (2015), the resultant κ11 from (6.4) is indicated
by the solid line in figure 10(a), agreeing well with data at moderate Re. However,
for Reτ > 5000, Princeton pipe data (Hultmark et al. 2012) shows an invariant inner
peak W+11pi ≈ 9.2, and hence the saturated κ11 ≈ 1.02. This saturation is in contrast to
Willert et al. (2017), where they report that the inner peak W+11pi keeps increasing in
their Re range for Reτ from 5000 to 40 000, and W+11pi ≈ 9.8 at Reτ = 40 000. The
growth of the inner peak at finite Reτ (up to 20 000) is attributed to the inner–outer
interaction; see Marusic, Baars & Hutchins (2017) for more details.

Here, to match Princeton pipe data (Hultmark et al. 2012), κ11= 1.02 is adopted for
Reτ >5000. As shown in figure 11(a), the inner profile given by (6.2) agrees well with
high-Re pipe data, where κ11= 1.02 is the only new parameter. Moreover, figure 11(b)
shows the similar comparison for the CICLoPE data, where κ11 = 1.04 is adopted
for the current Re values (the inner profiles for Reτ above 20 000 are not shown
because of data uncertainty on the peak value). Note that in figure 11(b), y∗ = y+/12
(instead of y∗ = y+/9.7) is redefined in (6.2) – to match a larger y+11pi ≈ 15–16 of the
CICLoPE data. One can check that the inner peak is still located at (6.3), and hence
the invariance of (6.4); but the new definition of y∗ now leads to y+11pi = 12y∗c ≈ 15,
hence matching the CICLoPE data. A slight difference between Princeton pipe and
CICLoPE data is also found in the outer flow region, which is addressed below.
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Eq. (6.2)
Eq. (6.9) Eq. (6.2)
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CICLoPE

FIGURE 11. (Colour online) Inner profile by (6.2) – dash-dotted line – and the outer
profile by (6.9) – solid line – compared with high Re data in (a) Princeton pipe (Hultmark
et al. 2012) and (b) CICLoPE (Willert et al. 2017). Note that y∗ in (6.2), and c and γm
in (6.9) are slightly different between Princeton and CICLoPE datasets. Also included in
(a) are log profiles of (1.3) – dashed lines – with A11 = 1.25 and B11 = 1.63 theoretically
determined in (6.17).

6.2. Outer profile with the mesolayer modification

Note that according to the canonical four-layer descriptions (2.32) and (2.31), W+11
should exhibit a constant plateau in the log layer, namely

W+11(r)=W+12(`
+

11/`
+

12)
2
≈ κ2

11/κ
2. (6.5)

However, this contrasts the recently observed outer peak (Hultmark et al. 2012;
Willert et al. 2017). To characterize this peak, a mesolayer model was introduced by
us (Chen et al. 2015) based on an anomalous scaling consideration, which further
leads to a notable improvement of the k − ω model (Wilcox 2006) in predicting the
entire W+11 profile (Chen, Hussain & She 2016a). Note that the mesolayer concept
has been proposed before (Afzal 1982; Wosnik et al. 2000; Hultmark 2012), and we
define it as the region above the buffer layer and ending at the peak location of the
Reynolds shear stress (i.e. y+12p in (3.9)).

Our definition of mesolayer yields an phenomenological explanation of the critical
Re (i.e. Rec

τ ≈ 104) above which the outer peak emerges. Note that y+12p was defined
as the location of the ‘critical layer’ by Sreenivasan (1988), and as the demarcation
of the inner–outer region by Klewicki et al. (2012). Accordingly, we consider y+12p

(=
√

Reτ/κ) as a typical height of near-wall coherent structures (or wall-attached
eddies). As Re increases, y+12p will increase, indicating that such attached eddies move
away from wall and finally enter the quasi-balance region (balance between production
and dissipation of total kinetic energy) – the near-wall boundary is y+Q ≈ 150 according
to DNS data (Del Alamo & Jimenez 2006). Hence, y+12p = y+Q yields a critical
Reτ = κy+2

Q ≈ 10 100. For small Re, these eddies are outside the quasi-balance zone;
until Reτ > 10 100, they fully enter the quasi-balance zone, which may suppress local
dissipation and result in the outer peak of W+11 – in analogy to the coherent vortex
filaments introducing scaling anomaly in the cascade of isotropic turbulence (She &
Leveque 1994). It is still a speculation, which may be complementary to the effect
of LSM or VLSM (Hultmark et al. 2013; Vincenti et al. 2013; Vallikivi et al. 2015).
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Also, the non-equilibrium feature of dissipation (Vassilicos 2015) in the region of the
outer peak is an interesting issue to pursue, as the non-local energy flux from the
near-wall production peak may be important. A study of the two-point statistics (such
as the velocity structure function) would provide evidence of the complex interplay
between the non-local spatial and spectral energy fluxes, which requires more studies
involving both the Reynolds stress equations and the spectral transfer equations.

Based on the mesolayer concept, Chen et al. (2015) postulate an anomalous scaling
model for the ratio between `11 and `12, i.e.

θmeso = c(y+)γb[1+ (y+/y+meso)
2
]
(γm−γb)/2, (6.6)

where y+meso = y+12p =
√

Reτ/κ . It readily leads to the outer profile of W+11:

W+11meso =W+12θ
2
meso = c2r(y+)2γb[1+ (y+/y+meso)

2
]
γm−γb . (6.7)

Compared to models for the outer W+11 profile by Vassilicos et al. (2015) and Laval
et al. (2017) (with eight parameters), equation (6.7) agrees equally well with data
using much fewer parameters (only three). These three are: (1) the scaling exponent
γb= 0.05 quantifying the growth of W+11 before reaching its outer peak; (2) the second
exponent γm = −0.09 quantifying the decay of W+11 after its outer peak; and (3) the
global proportionality coefficient c determining the magnitude of outer profile. The
two exponents are believed to be related to intermittent cascade dynamics in the bulk
developed (more isotropic) turbulence. Presently, they are measured from experimental
data (Chen et al. 2015), which seem to be invariant with Re – to be further elucidated
in the future.

On the other hand, the value of c for each Re is determined by the following
procedure. Note that (6.7) implies W+11c = 0 at the centreline r = 0, due to a lack of
the centre core layer factor in (6.6), which can be readily rectified by incorporating
the core layer asymptote `11/`12∝ (1+ (rcore/r)2)1/4 as r→ 0 from (2.34). This yields

θ outer = c(y+)γb

(
1+

(
y+

y+meso

)2
)(γm−γb)/2

(1+ (rcore/r)2)1/4

(1+ r2
core)

1/4
, (6.8)

where the factor (1 + r2
core)

1/4 guarantees that θouter→ θmeso as r→ 1. Therefore, the
expression for the entire outer profile of W+11 is

W+11Outer =W+12θ
2
outer = c2(y+)2γb

(
1+

(
y+

y+meso

)2
)γm−γb √

r2 + r2
core√

1+ r2
core

. (6.9)

One can check as r→ 1, W+11Outer→W+11meso (hence (6.9) → (6.7)). Moreover, at r= 0
(i.e. y+ = Reτ ), we obtain a non-zero centreline value of W+11 from (6.9):

W+11c = c2Re2γm
τ y+2(γb−γm)

12p
rcore√

1+ r2
core

. (6.10)

Now, similar to (5.6), we invoke Townsends’ Re-similarity hypothesis, namely,
W+c11 is expected to be independent of Re, which yields c ∝ Re−(γb+γm)/2

τ . Denote
c= c′Re−(γb+γm)/2

τ and substitute this c and y+12p into (6.10), yielding

c′ =W+1/2
c11 (1+ r2

core)
1/4κγb−γm/

√
rcore. (6.11)
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Using rcore = 0.27, κ = 0.45, and the centreline measurement W+11c ≈ 0.86 from the
EXP pipe at Reτ = 10 481 (Hultmark et al. 2012), we obtain c′ ≈ 1.72, which yields

c= c′Re−(γb+γm)/2
τ ≈ 1.72Re0.02

τ . (6.12)

Figure 11(a) shows that (6.9) agrees well with the high-Re data of the Princeton
pipe. Recall the model of Vassilicos et al. (2015) and Laval et al. (2017) for the
outer profile of W+11; it is built on a match of two piecewise functions which are
obtained by the integration of a (presumed) four-layer power-law spectrum (including
a k−1

x spectrum corresponding to the logarithmic profile by Townsend). However, it is
difficult for such a spectral model to locate precisely the log region (particularly for
small Re). In contrast, equation (6.9) describes the simple multilayer structure, needing
no spectral description, and involving far fewer parameters. Figure 11 shows that (6.9)
characterizes well both the smooth variation of the data across the outer peak and
the gradual deviation of the data from the logarithmic distribution near the centreline,
which were not described yet in Laval et al. (2017).

The comparison between (6.9) and the revised CICLoPE data is shown in
figure 11(b). Note that only a small part of W+11 is measured in the outer flow
region of CICLoPE, which differs from the Princeton pipe data slightly. In particular,
beyond the outer peak, W+11 declines more slowly in CICLoPE, hence suggesting a
larger γm = −0.07 (compared to −0.09) for the four profiles shown in figure 11(b).
Moreover, for Reτ = 27 789 and 39 652, the outer peak value of CICLoPE is slightly
larger than the Princeton pipe at similar values of Reτ , thus implying a larger
magnitude parameter c for these two profiles (i.e. c = 1.75Re0.02

τ ). Except for these
two changes, all the other parameters in (6.9) stay the same as for the Princeton
pipe, and the resulting profiles agree closely with the CICLoPE data. As a reminder,
according to the Princeton data in figure 11(a), γm =−0.09 and c= 1.72Re0.02

τ match
well with data at even higher Re (i.e. Reτ = 37 450 and 98 187). It is thus unknown
whether the small changes of c and γm are physically necessary, or simply due to
data uncertainty (an issue that has been emphasized for CICLoPE by Willert et al.
(2017)).

6.3. Scaling of the W+11 outer peak
Now, using the three parameters (γb= 0.05, γm=−0.09 and c′= 1.72), let us predict
the Re-scaling of the outer peak value W+11po and its y-location y+11po. Solving ∂y+W+11=

0 using (6.9), which actually is ∂y+θmeso ≈ 0 since r ≈ 1, one has the outer peak
location:

y+11po =
√
−γb/γmy+meso ≈ 1.1Re1/2

τ . (6.13a)

Moreover, substituting (6.13a), y+meso =
√

Reτ/κ and (6.12) into (6.7) yields the outer
peak value:

W+11po = c′2(−γb/γm)
γb(1− γb/γm)

γm−γbRe−γm
τ ≈ 2.8Re0.09

τ . (6.13b)

Predictions by (6.13a) and (6.13b) compared with data are shown in figure 10(b). The
agreement is quite good, though the triangles (CICLoPE data) at the two largest Re
are a little higher than the circles (Princeton pipe data) – due to the aforementioned
larger γm and c for CICLoPE.

To emphasize, y+11po ∝ Re1/2
τ in (6.13a) is obtained by the scaling of y+meso, and this

scaling is independent of the values of c′, γb and γm. This is self-consistent with
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the preceding suggested scenario that y+meso (i.e. typical height of near-wall coherent
structures) entering the quasi-balance zone causes the anomalous dissipation, and
hence the outer peak. This Re1/2

τ scaling is also different from the Re2/3
τ scaling by

McKeon & Sharma (2010), where they argue that the outer peak corresponds to
a specific mode whose propagation velocity equals the local mean velocity at the
position where U+ = 2U+c /3. Currently, both scalings agree with data (within data
uncertainty) in the present Re range, while further higher-Re data are needed to
indicate the preferred of the two scalings (note that Re1/2

τ scaling is better for TBL
data of Mathis, Hutchins & Marusic (2009)).

According to (6.13b), the outer peak will exceed the inner peak – taking the
aforementioned constant value 9.2 – at Reτ = (9.2/2.8)1/0.09

≈ 5.5 × 105. (However,
if the inner peak continues to increase, this Reτ will be larger.) Prediction of this
specific Reτ , approximately six times larger than the maximum Reτ = 98 187 in the
Princeton pipe data (Hultmark et al. 2012), awaits verification when data become
available.

6.4. Townsend’s log profile for W+11

Another important issue concerns the theoretical explanation of the recently observed
logarithmic distribution (Hultmark et al. 2012), i.e. W+11 = −1.25 ln y + 1.61. As
introduced before, previous theories of the log profile build on the k−1

x spectrum
(Townsend 1976; Perry et al. 1986), which is, however, not fully supported by
experimental pipe data (Rosenberg et al. 2013). Alternatively, Hultmark (2012)
suggested investigating the diagnostic function Γ11=−ydyW+11 to check the log profile.
Here, similar to (5.12), we can calculate Γ11 from (6.9), and hence theoretically
estimate the values of the log-law slope A11 and the additive constant B11, presented
below.

Since the log profile region is beyond the outer peak (y+� y+meso and r≈1), equation
(6.9) is approximated as

W+11 = c′2κγm−γbry2γm, (6.14)

from which we have

Γ11 = c′2κγm−γby2γm[1− (1+ 2γm)r]. (6.15)

Again, the value of the approximate plateau of our theoretical Γ11 can be represented
by its minimum value Γ11min, which can be obtained by solving dΓ11/dy = 0 using
(6.15). The results are

Γ11min = c′2κγm−γb

(
2γm

1+ 2γm

)1+4γm

≈ 1.25, (6.16a)

which is located at

y11Γ =

(
2γm

1+ 2γm

)2

≈ 0.048. (6.16b)

Repeating the calculation for B33 in (5.16), the logarithmic additive constant B11 can
be obtained by matching (6.14) with (1.3) at the specific location y= y11Γ . Substituting
y= y11Γ ≈ 0.048 into (6.14) yields W+11Γ ≈ 5.43; therefore

A11 = Γ11min ≈ 1.25, B11 =W+11Γ + A11 ln y11Γ ≈ 1.63, (6.17a,b)
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which are very close to the empirical values of A11 = 1.25 and B11 = 1.61 obtained
by Hultmark et al. (2012). Figure 11 shows our theoretical log law with parameters
in (6.17), in good agreement with both (6.9) and data. Thus, (6.9) leads to a local
approximate log law, hence presenting an alternative derivation of the Townsend’s log
profile.

6.5. Composite expression for the entire flow
Now, we incorporate θouter (or θmeso) with α11 (and hence `11) to form a composite
expression for the entire flow, without introducing any additional parameter. Since
α11∝ 1/

√
y+ as y+→ 0, we now modify the y+γb factor in θouter to match the near-wall

scaling 1/
√

y+ and obtain the following improved α11 (explained below):

α′11 =
c1y+1/2

buf
√

y+

(
1+

(
y+

y+B

)4
)(1/2+γb)/4 (

1+
(

y+

y+meso

)2
)(γm−γb)/2 (

1+
(rcore

r

)2
)1/4

,

(6.18)
and hence

`′11 = `
+

12α
′

11, and W+11 =W+12(`
′

11/`12)
2
=W+12(α

′

11)
2. (6.19a,b)

It can be easily checked that α′11= α11 for y+� y+B , and α′11= θouter for y+� y+B ; note
that the second condition implies c1y+1/2

buf /y
+(1/2+γb)
B = c/(1 + r2

core)
1/4, which leads to

the definition of y+B :

y+B = [c1y+1/2
buf (1+ r2

core)
1/4/c]2/(1+2γb). (6.20a)

Substituting the global coefficients c1= c11/(c12y+1/2
buf ), c11= κ11y+1/2

sub /[y+buf (1+ r2
core)]

1/2,
c12 = κy+1/2

sub /[y+buf (1+ r2
core)

1/4
] and c= c′Re−(γm+γb)/2

τ into (6.20a) yields

y+B = [κ11y+1/2
buf /(c

′κ)]2/(1+2γb)Re(γb+γm)/(1+2γb)
τ ≈ 48Re−0.0364

τ . (6.20b)

Here, the values of κ = 0.45, y+buf = 41, κ11= 1.02, c′= 1.72, γb= 0.05 and γm=−0.09
are used.

Substituting (6.20b) into (6.18) and hence (6.19), the resulting W+11 profiles are
shown in figure 12(a), in good agreement with data for the entire flow domain with
a departure less than 1. Predictions for two larger Re values at Reτ = 3 × 105 and
106 are also plotted in the figure, awaiting future measurement for validation. The
diagnostic function Γ11 for the entire flow domain is also calculated from data and
from (6.19), as shown in figure 12(b); the plateau value of the data in the bulk
flow is well represented by Γmin = 1.25 in (6.16a). That is why the log profile with
A11 = 1.25 and B11 = 1.63 agrees well with the data in figure 12(a).

It is interesting to observe that for the two larger Re values (Reτ = 3× 105 and 106),
a more extended logarithmic scaling is predicted by (6.18), and hence (6.19). This
is in sharp contrast to the power-law formula by Barenblatt (1993) and Barenblatt &
Chorin (2004), where their power-law asymptotes to a log law due to a decreasing
scaling exponent with increasing Re. Here, (6.18) predicts the (approximate) log
profile for W+11 based on three Re-invariant parameters, i.e. c′ = 1.72, γb = 0.05 and
γm = −0.09. Moreover, equation (6.18) extends the log law to the centreline and to
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FIGURE 12. (Colour online) (a) EXP pipe data (Hultmark et al. 2012) denoted by
symbols compared with (6.19) denoted by solid lines for Reτ =10 481 (downward triangle),
37 450 (leftward triangle) and 98 187 (square) – showing good agreement. Our log profile
W+11 =−1.25 ln(y+/Reτ )+ 1.63 from (6.17) is marked in dash-dotted line. Also included
are predictions for Reτ = 3 × 105 and 106, awaiting future data for validation. (b) The
logarithmic diagnostic function Γ11 =−ydyW+11 for data (symbol) and using (6.19) (solid
line) showing good agreement in the entire flow domain. The dashed line marks the log
profile slope −1.25 given in (6.17); also included is the prediction of Γ11 at Reτ = 3× 105.

the wall, considerably beyond the previous scaling theories valid for a limited flow
domain, hence showing the superiority of (6.18).

For small Re values, using κ11 in figure 10(a) and y+B in (6.20b), the resulting W+11
profiles by (6.19) are shown in figure 13. Note that in this figure, Reτ covers over
two decades from 650 to 98 187. Compared to the canonical descriptions (figure 9b),
the modified W+11 profiles agree much better with data (figure 13a), although there is
a slight mismatch in the buffer layer for small Re (figure 13c). The agreement can
be improved by slightly varying γm (from −0.09 to −0.07). However, to limit the
scope and the size of the paper, a detailed discussion of the finite Re-dependence of
the parameters is not considered. Still, the improvement indicates that the anomalous
scaling modification, although inspired from large-Re data, also applies to moderate Re.
The underpinning physics for the successful modifications of small-Re profiles need
further studies.

Remember that (6.13b) predicts that the outer peak will exceed 9.2 (the presumed
saturated inner peak value) at Reτ ≈ 5.5 × 105. According to (6.20b), y+B decreases
from approximately 41 to 31 for Reτ varying from 102 to 105, and y+B ≈ 29 at Reτ =
5.5 × 105. For Re → ∞, equation (6.20b) indicates that y+B → 0, which seems to
be questionable since y+B should saturate to a non-zero value larger than y+sub = 9.7
(i.e. above the sublayer thickness). In fact, a non-zero y+B as Reτ→∞ indicates that
γb + γm→ 0. However, y+B decays very slowly with Re, and it is not until Reτ > 1020

that y+B becomes smaller than y+sub – extremely far away from today’s experiments and
simulations. Thus, to re-emphasize, equation (6.20b) is quite robust for finite Re.

7. Summary

The symmetry approach developed in Part 1 (She et al. 2017) for the mean velocity
profiles is extended here to quantify the (second-order) Reynolds stress tensor in
channel and pipe flows. The canonical four-layer description of the Reynolds shear

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

40
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.405


432 X. Chen, F. Hussain and Z.-S. She

0

3

6

9

12

15

100 104103102101

0

3

6

9

12
Exp pipe

100 104103 105102101

100 104103 10510210110010–1 104103102101
–2

–1

0

1

2

–2

–1

0

1

2

(a) (b)

(c) (d )

FIGURE 13. (Colour online) W+11 obtained by anomalous scaling modification compared
with data of (a) DNS (each profile has been vertically shifted by one unit for better
display) and (b) Princeton pipe experiment (EXP) (Hultmark et al. 2012). The departure
between data and our theory is shown in (c) (for DNS) and (d) (for EXP) – all bounded
within ±1. In addition to the DNS channel data in figure 2, DNS pipe data are also
included in (a,c) at Reτ = 1142 by Wu & Moin (2008) (diamonds) and at Reτ = 3008
by Ahn et al. (2015) (leftward triangles).

stress length `12 is extended to similarly obtain those of the three other lengths, `11,
`22 and `33. Among these length functions, the layer thicknesses are found to be the
same (except r22core is 10 % larger than rcore), while the scaling exponents are different
due to different wall and centreline asymptotes, owing to different symmetries under
dilations. W+12 and W+22 (active motions) agree well with the canonical descriptions;
for W+11 and W+33 (inactive motions), small anomalous modifications yield more refined
results, representing the effect of symmetry breaking, whose dynamic mechanism will
be an intriguing topic for further study.

Let us summarize all parameters describing the multilayer structure of wall
turbulence in channel and pipe flows: three layer-thickness parameters characterizing
the canonical four-layers structure (y+sub = 9.7, y+buf = 41, rcore = 0.27, with slight
modification of the last one – r22core = 0.3 for `22); four proportionality coefficients
(κ = 0.45 for `12; κ11 = 1.02 (for high Re), κ22 = 0.52, κ ′33 = 0.43 for `11, `22 and
`33, respectively); three anomalous scaling exponents (γ = 0.07 for `33, γb= 0.05 and
γm=−0.09 for `11); and finally a coefficient c′= 1.72 related to the outer peak of W+11.
These parameters completely quantify the multilayer structures of the mean velocity,
Reynolds shear stress and three turbulence intensities (including their Re-scalings and
y-scalings), and each of these parameters is directly and independently measured from
data. It would be interesting to test whether they remain invariant at higher Re.
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Using the above parameters, we theoretically obtain following results, agreeing well
with data:

(i) the maximum turbulent production is located at y+ ≈ 12;
(ii) the location of peak value W+12 has a scaling transition from 5.7Re1/3

τ to 1.5Re1/2
τ

at Reτ ≈ 3000, with the peak magnitude 1−W+12p having a scaling transition from
8.5Re−2/3

τ to 3.0Re−1/2
τ ;

(iii) the peak value W+33p ≈ 0.84Re0.14
τ (1− 48/Reτ );

(iv) the outer peak of W+11 emerges above Reτ ≈ 104 with its location scaling as
1.1Re1/2

τ and its magnitude scaling as 2.8Re0.09
τ ;

(v) alternative derivations of Townsend’s log profiles for inactive motions in the bulk,
viz., u′u′+ ≈−1.25 ln y+ 1.63 and w′w′+ ≈−0.41 ln y+ 1.00.

The above results obtained from the concise four-layers structure, albeit slight
modifications for inactive motions, demonstrate that (Reynolds stress) lengths are
the desired similarity variables for quantifying wall turbulence. The reason why
these lengths are assumed to have local dilation invariants is that they are believed
to characterize spatial scales of (statistical) eddies of wall turbulence. According
to structural ensemble dynamics (SED) in Part 1, these lengths are examples to
represent the ensemble property of the flows, which are constrained by the wall
and obey the dilation invariance ansatze postulated in Part 1. In other words, within
each layer, eddies’ scales are related by the simple power law (following the first or
the second ansatz); and across different layers, eddies’ scales obey the generalized
power law (following the third ansatz). The good agreement between data and the
multilayer descriptions illustrates that different components of Reynolds stresses are
indeed organized into a self-similar family. Note that in contrast to the wall-attached
hypothesis by (Townsend 1976) (mainly for the log layer), the current work provides
a framework to define a family of eddies in the entire flow domain. The eddies’
scales characterized by the lengths enable the quantification of mean distributions
(e.g. mean velocity, fluctuation intensities), where more refined descriptions (such as
anomalous scaling modifications of `11 and `33) can be pursued further.

Finally, owing to the universal nature of wall dilation symmetry, the analysis
is applicable to many other wall flows with different flow conditions, such as
incompressible (Wu et al. 2013; Chen & She 2016) and compressible TBL (She
et al. 2010; Zhang et al. 2012; Wu et al. 2017), roughness effects (She et al. 2012),
with and without mild pressure gradients, and turbulent Rayleigh–Bénard convection
(to be communicated soon). The results have also been extended to improve turbulent
engineering models (Chen et al. 2015, 2016a). Note that the random dilation analysis
on (approximate) balance equations, which take different forms in different layers,
also can be applied to study the scalings of high-order correlations.
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Appendix A. Matching procedure
The matching procedure developed in Part 1 is summarized here. Suppose we have

two different power laws for two adjacent layers, for example, `(I)= cIyγI (layer I) and
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`(II)= cIIyγII (layer II). Recall the third ansatz in Part 1 composed of the two invariants
I1 and I2, i.e.

I2 = γII1 + c(I1)
n, (A 1)

where γI , c and n are all constants. Substituting the definitions I1 = `/yγII and I2 =

(d`/dy)/yγII−1 obtained from the dilations in the layer II into (A 1), and integrating
the subsequent equation with respect to y, we obtain the following general scaling
transition:

`= cIyγI (1+ (y/yc)
p)(γII−γI)/p, (A 2)

where yc= (cI/cII)
1/(γII−γI) is the cross y-location satisfying `(I)= `(II), and the transition

sharpness p= (1−n)(γII−γI); note that ` represents any of `11, `12, `22 and `33. It can
be checked that (A 2) smoothly connects the above two adjacent power laws together.

Now we use the above ansatz to obtain the multilayer formulae of the stress
length functions. Let us take `22 as an example to show how the composite formula
is obtained (note that `12 has been obtained in Part 1). First, we apply (A 1) and
(A 2) for `22 in the viscous sublayer and buffer layer. For this case, `(I)22 = Isub

1 y+2

representing the power law for the sublayer, and `
(II)
22 = Ibuf

1 y+5/2 for the buffer layer.
Substituting `22 into (A 1) and carrying out the integration to (A 2) we obtain

`
+(sub−buf )
22 = Isub

1 y+2

(
1+

(
y+

y+sub

)p)1/2p

= c′22y+2

(
1+

(
y+

y+sub

)4
)1/8

, (A 3)

where y+sub = (Isub
1 /Ibuf

1 )2 is the cross y+-location for the two layers, c′22 = Isub
1 is the

proportionality coefficient, and the transition sharpness p= 4 is the same as in Part 1.
Then, for buffer and log layers, `(I)22 = Ibuf

1 y+5/2 and `(II)22 = Ilog
1 y+(= κ22y+). Repeating

the above derivation procedure, we obtain the scaling transition from buffer to log
layers:

`
+(buf−log)
22 = Ibuf

1 y+5/2

(
1+

(
y+

y+buf

)4
)−3/8

, (A 4)

where y+buf = (I
log
1 /Ibuf

1 )2/3.
Further, using the following multiplicative rule (Van Dyke 1964), i.e.

φI−III
= φI−IIφII−III/φCommon, (A 5)

which corresponds to

`+Inner
22 = `

+(sub−buf )
22 `

+(buf−log)
22 /(Ibuf

1 y+5/2), (A 6)

we thus obtain the following composite profile for the inner three layers:

`+Inner
22 = c′22y+2

(
1+

(
y+

y+sub

)4
)1/8(

1+
(

y+

y+buf

)4
)−3/8

. (A 7)

Similarly, for the outer flow, we have the composite profile connecting the bulk
layer and core layer together:

`+Outer
22 =

κ22Reτ
4Z′c

(1− r4)

(
1+

(rcore

r

)2
)1/2

, (A 8)
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where Z′c=
√

1+ r2
core. Applying the multiplicative rule (A 5) again for (A 7) and (A 8),

with the common state `+Common
22 = κ22y+ = κ22Reτ (1− r), we thus obtain (2.31)

`+22 = `+Inner
22 `+Outer

22 /`+Common
22

= c22y+2

(
1+

(
y+

y+sub

)4
)1/8 (

1+
(

y+

y+buf

)4
)−3/8

1− r4

4(1− r)

(
1+

(rcore

r

)2
)1/2

.

(A 9)

Note that c22= c′22/Z
′

c has been substituted in (A 9). Therefore, by the same procedure
developed in Part 1, we obtain the four-layer formula for `22. This procedure can be
similarly applied for `11 and `33 to yield (2.32) and (2.37).
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