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A Classification of Tsirelson Type Spaces

J. Lopez-Abad and A. Manoussakis

Abstract. We give a complete classification of mixed Tsirelson spaces T[(J;, 6;);_, ] for finitely many
pairs of given compact and hereditary families J; of finite sets of integers and 0 < ¢; < 1 in terms of
the Cantor-Bendixson indices of the families &}, and 0; (1 < i < r). We prove that there are unique
countable ordinal a and 0 < € < 1 such that every block sequence of T[(J7, 6;)_, | has a subsequence
equivalent to a subsequence of the natural basis of the T(8_., #). Finally, we give a complete criterion
of comparison in between two of these mixed Tsirelson spaces.

Introduction

The line of research we continue in this paper has been initiated by an old problem of
S. Banach asking if every Banach space contains a subspace isomorphic to ¢y or some
£,,. This problem was solved negatively by B. S. Tsirelson [19] who provided the first
example of a Banach space that does not contain any of the spaces ¢y, £,, 1 < p < o0.
The idea of Tsirelson’s construction became particularly apparent after T. Figiel and
W. B. Johnson [11] showed that the norm of the dual of a Tsirelson space satisfies the
following implicit equation

d
1
= max{sup\an|, S sup E HE,( E anen) H},
n i=1 n

() H > e,

where the sequences (E;)?_, considered above consist of successive subsets of inte-
gers with the property that d < minE;, d € N, and E;(}, ase,) = ZHGE,- ae, is
the restriction of ) aye, on the set E;. We refer to [10] for an extended study of
Tsirelson space T. A first systematic abstract study on Tsirelson’s construction was
given by S. Bellenot [7] and S. A. Argyros and 1. Deliyanni [4]. Given a real number
0 < 6 < 1 and an arbitrary compact and hereditary family F of finite sets of integers,
one defines the Tsirelson type Banach space T(F, 0) as the completion of coy with the
implicitly given norm (x) replacing 1/2 by 6 and using sequences (E;); of finite sets
of integers which are F-admissible, i.e., there is some {m;}?_, € F such that

m; < minE; < maxE; < mpy < minE, < maxE, < --- < my < min E; < max E,.
In this notation, Tsirelson’s example is the space T(8,1/2), where 8§ = {s C N :

#s < min s} is the so-called Schreier family. It was proved in [4] that if the Cantor—
Bendixson index (F) and 0 satisty the inequality 6 - t(F) > 1, then the space T(F, 0)
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is reflexive. Moreover, in the case of «(¥F) > w, they proved that the space T(F, )
does not contain any of the classical spaces ¢y or £,, 1 < p < oo. In the case that F
is chosen to be the family of the finite subsets of N with cardinality at most n > 2,
denoted by [N]<", it was shown [4, 7] that the corresponding space T([N]=", ) is
isomorphic to ¢y if nf) < 1 and is isomorphicto £, (1 < p < 00) if§ = n~1/4, where
q is the conjugate of p, i.e., 1/p+1/q = 1.

Further examples of Tsirelson type spaces with interesting properties are the spaces
T(84, ) considered in [1, 4], where the compact and hereditary families S, are the
a-Schreier families, the natural generalizations of the Schreier family of index w®
(81 = 8). These spaces share many properties with the original Tsirelson space, and
their natural Schauder bases are examples of w-null sequences with large oscillation
indices. A basic property of any 8,, is that it is spreading (see definition below). This
is used to show that every normalized block sequence with respect to their natural
bases (e, ) is equivalent to a subsequence of (e, ), a property that ¢y and £, also have.
From this, and the fact that the Cantor—Bendixson indices of the families S, and
[N]=" are very much different, it can be explained why T(8,, 1/2) does not contain
isomorphic copies of £, = T(IN]=", n=Y4) or ¢, = T([N]=", 1/n).

The aim of this paper is to understand in these terms the so-called mixed Tsirelson
spaces T[(F;, 0;);_, ], whose norms are defined implicitly by

%[l (5 60, =

n
max{ [lloo, sup{ 6: > |Ejx|| 50,0, : (Ej)}_, is Fi-admissible, 1 < i < r} },
=1

for arbitrary compact and hereditary families F; and establish a criterion of compa-
rability in between them. The first step in this direction was done by J. Bernues and I.
Deliyanni [8] and J. Bernues and J. Pascual [9] who proved the following two results:

* If the Cantor-Bendixson indices of the families are finite, then T[(J;,0;)]_,] is
saturated by either ¢y or some £,,, 1 < p < oo.

* If the Cantor-Bendixson index of ¥ is equal to w + 1, then T(F,0) contains a
subspace isomorphic to a subspace of T(S, ).

The only case left is when one of the families has infinite index. Recall that every
ordinal a > 0 has a unique decomposition as & = w”’k+d, where § < w” and k € .
Using it twice it follows that every infinite ordinal o has the unique decomposition
a = w "™ Em + 1 (see [18]). Now given a compact family F, let v(&) and n(F) be
w*’ and 7 in the previous decomposition for v equal to the Cantor—Bendixson index
of F. Following this notation, our main result is the following.

Theorem  Fix (3}, 0;)]_, such that at least one of the families has infinite index. Then
there is some 1 < iy < r such that for every compact and hereditary family G the
following are equivalent.

1) (9 = v(F).

(if) Every infinite-dimensional closed subspace of T[(F;,0;)'_,] contains a subspace

isomorphic to a subspace of T(9, 9:;(9)/:1(?,-0)).

https://doi.org/10.4153/CJM-2008-049-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2008-049-0

1110 J. Lopez-Abad and A. Manoussakis

(iii) Every normalized block sequence (x,) of T[(Fi, 0;)i_,] has a subsequence (x,)ncm

. . F;
equivalent to the subsequence (emin supp x, Jnem 0f the basis of T(G, 92}( /nC O)).

It readily follows that:

* Every normalized block sequence (x,) of T[(J;, 6;)!_, ] has a subsequence (x,),em
equivalent to the subsequence (emin suppx, Juem of the basis of T[(J;,6;)7_,].

* There are unique countable ordinal o and 0 < 6 < 1 such that every normalized
block sequence with respect to the basis (e,) of T[(J;, 0;)i_,] has a subsequence
equivalent to a subsequence of the basis (e,) of T(S,a, 6).

So, for example T(8,341.5, 1/2%) and T(8,:, 1/2) are mutually saturated, while
T(8,3,1/2) and T(8,4, 1/2) are totally incomparable.

Another consequence is that every subspace of T[(J;, 6;)!_, ] contains an 8« — £;
spreading model, that is, there exists a constant K > 1 such that for every sequence
of coefficients (a,),

1> a
nes

1
> E;an\ (s € 8un).

In particular, every subspace of T[(JF;, 6;)!_,] contains an asymptotic ¢;-subspace.
Asymptotic ¢;-spaces, the structure of these spaces as well as the structure of the
spreading models of a Banach space is a current research topic, which provides inter-
esting examples and structural results in Banach space theory (see [2,16]).

The proofs given in this paper use four main ingredients: we work with the equiv-
alent reformulation of the implicit norm of T[(J;, 6;)/_,] given by the norming set
K((37,0;)i_,), and the so-called tree analysis of a functional of K(J,6) (see Sec-
tion 4). In particular, given a normalized block sequence (x,) of the basis (e,) we
provide an algorithm to estimate the norm of a linear combination ) _, a,x, in terms
of a corresponding linear combination of a subsequence of the basis (e,) of an aux-
iliary space T[(G;, 8;)!_, ], much in the spirit of well-known works in this field. Sec-
ondly, we use the well-known fact (see [6,12]) that given two compact and hereditary
families F and G, there is an infinite set M such that either FIN = {s € F: s C N} C
GIN = {s€ G : s C N} or vice versa. This is indeed a consequence of the fact that
for every compact and hereditary family &, there is an infinite set M such that F|M
is, what we call here, homogeneous on M. It turns out that the C-maximal elements
of such families have the Ramsey property, which we will use here to avoid some com-
binatorial computations.

Finally, we reduce the study of T[(J;, 6;)/_,] for compact and hereditary families
Fi’s to the case of T(9, 0) for some regular family G, i.e., a compact hereditary fam-
ily G that is in addition spreading (see below). This additional regularity property
of families G has two main advantages: the first is that the associated norming set
K(G, 0) has a simpler form; the second one is that their Cantor-Bendixson index is
preserved if we restrict them to an infinite set.

The paper is organized as follows: in the first section we introduce notation, ba-
sic combinatorial definitions, and mixed Tsirelson spaces. In the second section we
study the behavior of subsequences of the natural basis of T[(J7, 0;)/_,] in the case
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of regular families. An important outcome of this section is the reduction we make
from finitely many families to one.

The third section is devoted to an abstract study of compact and hereditary fam-
ilies of finite sets of integers. In particular, we introduce homogeneous and uniform
families and we prove two combinatorial results, basic tools for this work. This sec-
tion provide the link between mixed Tsirelson spaces built by compact and hereditary
families with Tsirelson type spaces constructed using a regular family.

In the last section we show that every block sequence of a mixed Tsirelson space
T[(F;,0;)i_,] has a further subsequence equivalent to a subsequence of its basis. As
a consequence of this and of the results of the previous sections we provide several
saturation results. Using special convex combinations, we also give two criteria to
obtain incomparability for Tsirelson type spaces. Finally, we expose the classification
of mixed Tsirelson spaces T[(J;, 6;)7_, 1.

1 Basic Facts

Throughout this paper we are going to deal with families of finite sets of integers.
The family of all finite sets of integers is denoted here by FIN. Given s,t € FIN we
write s < t (resp. s < t) to denote that maxs < mint (resp. maxs < mint), and for
an integer n, we write n < s (n < s) whenever {n} < s (resp. {n} <'s). These orders
can be easily extended to vectors x, y € cpo(N): x < y (x < y) if and only if suppx <
supp y (resp. suppx < supp y), where for x € ¢y, suppx = {n € N : x(n) # 0}.
We say that a sequence (s,) of non-empty finite sets of integers is a block sequence if
sn < Sy+1 for every n. In a similar manner one defines the corresponding notion of
block sequence of vectors of cyp.

Given an infinite set M and a finite set s we denote M /s = {n € M : n > s}, and
for a given integer n, let M/n = M/{n}. The shift of a non-empty set A of integers
is A=A\ {minA}. Given two sets Aand Bweset A\ B={n € A:n¢ B}, and
M\ m = {ne€M: n>m}. Fora given family F C FIN, an infinite set M C N
and a finite set s, let F|M = {r € F : + C M} be the restriction of F in M, and
let F;, = {+ e FIN : s <t,sUt € F}. Given a finite set s we use #s to denote its
cardinality. Finally, every time we write an enumeration A = {m;} of a set A we
mean a strictly increasing enumeration.

Concerning topological aspects, observe that the family of all finite sets of in-
tegers has the natural topology induced by the product topology on the Cantor
space {0, 1}", simply by identifying every finite set s with its characteristic function
&: N — {0,1}. We say then that a family F C FIN is compact if F is closed with
respect to the previous topology. In particular, there is no infinite sequence (s,) C F
such that s, & s,4; (this is characterization if F is a family closed under inclusion).
Given a compact family F, recall that 0F is the set of all proper accumulation points
of F and that 9 (F) = ﬂka A(0 (F)). The rank is well defined since F is count-
able and therefore a scattered compactum, so the sequence (9'(F)), of iterated
derivatives must vanish. We define, as in [8], the Cantor—Bendixson index +(F) of a
compact family F as the minimal ordinal « such that 9“F C {@}. Observe that
this definition is a slight variation of the standard one, where one considers the first
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ordinal a such that 9®)F vanishes. Let us point out the reason to take this defini-
tion of the index of a family J: while for families with infinite index the results we
present in this paper have exactly the same form using the standard notion of Cantor—
Bendixson index, for families with finite index the standard Cantor—-Bendixson index
cannot be used to characterize the corresponding mixed Tsirelson spaces (see [8]).

A family J is called hereditary if and only if s C t € J implies that s € F. Another
relevant order of FIN is <: given two finite sets s and ¢ we write s < t if and only if
|t| = |s| and the only strictly increasing map o: t — s satisfies that n > o(n) for all
n € t, or equivalently, if s = {py,...,pa}, thent = {q,...,94} and p; < g; for
every i < d. We say that a family F of finite subsets of an infinite set M is spreading
onMifs =t C Mands € JF implies t € F. We say that J is spreading if it is
spreading on N. We say that F is regular on M if and only if it is compact hereditary
and spreading on M, and that J is regular if it is regular on N.

Examples of regular families are the families of subsets of M with cardinality < #,
denoted by [M]=", and with index n. Indeed, we will see that every regular fam-
ily with finite index is, when restricted to some tail N/n, of this form (see Proposi-
tion 3.4). A regular family of index w is the well-known Schreier family

8 = {s € FIN : #s < mins}.

In general, for a countable ordinal o we can define inductively on « an «-Schreier
family by 8§, = 8, 841 = {s1U---Us, : (5;) C 8, is S-admissible}, and if o is
a limit ordinal, 8, = |J, 84, [(N '\ 1), where (a,) is a fixed increasing sequence of
ordinals with limit . It can be shown that 8,, is a regular family with index w® [1].
We introduce now two well known operations between families of finite sets.

Definition 1.1 Fix two families F and § of finite sets. Recall the following from [3]:

Fo§={sUt:s<t, s, teT}
FRG={s5U---Us,: (s;) is a block sequence, {s;} C F and {mins;} € G}.

The operation F & G is called a block sum while the operation ¥ ® G is called
a convolution. Observe that « + 1-Schreier families are defined inductively by the
formula S,4; = 8, ® 8. Also, it is well known that the index of the families F @ G
and F ® G are equal to ¢(F) + ¢(G) and ¢(F)e(9), respectively, assuming that F, G are
regular (see Proposition 3.4). So, if a has Cantor normal form o = w™ng+- - - +wny
(see [18] for standard properties of ordinal arithmetic), the regular family (8., ®
[IN]S™) @ -+ @ (84, ® [N]=) is of index cv.

It is not difficult to prove that @ and ® share many properties with the addition
and multiplication of ordinals. For example, @ and ® are associative, and they have
the distributive law F @ (§ & H) = (F® 9) & (F ® H), while in general the two
operations are not commutative or (F @ §) ® H # (F R H) & (9 ® H) (as for the
addition and multiplication of ordinals).

We introduce the following simpliflying notation.

Notation By (F;,0,)ic; we shall always mean a sequence of pairs of compact and
hereditary families F; and real numbers 0 < 6; < 1 (i € I). We call a sequence

https://doi.org/10.4153/CJM-2008-049-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2008-049-0

A Classification of Tsirelson Type Spaces 1113

(31, 0:)ics regular if in addition every J; is regular. Given two sequences (F;, 0;)icr
and (F;, 6;)ic; we use (F;,0,)icr ~(Fi,0:)ic; to denote the disjoint concatenation
(Fi,0:)ic1uy of the two sequences. Given F C FIN and m € N let

gom 59" 7.
We are now ready to give the definition of mixed Tsirelson spaces.

Definition 1.2 Given a sequence (F;, 0;)ic; the norm || - ||, 9,),, On cop is defined
as follows. For x € ¢y let

(1.1) ”xH(?iﬁi)iez =

n
max{ l[x]|o0, sup{ 6 > |Ejx[| (5,00, : (Ej)j—; is Fi-admissible, i € I} }
=1

Next, T[(F;,6;)ics] denotes the completion of (cqo, || - ||(,,6):c,)- Observe that a
Tsirelson type space T(J, 0) is nothing else but the mixed Tsirelson space T[(F, 0)].

Remark 1.3. (i) The property of being hereditary of every family JF; is not needed
for the previous definition to make sense. Moreover, if the F/s are only compact, then
the standard Hamel basis (e,) of ¢y is a 1-sign-unconditional normalized Schauder
basis of T[(JF, 6;)icr] (in order to prove the unconditionality it is more convenient
to work with the equivalent presentation of the norm || - ||(5, 4,),., given just before
Remark 1.4). In the sequel, whenever we consider block sequences they will be with
respect the basis (e, ).

(ii) IfIis finite, or iflim;c; 6; = 0, then (e,) is shrinking, while if there exists i € I
with 6; > 1/u(F;) (with the convention 1/:(F;) = 0 for +(F;) is infinite), then the
basis (e,) is boundedly complete (see [6] for more details).

(iii) Observe that if in the previous definition of the norm | - ||, 4,),, we do not
impose that F; are necessarily hereditary but only C-hereditary (s C ¢ if s C ¢ and
s < t\ s), then in the corresponding completion T[(F;, 0;);c;] the sequence (e,) is
still a bimonotone Schauder basis 1-sign unconditional.

(iv) It can be shown that the implicit formula (1.1) remains true for every x €
T[(F;,6;)ic1] (see [14] or Remark 1.4 below).

(v) If we allow some of the families F; to be non-compact, i.e., if some of their
closures contain an infinite set, then it follows easily that T[(JF;, 6;);es] is £, -saturated.
Indeed, every seminormalized block sequence contains a further subsequence, for
which every finite initial subsequence is F;-admissible for a non-compact family JF;,
and hence equivalent to the natural basis of ¢;.

Now we present a standard alternative description of the norm of the space
T[(F;, 0:)icr], closer to the spirit of Tsirelson’s original definition. Let us denote by
K((F;,0:)icr) the minimal subset of ¢
* containing €} (n € N)

* itis closed under the (F;, 6;)-operation (i € I): 0;(f; +--- + f,) € K(F;,0:)ier)
for every J;-admissible sequence (i), C K((F;, 0i)ier).
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The norm induced by K((F;, 6;)ic1), i.e.,

%l k(5 00:e) = sup{f(x) : f € K((F},0:)ier)}, for x € coos

is exactly the norm ||x||(g, 9,),., defined above. Given an infinite set M of integers we
set KM (3, 0:)ier) = {¢ € K((Fi,0:)ier) : suppp C M}}.

Remark 1.4. (i) Itis easy to see that the closure under the pointwise convergence
topology of convK((J;,0;)ics) is the unit dual ball Bry(g,g,),.,)+. It follows that
Br((3, 61+ 18 closed under the (37, 0;)-operation (i € I). It is also easy to see
that even if the families J;’s are not necessarily hereditary, the corresponding norm-
ing set K((F;, 0:)icr) is closed sign modification. If (a,),en € K((Fi,0;)ic1), and
(en)n € {—1,1}, then (g,a,)nen € K((Fi,0:)icr). This proves that (e,) is always
1-unconditional.

(ii) For every infinite set M of integers and every sequence (a,),epm of scalars we

have
neM

Observe that KM((F;, 0))icr) = KM((F;IM, 0;);c;) if F; is regular for every i € I, but
that in general the previous equality is not true.

KM((F,0:)ien)

= H Z anéy
(Fi0i)ier neM

Notice that, by minimality of K((F;, 6;);c1), every functional from K((JF;, 6;)icr)
either has the form =+ (n € N), or it is the result of a (J;, 6;)-operation to some
sequence in K((JF;,0;)icr) and i € I. This suggests that somehow every element of
K((Fi, 0i)icr) has a complexity that increases in every use of the (J;, 6;)-operations.
This is captured by the following definition.

Definition 1.5 [3] A family (f;):cr C K((F;,60:)icr) is called a tree analysis of a

functional f € K((F;, 6;)icr) if the following are satisfied:

(i) T = (7, =2q) is a finite tree with a unique root denoted by @, and fz = f.

(ii) Foreveryt € T maximal node, f, = ¢;¢; wheree, = £1.

(iii) For every t € T which is not maximal, there exists i € I such that (f;)ses,
is F;-admissible and f; = 6; > ¢ f;, where S; denotes the set of immediate
successor nodes of ¢.

Note that S, is well-ordered by s, < s, if and only if supp f,, < supp f;,. Whenever
there is no possible confusion we will write < in order to denote <.

It is not difficult to see, by the minimality of the set K((J;,6;)ics), that every
functional of K((JF;, 6;)ic1) admits a tree analysis.
As we mentioned before in Remark 1.4, in general it is not true that

KM((Fi,00)icr) = KM((FiIM, 0,)icr)
for a given infinite set M of integers, so, a priori, it does not suffice to control the

restrictions J;[M (i € I) for the understanding of norms || Y, -/ aneu||(5,.0).c,- We
will see soon that the following is a key definition for this purpose.
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Definition 1.6 Given a family J we define the family of all F-admissible sets as
follows. We say that a finite set t = {m;}*_ ! interpolates the block sequence (s;)*
of finite sets if and only if my < sp < my < 51 < --+ < my_1 < s5,-1. We say that
t = {n;} interpolates s = {m;} if and only if t interpolates the block sequence ({m; }).

Given a family F of finite sets, a block sequence (si)?gol of finite sets is F-admissible
if there is some t € F which interpolates (s; ?:_01. We define

Ad(F) = {{m;}, € FIN: ({m;})I_, is F-admissible},

the family of all F-admissible finite sets.

Notice that if M C N and (s;) is an F-admissible sequence of subsets of M, then
{mins;} € Ad(F)[M. The converse is not true in general.

We list some properties of the F-admissible sets. Particularly interesting is the
characterization of spread of a family in terms of its F-admissible sets.

Proposition 1.7 (1) F C Ad(F).

(ii) IfJ is compact or hereditary, then so is Ad(F).

(iii) & is spreading on M if and only if Ad(F)[M = F.
(iv) Set Ad"*V(F) = Ad(Ad™ F), AdV(F) = F. Then

spread(F) = {s: JH € F(@t <95)} = UAd(")(S")

is the minimal spreading family on N containing F. If F is compact or hereditary,
then so is spread(F), and if F is regular on some set M, spread(F)[M = F.

Proof (i) and (ii) are easily proved.

(iii) If F is spreading on M, and ¢t € J interpolates some s C M, then, in partic-
ular, t+ < sand hence s € F. Suppose that Ad(F)[M = F and suppose that s < ¢
withs € Fandt C M. Sets = {m;}}_ andt = {n;}¥ ,. Foreach0 < j < klet
ti={m;j:1<i<k—jlU{nm:k—j+1<i<k}. Observethatty =s e J,t¢;
interpolates t;,, and that #; = ¢, so an easy inductive argument finishes the proof of
(iii). (iv) follows by arguments similar to (iii). [ |

Finally, let us recall the following from [12].

Theorem 1.8 Suppose that F and G are two compact and hereditary families. Then
there is some infinite set M such that either F[M C G[M or G|M C FTM.

As for regular families &, we have that «(F[M) = «(F) for every M (see Proposi-
tion 3.4), it follows that if F and G are two regular families with ¢(F) < ¢(G), then for
every M there is some N C M such that F[N C G[N. In other words, strict inequal-
ities between indices of regular families imply, modulo restrictions, strict inclusion
between those families.
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2 Subsequences of the Basis for Regular Families

The purpose of this section is to understand, for regular families, the relationship
between the operations & and ® on regular families and corresponding norming sets.
For example, what is the relation between K(F @ F, 8) and K(&F, 0)? It is well known
that if the family J has finite index, then these two norming sets are, in general,
different as the corresponding Tsirelson type spaces are isomorphic to different £,s.
However if J is, for example, the Schreier family §, then it can be easily shown that
IN]=3 ® 8 C 8 ® [N]=?, and hence

INI=* ® (8 ® [N]=?) C (IN]=* ® (IN]=* ® 8)) ® [N]=?
CS® N ®[N=? =8 [N]=*

It follows by induction on the complexity of ¢ € K(S®[N]=2,0) that ¢ = ¢+ - -+bg
for some block sequence (¢;)%_; C K(8,6). This clearly implies that

Hzanen (8.6) = HZ nén (S®IN]S2,0) — HZanen

for every 0 < 6 < 1 and every sequence (a,) of scalars. As one can guess, this
reasoning cannot be applied to an arbitrary regular family I with infinite index since
we do not have an explicit presentation of F as for the Schreier family. However, we
do have the index of the family, and by the properties of the ordinals we have that

(8,0)

(IN]Z? @ (F @ [N]S2) = 3(u(F)2) < o(F)2 +w < o(F)3,

and, since J is regular, there is some infinite set M of integers such that [M]<* ®
(FIM ® [M]=?) C F ® [N]=3, hence

DORSY ) oP Y ) ot
(F.0) (FRIN]=20)

so the two subsequences (e,),epr € T(F,0) and (e,)nem € T(F @ [N]=2,0) of the
corresponding natural bases are 3-equivalent.

We start with the following simple fact that readily follows from the definitions of
the norms.

F0)

Fact  Suppose that (F;, 0;)icr, (Gi, 0i)ier and M C N have the property that every
Gi-admissible sequence of subsets of M is F;-admissible (i € I). Then for every
sequence (a,),epm of scalars

H Z nén < H Z nén
neM 1 xlEI

The next result is a simple generalization of the above fact which will be used
repeatedly.

(Fib)ier
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Proposition 2.1 Suppose that (F;,0;)icr, (Gi,0:)ic, M C Nand k € N have the
property that

(2.1) M=K @ Ad(F) M C GIM @ [M]SF (i D).

Then for every sequence (a,)nem of scalars
H E an€y < kH g aneén
neM (Fi0ier neM

Proof We are going to show, using (2.1), that for every ¢ € KM((F;,6;);c;) there are
Py < --- < -1 in KM((G;, 0:)icr), | < k, such that ¢ = 1)y +- - - +1);_,. The proofis
by induction on the complexity of ¢. If ¢ = e}, there is nothing to prove. Suppose that
¢ =0i(po+---+¢,), where (¢;), C KM((F;,0,)icr) is Fi-admissible. By inductive
hypothesis find for every j a set u; of cardinality at most k and a block sequence
(wS)SEuj - KM((S:; ei)iEI) such that d)] = ZSEuj 1/15 (] =0,..., 7’1). Observe that
since (¢j);‘l:0 is Fj-admissible, {min ¢; ?:0 € Ad(F;). Hence by our hypothesis
(2.1),

(Si0ier

t= U{minus:s € uj} € M= @ (AdF))IM C GiIM @ [M]<*,

j=0

So there are tg < -+ < tj_1in §;[M (I < k) such thatt = t, U --- U t;_;. For
0<m<I[]—1set

o =0 (D W) € KNG bien):

min i€ty

Then ¢ = ¢ + - .. + =1 as desired. [ |

As a consequence we obtain the following two results. The first one is the general
version of the examples considered in the introduction to this section.

Corollary 2.2 Let (B;,0;)i_, and (C;, 0;)i_, be regular sequences such that
w<uC) <uBi) <uCk 1<i<r

for some integer k > 1. Then for every M there is some N C M such that the subse-
quences (e,)nen of the basis of T[(B;, 0;)i_,] and T[(C;, 8;)7_, ] are 2(k+1)-equivalent.

Proof By our assumption on the indices of the families we obtain that
UINI @ By) = (k+ 1D)u(By) < u(By) +w < (€ ® [N]H)

for every 1 < i < r. Hence there is some Ny C M such that [No]=F1 @ B;IN, C
C; ® [No]=K! for every 1 < i < r. Proposition 2.1 yields

Hzanen S(k+1)HZanen
neNy (Bib)ies neNy

(€01,
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By Theorem 1.8 there exists N C Nj such that
[N]=?2 ® C;|N C B; @ [N]=? forevery i <r.

Proposition 2.1 yields

1Y " avealle, o, <20 anealls,0,

neN neN

which completes the proof. ]

The next result says the shift operator, when restricted to some subsequence of the
basis, is always bounded. For a given set N and n € N, let n© € N be the immediate
successor of nin N, i.e., nt = min N /n.

Corollary 2.3 Let (B;, 0;)i_, be a regular sequence. Then for every M there is some
N C M such that for every sequence of scalars (a,)nen,

1> e
neN

Proof WesetI = {1 < i < r: «(B;)is finite} and J for the complement of I. By
Theorem 1.8 we can find N C M such that and

S H E Apep+ .
. A N r
(B, ~ I (Bi6)L_,

< ZH Z a,e,
(Bi,00);_, e

[NI=*® ((Bi/IN) ® [N]=") C (BiIN)® [N]=* (i€ ]).

Moreover, we may assume that B;[N = [N]=4B) for every i € I (see Proposi-
tion 3.4). By Proposition 2.1 we get
(2.2) H aye, < ZH ape, .

r%l:\l (Bibi)ier ~ (Bi®INI=!.0:)ie; nez;] (B;.0:);_,

For a given finite set s C N, we set s* = {n" : n € s}. Suppose that s* € B,. Then if
i € I we have thats € B;;ifi € J, then (s7) \ {maxs™} < s, s0 ,s € B, because B;
is spreading. This implies that in this case s € B; @ [N]=!. This fact proves that

2.3 H a,e,+ < H a,e
(23) S, <[ Sme
neN i nEN

Now, using that B; are spreading, by (2.2) and (2.3) we get,

1> e
neN

(Bi0)icr ~(Bi®INI=0;)ic;

S Hzanen* S szanen
(Bi,0:)i_, neN (Bi,00)i_, e

(Bib0i)i_,

We examine the effect of the power operation B®™ for regular families B on the
corresponding norming set. We follow some of the ideas used in the proof of the
corresponding result for Schreier families (see [13,15]).
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Lemma 2.4 Fix an infinite set M of integers, m € N, and a regular sequence
(Bi, 0;)i_,. Then for every sequence (a,)ucm of scalars

H Z @nen (B®(m 9"1)A B,,e H Z GnCn

Proof For simplicity, using that the families considered here are regular, we may
assume that M = N. Suppose that ¢ € K((B?(m),9{”)“(&,6&);:2). We will show
that

(2.4) d)(zanen) < H Zanen

It can easily be shown by induction on m that if (s5;)%_, is B -admissible, then

GmZHZanen . _H > ae

i=1  neEs neUL, s

(Bi.0:):

(Bi.0:):_,

(Bi.0:)i_,

It is not difficult to show by induction on the complexity of ¢ that the last inequality

gives (2.4). u
Lemma 2.5 Suppose that M is an infinite set and that (B;, 0;)}_, is a regular sequence
such that

(2.5) BiIM®B; C B, ®B,

for every 1 < i < r. Then for every integer m,

§ aney < H E ase,
. A\
neM (Bi,00; neM
< H § anen
neM

Proof The second inequality is given by Lemma 2.4. We assume that M = N. In
order to prove the first inequality of (2.6) we are going to show that

¢(zn:anen) < %H;anen

for every if ¢ € K((B;, 0;);_,). For suppose that (¢;);c7 is a tree analysis of ¢. For
everys <tand1 <i <rlet

li(s,t):#({u:sjuétandqﬁuzﬁizm}).

vES,

(2.6) ot

(BE™ gmy ~(B1.0));_,

(Bi,0:)i_,

(BE™ 9y ~(B;.,0))1_,)

So we have the decomposition

o= Y (I1) =1 en.

teA  i=1
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where A is the set of terminal nodes of T, n;(¢) = 1;(&,1), &, € {0,1}, and m; is an
integer.

Claim  Suppose that there is some 0 < d < m such that n1(t) = d (mod m) for
everyt € A. Then there are (wi)ﬁzl - K( (B?(m), 07 ~ (B, 9,»);;2) such that

() ¢=00(+--+)
(i) (i), is B admissible.

Assuming the claim, for every t € A, let 0 < d; < mbe such thatn;(t) +d; =0
(mod m), and let

v=y (o H 01 ) (<1 e,

teA i=1

By the claim we have that ¢ € K((%?(m), 07") ~(Bj, 0;)i_,). Finally,
1 1
’d)(;anen) ’ S 9;,1,1 1/’(;%%) ‘ S W ;anen

which completes the proof of the lemma. ]

(BE™ omy ~(B:.0,);_,

Proof of Claim The proof is by induction on the complexity of ¢. Suppose first that
¢ = +Le,. Then d = 0 and the desired result is clearly true. Now suppose that
¢ = 0j(¢1 + - - + ¢r). There are two cases to consider. If j = 1, then by inductive
hypothesis applied to each ¢; (1 < i < k), we have that forevery 1 <1 <k,

¢ = 01 (4" + -+,
where 0 < d < missuchthatd =d — 1 (mod m) and
(Wi, © K(BE™, 67 ™ (Bi, 0,
is B _admissible. It follows that

o (o, ) ifd =0,

=01(p1+---+ ) = A
oo (” {eﬂzmsz”» ifd > 0.

Using that (qﬁi);‘:l is B;-admissible we obtain that

k : BEM ifd =0

: () si 1 )
J{m e S
,-:1{ ;Y {93?“” ifd > 0.

So if d = 0, we obtain that ¢ € K((BY™ 07") ~(B;, 6;);_,), as desired; otherwise,
(i) and (ii) in the claim are clearly true for ¢.
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Now suppose that j > 1. By inductive hypothesis applied to each ¢; (1 < i < k),
we have that ¢; = 04()\" + - + Y1), where

(W S K(BE™,00) 7 (B1,6)2)

is B®“_admissible. It follows that the sequence (¢{", ... L R I ;)

is (B?(d)) ® B ;-admissible. Observe that (2.5) and the associative property of ® give
that

(BED) @ B; = (B, ® " @ B) ®B; CB; ® (BED),

so it follows that (1/151), e ,ws(ll), e ,wik), ce 1/15(11‘)) isalso B; ® (3(18(d))-admissible.
Let (t;)"_, be a block sequence of finite sets such that

. h
{miny:1<i<k1<p<st=U¢
i=1

with {#}!_, C B; and {min#;}! | € BE@, Forevery 1 <1< hlet

G=0; Y Y e K(BY™, 07 (Bi,60),),
min ﬁ)}f)Etl
whence we obtain the decomposition ¢ = 6¢ Zf’zl &), giving the desired result. W

As a consequence of the previous lemma, we get the next proposition, which is the
natural generalization of a well-known fact for the Schreier families §,, (n € N).

Proposition 2.6 Let B be a regular family. Then for every 0 < 0 < 1, every m, and
every sequence of scalars (a,)

E anén HE an€y
H - (BB gm)

(B.0) (B®m) 9m)

The next lemma analyzes the case of indices 1(B) = w®*” and 1(€) = w® with
B+ a = o, as for example B = 8,2, and € = §..

Lemma 2.7 Let M be an infinite set of integers, C, B; be regular families (1 < i <)
such that [M]<? C € and

(2.7) M2 @CIM®B;IMC B; @[N] (1<i<r).

Then for every sequence (0;)7_, C (0,1) and every sequence of scalars (a,)ncm>

Hzanen < Hzanen
(Bi.0:);.

€n

B1®C,01) ~(Bi,0:)]. (Bi,00):
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Proof The first inequality is clear. Let us show the second one. In order to keep the
notation simpler, we may assume, since all families here are regular, that M = N.

Claim Every ¢ € K((B1®C,0,) ~(B;,0;)i_,) has a decomposition ¢ = ¢1+- - -+¢,
where (¢;)"_, C K((C® By,0,) " (B, 8;)_,) is C-admissible.

Proof of Claim Fix ¢ € K((B; ® €,6,) (B, 6;)I_,). If ¢ = *e;;, the claim is clear.
Now there are two cases to consider.

Case 1. ¢ = 01(¢1 + -+ + ¢,), where (¢;)_, C K((B, ® C,0,) ~(B;,0)_,) is
B ® C-admissible. By inductive hypothesis, for eachi =1,...,n,

n;
6= 300
j=1

where .
@)L, € K(€ @ By, 0) (B, 0)_,)
is C-admissible, i.e., s; = {min w;i)}?":l € C. Since for everyi = 1,...,n, mins; =

min supp ¢; we obtain that
siU---Us, €CR(B®C)=(C®B;)®C.

Hence we can find a block sequence (t;) | such thats, U---Us, =, U---Ut, and
such that (;)", C € ® B, is C-admissible. For every k € t; U - - - U t,, let i(k), j(k)

be such that min wﬁ(k’;)) = k. Foreveryi =1,...,m,let
ik
(S )
ket;

Since (1/)5.'5{’;)));(6,{ is a block sequence, and since {min w%;))}ket,- =t € C® By we
obtain that ¢; € K((C ® By,0;) ~(Bi, 0i)i_,). Itis clear that

o=t ran=0(L 3 u) =0 33wl

i=1 j=1 i=1 ket;

m

i=1

i(k
0 S YD =+t g
ket;

Note that min; = mint; (1 < i < m), hence {min¢;}!"; = {min#;}*, € C, so

we are done.
Case 2. ¢ = 0ij(¢1 + -+ + &u), where (¢)iL; © K((By ® €,01) ~(Bi, 0:)i_,) is
B j-admissible for some 2 < j < r. By inductive hypothesis, foreachi = 1,...,n,

ki
6= 300
j=1
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where ()% C K((€® By,601) " (B;,0,),_,)) is C-admissible, i.c.,
s; = {miny{"}} e C.
It follows by (2.7) and the fact that [N]<? C € that
sU--Us, €C®B; CB;®[N]** CB;®C.

Following ideas similar to those in the proof of Case 1, one can easily find the desired
decomposition of ¢. ]

From the claim we obtain that 6,¢ € K((C ® B;) ~(B;, 0;);_,) for every ¢ €
K((B, ® €, 6,) ~(Bj, 0;)i_,). Now this fact implies that for every sequence (a,), of
scalars

(2.8) H Z a,e,
Since (2.7) holds, we can apply Proposition 2.1 to get that

(2.9) H Z ape,

Finally we obtain the desired inequality by joining (2.8) and (2.9). ]

1
§—HZanen .
(B1®C.H) ~(Bi o), 01 - (€®B1,01) ~(Bi b,

< ZH Z a,e, .
(C®B1,01) ~(Bi0i)i_, " (Bi0i)i_,

The previous combinatorial lemma gives the following.

Theorem 2.8 Suppose that By and B, are two regular families such that 1(By) =
W8, ((By) = w®, with B+ a = o Then for every infinite set M of integers there is an
infinite N C M such that (e,)nen C T(By, 0) and (ey)nen C T(By, 0) are equivalent.

Proof Let C be a regular family with «(C) = w?. Since «(B; ® C) = w™? = 1(By)
passing to a subset N of M if needed, we may assume, by Corollary 2.2, that the
subsequence (e, ) cn is equivalent in the spaces T(By, §) and T(B; ®C, ), and hence
we may assume that By = B; ® C. Then

(IM]F2® CIM ® B [M) = 2w’w® = w® < w2.

So we may find N C M such that [N]=? ® CIN ® B,|M C B, ® [N]=2, (see the
comment after Theorem 1.8). Hence the result follows from the previous lemma. W

2.1 Reduction from Finite to One

The aim of this subsection is to reduce finite regular sequences to one, more pre-
cisely, we show in Theorem 2.13 that for every finite regular sequence (373, 6;)7_,
there is some 1 < iy < r and some infinite set M of integers such that (e,),em C
T[(33,0)i_,1 and (ey)nem € T(Jj,,0;,) are equivalent, where iy will come from a
certain ordering of the pairs (57, 6;).
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Definition 2.9 Recall that every ordinal o > 0 has the unique decomposition
a=w"a) + (@)

with /() > 0 an integer and () < wMY Define

(@) @ if «v is finite,
) = SA@ L .
w¥ if cv is infinite,

1 if o is finite,
n(a) = e
I(Me)) if « is infinite,

l(or) if v is infinite.

ko) = { 1 if «v is finite,

For example, (w34 + %) = ¥’ n(W 4 + w®) = 3 and v(m) = m for every
integer m # 0. In general for an arbitrary ordinal & > 0 we have the decomposition
a = (@) DEMDE(q) + £(a), with the convention of £(0) = 0.

We want to compare two Tsirelson type spaces T(Fy, 6y) and T(F1, 6,). There is
the following natural relation of domination: we write (Fo,6y) <’ (3, 6,) if and
only if there is some C > 1 such that every subsequence (e,),ep of the basis of
T(Fo, 0p) has a further subsequence (e, ),en such that

H > aue,
neN

It is clear that if Fy C F; and 6y < 0, then (Fy, 0y) <’ (F1,0;). As we have already
seen in Proposition 2.6, for every integer # the pair (F,6) <’-dominates (F®", §")
and vice versa. This suggests the following more appropriate relation: (o, 6p) <’/
(31, 61) if and only if there are 1y, n; € N such that for every M there is N C M such
that F&" IN € FE™) and g < o™,

As we have also shown that

< CH Zane,1 .
(Fo,00) neN (F1,61)

(Sw“a 0) S// (Sw“fﬁ; 9) é// (Sw“h’a & [N]Ska 9) S// (Sw“ag)a
we end up with the following definition.

Definition 2.10 For pairs (o, ) of ordinals > 0 and real numbers we write
(a0, 60) <t (0v1,6y) ifand only if: ap = 1, 0r 1 < o,y < w and logﬁ/(ao) 0y <
Iqu(al) 61, or aya; > w and there are integers mg, m; such that y(ag)" @M <
y(ay )™ @)™ and gy < O

We write (o, 6y) <t (F1, 61) if and only if (.(Fy), o) <1 (:(F1), 01).

To simplify the notation we will write v(F) for v(¢(F)) and n(F) for n(c(F)).
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Proposition 2.11 (i) Suppose that max{ayp, a1} > w. Then (o, 0y) <t (0, 6)
if and only if v() < y(ay), or y(ag) = Y(avy) and 93(“‘) < 9;'(“").
(ii) <y is a total pre-ordering, i.e., reflexive and transitive.

Proof (ii) We show that <r is total. So, fix two pairs («;, 6;),i = 0,1. Suppose
first that ajw < aj for i # j. Then let n be such that 07 < 60;. Then clearly
ain < aj,and 07 < 0}, so (a;,0;) <t (aj,0;). Suppose now that y(cg) = ().
Then if@g(‘”) < 9;’(“"), we obtain that (g, 8y) <1 (a1, 0;), and (ay, 0;) <t (o, 0)
otherwise. [ |

Lemma 2.12 Suppose that I is a finite set of countable ordinals and n € N. There is
a sequence (B.)cr of regular families such that:

(i)  «(By) =y foreveryy € I}
(i) By = IN]SV ify € T is finite;
(i) foreverymy,my <mandevery f;: {1,...,m;} - T (i=1,2),

if [T AG < T £6), then By ® -+ @ Bpm) € By @ -+ @ By,

i<my i<m,

Proof Foreveryy € I, fix a regular family C, of index y with the extra requirement
that if +y is finite, then C, = [N]=". Since

{Gf(1)®~'®€'f(m):mgnandf: {1,...,m}—>F,}

is a finite set of regular families, we can find an infinite set M such that for every
my,my < nand every fi: {1,...,mj} — T, wherei = 1,2. If [[,, fi(i) <
Higmz f2(i), then

CrayM®@ - @ Cpim) M C Cr)IM® -+ ® Cpymy [M.

Let ©: M — N be the unique order-preserving onto mapping between M and N.
Then (©'/(C, [M))cr is the desired sequence. [ |

Theorem 2.13 Suppose that (B;, 0;)7_, is a regular sequence with at least one of the
families with infinite index. Let iy be such that

(u(Biy), 0;,) = rgaX{(L(Bi),Gi) 11 <i<r}

Then every subsequence (e,)ncm of the natural basis of T[(B;,0;)]_,] has a further
subsequence (e,),en equivalent to the corresponding subsequence (e,)qen of the natural
basis of T(Bi,, 0;, ).

Proof To simplify the notation, we assume that M = N. We re-order (B;, 6;)!_, in
such a way that (B;, 0;) <t (B;,0;) forevery1 <i < j<r.

Recall the decomposition (see Definition 2.9) «(B;) = ~diki + &, where ; =
v(t(B;)), and if t(B;) is finite, then &; = n; = k; = 1, & = 0, while if «(B;) is infinite,
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then n; = n(u(B))), 6; = wEAUBN ki = k(u(B;)) and & = £(u(B;)). Observe that
v, = max{y; : 1 <i < r}isinfinite. Definem; e N(1 <i<r—1)as

I [log, 0] +1 ifyi <,
R if i = 7,

where [a] stands for the integer part of a. Use the Lemma 2.12 for ' = {~;,4; :
1 <i < r}U{2} and nlarge enough (for example n = 2 max{n;m; : 1 <i <r}+2)
to find the corresponding sequence () cr of regular families.

For1 < i <rletC = (H,)®"™ @ 3. Observe that 1(C;) = ~/w’ for every
1 < i < r. It readily follows that there is N C M such that for every 1 < i < r,if
+(B;) is infinite, then

.10) [N]=? @ G;[N C B; ® [N]=?,
' [N]<k+1 @ B;IN C &N ® [N]<k+,

while B,[N = C;[N if «(B;) is finite. Since the families B, and C; are regular (1 <
i <), Proposition 2.1 gives that for every sequence of scalars (a,),cn we have that

0" SHZanen B0
(Ci,00)_, neN (Bi,00);_,

< (1+ max ki)HZanen
1<i<r
+(B;) infinite neN

1
(2.11) EH > aue,
neN

(€500,

Let {0;}{_, be the strictly increasing enumeration of the set
{7i: 1 <i<r, ~ infinite}.
Define

Iy ={1 <i <r:~;is finite}
[={1<j<r—1:9j=0} (1<i<y),
and I, = {r}.

Finally, set J; = ;U --- U Iy (0 < i < s+ 1). The next result is the reduction
from (C;, 6;)7_, to (C,, ;).

Claim  Forevery 0 < j < sand every sequence of scalars (a,) we have that

1 2
(2.12) Hzn:anen e SII;IJW 11 o zﬂ:anen

i61j76i>1

(Cibiiesjy
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Proof of Claim Fix 0 < j <'s. LetK; = {i € I; : 6; > 1}, and suppose it is non-
empty. This implies, in particular, that j > 0. Notice that p; = min{~ : k € J;}. So
it follows that 6 < vx = p; < ;i fork € Kjand i € J;. So,

206770 = "0 <02 (k€ Kj, i € Jj),
20 =" < "2 (i, k € Kj).

Hence,

INIS2@ 35, ® € C €@ [N]S2 (keKj, i€y,
[IN]=2 @ 5, @ HEM € HEW @ [N]=? (i, k € K)).

Repeated application of Lemma 2.7 gives that

2
(2.13) Hzn:anen (Ci0ie; = H 9_1 ;anen

IEK}’

(n;) ~ .
(i}{% -,9;)iel<j (eival)"eﬁ'\Kﬁ

n

Using that v,y 0; = ~/"6; < " 07" (k € Ij,i € Jj11), it follows that
HEW 06 C €@ HE™W (ke i€ i)

Since it is trivial that 9{_;8;,("0 ® J{g(m) = Jfgj),("k*"r) = J{f};w ® 9{_;8;,("0 (i,k € I;), the
assumptions of Lemma 2.5 are fulfilled, therefore

(2.14) H > e,

S Oiex; ~(Cibiesk,

hH
n
1
< H 9(’11‘—1

i€l 1

(G{E?(”’).ﬂi)ielj ~(Ciliies;y,

E Anén
n

@ 0" ier, ~ (Cibies,
It is not difficult to see by the choice of m;’s, that the relations

9{2(”"’“") C €, while 0" < 0,(i € I}) if j <s,or
GEBOm) — 0w C @BM) and O = G < (i € ;) if j=s.

are true. Hence, by Lemma 2.4 in the case of j = s, we obtain that

(2.15) H > ae,

It is clear now that (2.12) follows from equations (2.13), (2.14) and (2.15). [ |

(Ci0iies;,

®(njm;) m; - < H E :a"e”
(ICy; 0 Dier; ~(€ibhiey,, "
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Repeated application of the previous claim gives that

(2.16) H > aue,

It follows from (2.10), (2.11) and (2.16) that

r—1 1 r—1 2
Ane < 2(1 + max k-) - 2
H,;, " (Bib), 1<i<r ! H 9;"’71 H 9,

«(‘B;) infinite i=1 i=1,6;>1

r—1

r—1 1 2
e, = 11 ot II 3

i=1 i=1,6>1 "

E Anén
n

(€00

(Br.0r)

‘ E ann
neN

In Theorem 2.13 we made the assumption that at least one family B; has infinite
index (1 < i < r). The conclusion of this theorem is also true for families, all of
them with finite indices, but its proof uses different methods (see [8]).

3 Topological and Combinatorial Aspects of Families of Finite Sets of
Integers

The main result of this section is that for every compact and hereditary family F there
is a regular family B with the same index as J and an infinite set M of integers such
that every B-admissible sequence of subsets of M is also F-admissible. The main tool
we use is the notion of homogeneous family.

We start with the following list of useful properties. We leave their proofs to the
reader.

Proposition 3.1 Fix a compact family F, and a countable ordinal o.. Then
(i)  Foreverym €N, (0'F)IN/m = 0" (F[(N/m)).
(i) @#se€dYFifandonlyif.sc 8(")(3"{mms}).
(iii) Foreveryn € N, 8(“)(?{,,}) = (8((")9‘){”}.
(iv) @€ 0*Fifandonlyif @ € 0*(FIN/n) for everyn € N.
v)  uF) =a+1ifand only if
(a) {@} ¢ 0°F is finite, or
(b) there is an infinite set M such that for every m € M, 0“(F ) is non-empty

and finite.
(vi)  Suppose that « > 0 is a limit ordinal. Then the following are equivalent:
(a) u(F) =au
(b) L(FI(N/n)) = a for everyn € N.
(c) 0°F ={@2}.

(d) 0%(Fny) = @ for every n € N, and for every 3 < « there is n with
B < uFy) <a.
In the following, JF is, in addition, hereditary.
(vii) Ifvis limit, then 1(F) = acifand only if 0T,y = @ for everyn € N, and there
is an infinite set M C N and (a,)nem T a such that i, < (T [(N/0)) < @
for every m < nin M.
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(viii) «(F) = a + Lifand only if 9**'Fr,y = & for every n € N, and there is an
m < n such that 0“(F (,, [(N/k)) = {@} for every k > n.

3.1 Homogeneous Families and Admissible Sets

For our study it would be very useful to have a characterization of every compact
hereditary family in terms of a class of families with good structural properties al-
lowing inductive arguments, as for example the Schreier families. This is indeed the
case for the class of homogeneous families. The following definition is modeled on
the notion of a-uniform family introduced by Pudlak and Rodl [6].

Definition 3.2 We say that a family J is a-homogeneous on M (« a countable ordi-
nal) if and only if @ € F and the following hold:

* ifa=0,thenF = {T};

* ifa = (3+1, then Iy, is B-homogeneous on M/n for every n € M;

* if @ > 0is alimit ordinal, then there is an increasing sequence {a, },epm of ordi-
nals converging to a such that Iy, is a;,-homogeneous on M /n for all n € M.

The family JF is called homogeneous on M if it is a-homogeneous on M for some
countable ordinal a.

Recall the following well known combinatorial notion [6]. A family F is a-uni-
form on M (« a countable ordinal) if and only if F = {@} fora = 0 or @ ¢ F and
F satisfies (b) or (c) in the other cases, where homogeneous is replaced by uniform.
Some of the similarities of uniform and homogeneous families will be exposed in
Proposition 3.6 below.

Notation 1Ifs,t € FIN, we write s C t if and only if s is an initial segment of ¢.

Remark 3.3. (i) Itis easy to see that the only n-homogeneous families on M are
the families of subsets of M with cardinality < n, denoted by [M]=". A well-known
w-homogeneous family on N is the Schreier family, and, in general, w-homogeneous
families on M are of the form {s C M : #s < f(mins)}, with f: M — N an un-
bounded and increasing mapping. Observe that all those examples are regular fami-
lies.

(ii) In the same way, the only n-uniform families on M, n € N are the families
[M]" of subsets of M of size exactly equal to n. While the w-uniform families on
some M are the ones of the form {s C M : #s= f(mins)}, with f: M — N an
unbounded and increasing mapping. Observe that in these two cases the maximal
nodes under the relation C of the a-homogeneous family considered coincide with
the corresponding a-uniform family. And conversely, the closure under C of the
a-uniform family is the corresponding a-homogeneous family. This is a general
phenomenon that we will expose in Proposition 3.6.

(iii) In general, an arbitrary homogeneous family does not need to be regular.
However, we will show that homogeneous families are always C-closed, hence com-
pact. Also, it can be shown that if J is a homogeneous family on M, thereis N C M
such that F[N is hereditary (see [6]).
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Homogeneous and regular families have many properties in common. One of
the most remarkable is the fact that the index of these families never decreases when
taking restrictions. We expose this analogy and some others in the next proposition.

Proposition 3.4 Suppose that F and G are homogeneous (regular) families on M.

(1) Ifu(F) is finite, then F = [M]=4F) if F is homogeneous on M, while
FI(M/n) = [M/n]=") for some n € M if F is regular on M.

(ii) Ifu(F) # O, then Fy,y is homogeneous (regular) on M /n for every n € M.

(iii) IfJ is a-homogeneous, then 0'YF = {@}. Hence 1(F) = a.

(iv) if F is a-homogeneous (regular) on M and N C M, then F[N is a-homogeneous
(regular) and ((FIN) = «(F) for every N C M.

(v) F@&Gand F ® G are homogeneous (regular), L(F & G) = «(F) + 1(9) and
UF ®G) = uF)u(9).

(vi) Ifu(F) < 1(G), then for every M there is N C M such that F[N & G[N.

Proof Suppose first that F is homogeneous. (i) and (ii) can be shown by an easy
inductive argument.

(iii) Suppose first that & = 3+ 1. By the inductive hypothesis, for every n € M we
have that (8(5)(?)){n} = 8(*3)(3’{,1}) = {@}. So, [M]=! = 9¥)(F) (since 3 (F) is
closed and it contains all singletons {1} (n € M)). Hence 9’1 (F) = {@}. Suppose
now that « is a limit ordinal. Now by the inductive hypothesis we can conclude that
for everyn € M,

(3.1) 6((”)(:}'{;1}) = (6((”)(?)){71} = {@},

where o, = 1(Fy,y) is such that (), is increasing and with limit . By (3.1),
@ € 0T If there were some s € VT, s # @, then s € VT for every n, and
hence a<an>(5—"{mm}) # {@}, a contradiction.

(iv) This follows easily by induction on « using (i).

(v) This is shown by induction on ¢(G).

(vi) By Proposition 3.8, there is some N C M such that either F[N C G[N or
else GIN C F[IN. The second alternative is impossible since it implies that ¢«(F) =
L(FIN) = «(GIN) = ().

Finally suppose that we are dealing with regular families.

(i) First, note that there must be some s € F with |s| = «(F), since otherwise,
F C [M]<¥) and so, 1(F) < u(F) is absurd. In a similar way one shows that
F C [M]="F), All of this shows that F[(M/s) = [M /s]<"F).

(ii) This is clear.

(iv) Fix N C M, andlet ©: M — N be the unique order-preserving onto mapping
between these two sets. Since J is spreading on M, we obtain that {©"'s : s € F} C
FIN. Using that ©"'s £ ©''t is s # t we obtain that «(F[N) > (F) > i(F[N), as

desired.
(vi) This follows from (iv), while (v) for regular families is a consequence of The-
orem 3.5 and (v) for homogeneous families. [ |

The following result is a weaker form of [6, Theorem I1.3.22].
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Theorem 3.5 ([6]) Suppose that §F is a non-empty compact and hereditary family.
Then for every infinite subset M of N there is some infinite N C M such that FN is
homogeneous on N.

Proposition 3.6 Suppose that F is a family of finite sets of integers. Then for every
countable ordinal o the following conditions are equivalent:

(1) T is a-homogeneous on M.

(ii) JF is the topological closure of an a-uniform family on M.

(iii) F is compact and the set F=~ ™ of C-maximal elements of F is a-uniform on
M. Moreover

(3.2) F={sCt:teJF="m}

hence F is C-hereditary, i.e.,ifsC t € F, thens € F.

Proof (i) implies (ii). The proof is by induction on a. If & = 0, the result is clear.
Suppose that a = 3 + 1. Then for every n € M, Fy,; is f-homogeneous on M/n.
Choose 3-uniform families G, on M/n (n € M) such that for every n € M, I,y =
Gu. Set § = {{n} Us:s € G,}. It follows readily that Gy,,; = G, which yields that §
is an a-uniform family on M. To finish the proof we show that G = 7. First observe
thatifs € &, n = mins, then ,s € Finy- S0, 45 € G, and hence

s={njU.s€G, o {{n}} CG.

Now suppose that (sy) € G, sg — s € g. Going to a subsequence if necessary, we
may assume that (s;) is a A-sequence with root s, i.e., s T s; for every k, and (s; \ s)
is a block sequence. If s = &, then s € F by hypothesis. Otherwise, let # = mins.
Then min sy = n for every k, and hence .sx € Gy,,3. Hence .s € G,,; = Fy,,y, and so
s € J. The proof if « is limit is similar.

(ii) implies (iii). Suppose that F = G, where G is a-uniform on M. It is not
difficult to show by induction on « that G is a front on M (see [6]), i.e., for every
infinite N C M there is some s € G such thats C N, and ifs,t € G and s C ¢, then
s = t. Observe that the topological closure of a front is its C-downwards closure.
Indeed, suppose that s is a strict initial part of some t € G. For every m > s consider
the set M,, = s U M/m. Using that G is a front on M, we find t,, T M,, such
that t,, € G, moreover s has to be initial segment of every t,,. This implies that t,,
converges to s.

So,wehave that F = {s C ¢ : t € G}. Itis clear that this implies that F=~ ™ = G,

(iii) implies (i). Suppose that F is compact and F=~ ™ is a-uniform on M. The
proof is an easy induction on « using that for every m € M, by (3.2), Fy,y = {sCt:
t € Ggmy}> where § = FE— max [

The next result is the well-known Ramsey property of uniform families (see [6]
for a more complete explanation of the Ramsey property).

Proposition 3.7 (Ramsey Property) Suppose that B is a uniform family on M, and
suppose that B = By U By. Then there is an infinite N C M and i = 0,1 such that
BIN = B;[N.
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Proof We use induction on a. Given B = By U By, using inductive hypothesis we
can find a decreasing sequence (M), of infinite subsets of M, such that setting m;, =
min M, for every k, M1 € «Mj and there is an i € {0, 1} such that By, y [Myy; =
(Bi){m) [My+1. Then every N C {my}y for which i is constant has the desired
property. |

As an application of this Ramsey property we obtain the following two facts.

Proposition 3.8 (i) Suppose that F and G are two compact and hereditary families.
Then there is some infinite set M such that either FTM C G[M or §[M C FIM
(see [6,12]).

(ii) Suppose that JF is homogeneous on M. Then there is some N C M such that TN
is hereditary.

Proof (ii) Set B = FE=~ ™ andlet By = {s € B : P(s) £ F}, B; = B\ By. By
Ramsey, there is N € M and i = 0,1 such that B[N = B;[N. Ifi = 1, then we are
done. Otherwise, fix s € B[N and ¢ C ssuch that t ¢ F. Using that F=— ™ is a
front on M, we get u € B[N such that u C t U (N/s). Ift C u thent € &, which is
impossible. So, u C t & s. This means that for every s € B[N there is some t & s,
t € B[N. Hence @ € B[N, which implies that BIN = {&} and so FIN = {@&} is
hereditary. ]

3.2 The Basic Combinatorial Results

The families § and Ad(J) are in general different, unless J is spreading. Nevertheless,
as is shown in the next result, they are not so far from the topological point of view.

Proposition 3.9 Suppose that F is a compact hereditary family. Then for every infinite
set M of integers such that Ad(F)[M is homogeneous on M,

UF) < L(AAF)[M) < 2u(F).

Proof The proof is done by induction on «(F) = A + r, A limit ordinal (including
A =0),and r € N. Set B = Ad(F)[M. Suppose that r = 0. So ¢(F) = A is limit. If
A = 0, there is noting to prove. We suppose then that A > 0. By Proposition 3.1(vii),
we can find an infinite set N C N and a sequence of ordinals A, T,en A such that

A < L(S’r{n} [N/k) <A

for every n < kin N. For a given n, we fixm = m, € M/n,k € N/mand P, C M/k
such that (Ad(F(,,y [(N/k)))| P, and (Ad(F(;3)) [P, are homogeneous on P, for every
I < m. By inductive hypothesis,

UAA(F () [(N/K)Py) > (T [(N/K)) > A
Now using that
Bimy = (AA(F)IM) {1y 2 Ad(F () [(N/K)) [Py,
Bimy P C lym(Ad(rf{z}))me
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we obtain,
An S UBpny IPy) < L(ly (Ad(Fgp))IP,) = max L((AA(F(;y))1Py)

<
< 21112;“(3"{,}) <A,

the last inequality holding because A is a limit ordinal. Since By,,; is homogeneous
on M/m, and n was arbitrary, it readily follows, by the definition of homogeneous
families, that «(B) = ), as desired.

Suppose now that ¢«(F) = A + r + 1. We now use Proposition 3.1(viii) to find
two integers n < p such that «(F,3 [(N/q)) = A+ r for every g > p. A similar
argument to the one for ¢(F) = A shows that for infinitely many m € M we obtain
that «(By,,y) > A + 1, and this implies that t(B) > A +r + 1, as desired.

Now we work to show the other inequality ¢«(B) < 2u(F) = A+ 2r + 2. We
proceed by contradiction assuming that «(B) > A + 2r + 3. By Proposition 3.4(iv)
we may assume that ((By,,3) > A+ 2r+ 2 foreverym € M. Let § = BE—max Bix
my € M, and define the finite coloring ©: Gy,,;3 — {0,...,mp} by O(s) = k, if
and only if there is some ¢ € JFyyy such that {k} U ¢ interpolates {mo} U s. By the
Ramsey property of Gy}, we may assume, going to a subset if necessary, that © is
constant with value ky € {0, ...,mg}. Suppose first that t(Fiky) < A+ r; then by
inductive hypothesis, t(By,,,3) < A + 2r, a contradiction with our assumption. So,
t(Fiy) = A+ r+ 1. Moreover, 8(’\+’“)(3"{k0}) = @. Since F is hereditary, this
means that {&} & 8(’\”)?{;(0} is finite. Let [ = max(ﬁ(“r)(?{ko})). Observe that by
Proposition 3.1(v),

(33) O (F g} [(N/p)) = {@} forevery p > 1.

By the Ramsey property of Gy,,,; we may assume that either for every s € Gy}
there is some ¢t € Fg 1 [(N/]) that interpolates s, or else there is some k; € {mg +
1,...,I} such that for every s € Gy, thereis somet € Fyy x 3 such that {ko, k; } Ut
interpolates {m} U s. In the first case, By, € Ad(F g,y [(N/])); since from (3.3)
we know that «(F ) [(N/I)) = X+ r, we arrive, by inductive hypothesis, to the
contradiction ¢(By,,3) < A+ 2r.

In the second case, consider m; € M/l such that the homogeneous family
B {mym ) has index at least A + 2r + 1. Note that By, 1 € Ad(Fyg i,y [(N/D).
Since from (3.3) we know that t(F g, x,} [(N/m)) < X+ r, we obtain by inductive
hypothesis that ¢(B,, m,}) < A+ 2r, a contradiction. |

Remark 3.10. The previous result is the best possible. For every limit ordinal A and
n € N there is some compact hereditary family F such that () = X + k and
LAA(F)[M) = X + 2k for every M, hence t(Ad(F)[M) = 24(F). The families are
closely related to [8, Example 3.10]. Consider a regular family B on {2n} of index
t(B) = A+ k, and let F be the downwards closure of F = {sU {n+ 1},¢, : s € B}.
It is not difficult to prove that ¢«(F) = +«(B) = A+ k and that «((Ad(F))[M) = A + 2k
for every M.
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The next result tells us that we may assume that the given family F is indeed
spreading.

Proposition 3.11 Fix an arbitrary compact hereditary family &, and an infinite set M.

(i)  There is some regular family B with the same index as F and some N C M such
that every B-admissible sequence of subsets of N is also F-admissible.

(ii)  For every regular family B on M with «(B) > «(F) thereis some N C M such that
no sequence (s;) of subsets of N with {mins;} € (B[N)E~ ™ is F-admissible.

Proof Fix M and F. Consider the unique decomposition ¢(F) = A+rwith A = A\(F)
a limit ordinal (including 0) and r = r(J) an integer. Let C be an arbitrary regular
and homogeneous family on M with ¢(€) > +(F). Now let § = G(C) = CE—max,
It follows, by Proposition 3.6, that G is a uniform family on M, as well as [M I’ ® 6.
Observe that every s € [M]?> ® § has a unique “canonical” decomposition s = s[0] U
-+ Us[l(s)] with s[0] < --- < s[I(s)], #s[i] = 2, and {mins[i]}*) € G. Consider
the following coloring hy ¢: [M]*® G — {0,...,r,00} defined fors € [M]* ® G by
hge(s) =k € {0,...r}ifand onlyifi(s) > r — I and k is minimal with the property
that (s[k],s[k+ 1],...,s[r — 1],s[r + 1],...,s[l]) is F-admissible, and hg c(s) = oo
otherwise.

Claim  The following are equivalent.

(i)  Thereis an infinite N C M such that hy ¢ | (IN]*> @ G|N) is constant with value
0.
(i) o(F) = (C).

Proof of Claim The proof is by induction on «(F). Suppose first that (i) holds but
t(€) > «(F). Fix N C M such that hy ¢ [([N]* ® G[N) is constant with value 0. By
Proposition 3.4, we may assume, going to an infinite subset if needed, that for every
n € N, 1(Cpyy) > o(F). Fixn € N and consider the new coloring

d: (IN]* © (S IN) @ (IN/n]') — {0,...,n},

defined for s = {k} Us[1]Us[2]U---Us[l] € ([N]* ® (G¢my)IN) @ ([N/n]') in
its canonical form by d(s) = j if and only if there is some t € F such that mint = j
and ¢ interpolates, ({n, k},s[1],...,s[r — 1],s[r + 1],...,s[l]). Observe that d is
well defined since we are assuming that hg g[[N 1> ® GIN is constant with value 0.
By the Ramsey property of the uniform family considered as domain of d there is
some infinite set P C N/n such that d is constant on ([P]* ® (G(})[P) @ ([P/n]")
with value jo € {0,...,n}. Pick some p € P such that «(F¢ ;3 [(N/p)) < o(F) (See
Proposition 3.1). Then hg{m} I(N/p),€,y 1S cOnstant when restricted to [P]*® (S IP
with value 0. Observe that §r,3 = §(Cy,,)), so, by inductive hypothesis, t(Cy,y) =
t(F iy TIN/p))) < (), a contradiction.

Now suppose (ii) holds, i.e., t(€) = ¢(F) = A + r. The coloring hs ¢ is finite, so
we fix N C M such that hg e is constant with value kq, when restricted to [N]?> ®
GIN, and also that Ad(F)[N is homogeneous on N. Our intention is to show that
ko = 0. Set Cg = Cand forevery1 < i <r,C = ,C_; = {us:s€C_1}.
Since C is regular, it follows easily that C, is regular with index A. Consider the regular
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family D = [N]=2 ® (C,[N) on N with index +(D) = \. By (ii) and Proposition 3.9
t(Ad(F)[N) > )\, so there is some P such that D[P C Ad(F) @ [P]<'. It readily
follows that .(D[|P) C Ad(F). This shows that k, € {0,...,r}. If r = 0, then
we are done. Now suppose that r > 0. Let g € N and ng,n; € N be such that
q < ny < ny and that L("J"{q}[(N/nl)) = A+ r — 1 (see Proposition 3.1). Since C
is regular, we have that «(Cy,y) = A+7r —1 = «(Fry [(N/n;)). So by inductive
hypothesis there is some P C N /n; such that hg () | (N/m),€y,, 18 constant with value
0 when restricted to [P]* ® GnyIP. Take arbitrary s € [P]? ® (Sny)IP. Then
(s[o1, ... s[r —2],s[r],...,s[l]) is Frgy [(N/n;)-admissible, so

({n0>nl}75[0]7‘"75[T_2]75[r]7' 75[1])

is F-admissible. Since {1, n; }Us € [N]*®@G|N we obtain that ky = 0, as desired. M

We work now to show (i). Suppose that «(F) = A +r, Alimitand r € N. Fixa
regular and homogeneous family D with index ), and let € = D @ [N]=". This is a
regular and homogeneous family whose index is A + r. Since hs ¢ is a finite coloring,
and since ¢(C) = «(F), by the Claim, we can find P C M such that

(iii) hg e is constant on [P]? @ G|P with value 0, where G is the set of C-maximal
nodes of C, and
(iv) [P]=? ® C[P is homogeneous on P, and hence

[PIS?@ClP={sCt:tec[P*®GIP}

(see Proposition 3.6 (iii)).

Let £ = .(D[N) = {is:s € D[N}, where N = {ps}r and {pi}« is the increas-
ing enumeration of P. It is not difficult to see that € is a regular family whose index
is A, so we leave the details to the reader.

Let B be an arbitrary regular family such that B[N = € @ [N]=" (see Propo-
sition 1.7). We claim that B and N fulfill the conditions required in (i). First,
by the permanence property of the index of regular families, ¢(B) = «(F). Next,
suppose that (s;)%_, is a B-admissible sequence of subsets of N. Since B is regu-
lar, we have that {mins;}¥ | € BIN = & @ [N]=". Foreveryi < kletn; =
min((P\ N) N (maxs;, mins;;1)), and let ng > s, nx € P. Observe that if k > r, then
u={mins; },<i<x € € = .(DIN), so thereis q < uin N such that {q} Uu € DIN.
Since D is spreading, and by the choice of N out of P, we may assume that there is
some g’ € P\ Nsuchthats,_; < #n,_; < g<gq' <s,. Then

t ={q,q'} U {mins;}*_, U {n}s, € [P=?* @ C|P.

By (iv) there is some v € [P]?> ® G|N such thatt T v. Letv = v[0] U --- U v[]]
be the canonical decomposition of v as element of [P]> ® G[N. By construction
we obtain that for every i < min{r — 1,k}, {mins;, n;} = v[i], while (if defined)
v[r] = {q,q'} and {mins;, n;} = v[i] for every i > r. By (iii) and as J is hereditary,
({min;, ni})fzo is F-admissible. Since for every i < k, mins; < maxs; < n;, we
obtain that our sequence (s,»)i.‘:0 is also F-admissible, as desired.
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Finally, we proceed to prove (ii): Suppose that B is an arbitrary regular family on
M with «(B) > «(F). Find M’ C M such that B|M’ is in addition homogeneous on
M’,and let N C M’ be such that hg 5y is constant when restricted to [N]* @ G|N
with value ko, where G = (B[M')E~ ™ Suppose that (s;); is a sequence of subsets
of N, #s; > 2, with {mins;} € (BIN)=~ ™% Thent = ({mins;, maxs;}); €
[N]? @ BE~™|N. As B is spreading on M it follows that BE~ ™[N = G[N. Now
suppose that indeed (s;); is F-admissible. Then ¢ is also F-admissible, so, since F is
hereditary, hy 5 1m-(t) = 0, hence ky = 0. By the claim applied to F, B[M’ and M’
we obtain that +(B) = «(BIM’) = (F), as desired. [ |

4 Block Sequences of T[((F;,0:)!_,)]

In this last section we show that for a given finite sequence (J;, 6;);c; with at least one
F; having infinite index, there is i, € I such that every normalized block sequence
in the space T[(F;, 0;)ic1] has a subsequence equivalent to a subsequence of the basis
of the space T(F;,, 6;,). We first obtain this result for the subsequences of the basis
of T[(F, 0:)ic1] by applying the result of the previous section, and in the sequel we
extend this result for block sequences.

To obtain the result for a given block sequence (x,), we show first that we can
pass to a subsequence (x,),cp which is equivalent to the subsequence (e,,)uem>
pn = minsupp x,, of the basis of the space T([N]<? ® Ad(F;,),0;,), for appropri-
ate fixed 1 < iy < r. Using the results for the regular families we pass to a space
T(B, 6;,) where B is a regular family with ¢«(B) = ¢(JF;,) and moreover the subse-
quence (ep, )nem is equivalent in the two spaces.

Restricting the study to the families 8¢, we obtain that if (x,),, (¥s), are normal-
ized block sequences in the space T(8¢, #) such that x, < y, < x,41 (n € N), then
the two sequences are equivalent.

Proposition 4.1 Fix (3, 0;)!_, with at least one of the families with infinite index. Let
ig be such that (F;,,0;,) = max<,{(F;,0;)}/_, (See Definition 2.10). Then for every
M there is some N C M and a regular family B with the same index as F;, such that for
every sequence (a,)nen of scalars,

H § ayep < H § azey
neN (B.0i) neN

where the constant C is given in Theorem 2.13.

< ZCH E:ane,1 .
(Fi 0, = (B.6;y)

Proof By Proposition 3.11 we get Ny € M and regular families B;, with +(B;) =
uF;) (1 < i <), such that every B;-admissible sequence of subsets of Nj is also
JFi-admissible. By Fact 2 it follows that for every sequence (a,),¢n, of scalars,

H E apén < H 5 apeéy
e, (Bi,0:)i_, ey

Counting the corresponding indices we can find now N; C Nj such that

(Fr001,

[N1]52 @ Ad(F;) [N, C (C;[Ny) ® [N}]S? foreveryi <r,
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where C; = B; @ [N;]=!if «(F;) < w, C; = B; otherwise. It follows from Proposi-

tion 2.1 that
H Y ae C<2) Y aenllennn,-
VIGN] i=1

(53,00 weN
By Theorem 2.13, using that F;, has infinite index, there exist N C N such that
HZM" €0 NHZ%%
neN (Ci,0)i_, neN

Since [| 3 ,en @neull(B,,.0,) < I D nen @nenll(B,0);,» We get the result. [ |

(Biy.0iy)

Remark 4.2. It is worth mentioning that the conclusion of the above theorem does
not hold in the case that all families &F; have finite index (see [8]).

To extend the above result to block sequences, we shall need some preparatory
work. The following notion is descendant of the definition, introduced in [3], of
initial and final part of a vector with respect to a tree analysis.

Definition 4.3 Fix compact and hereditary families F; and real numbers 0 < §; <
1,i <r Letx € cp, f € K((F},0;)i_,) and (f;):e7 a tree-analysis for f. Suppose
that supp fNranx # &. Lett € T be a <-maximal node with respect to the property
that supp f; Nranx = supp f Nranx. It is clear that such ¢ exists and it is unique.
Let us call it #(x). Note that if #(x) is not a maximal node of 7, then, by maximality
of t(x), there are s; # s, € Sy(x) such that supp f;, Nranx # &, fori = 1, 2. Observe
that the set S; of immediate <-successors of ¢ is naturally ordered according to s < ¢
ifand only if f; < f;. Now for t = ¢(x) not a maximal node, let

sp(x) = min{s € S; : supp f; Nranx # T},
sg(x) = max{s € S; : supp f; Nranx # T},
where both minimum and maximum are with respect to the relation < on ;.

Now fix a block sequence (x,,),. For a given n, let t(n) = t(x,), s.(n) = s.(x,) and
sr(n) = sg(x,). Fort € T, we define recursively

D= U {n:u=tn)}

t<qgu
={n € N:supp f; Nranx, = supp f Nranx, # },

E =D\ U D;={n:t=t(n)}.
SES;

For each n, set g, = max supp x,,, Q = {g, tnen. Define recursively ont € T

g =0 1 + e

ncE, ! SES,

if f;=206; ZSES, fs» where (f;)ses, is Fj-admissible.
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Proposition 4.4 (i) suppg = {q.:n € D} foreveryt € 7.
(i) {e}, tner, U{g}ses, is a block family and

(4.1) {ming,:n € E;} U{minsuppg,:s€ S, & # 0} € [Q]1F? @ Ad(F)]Q

foreveryt € T such that f, = 0; ) ¢ fs

Proof (i) follows readily from the definitions.
(ii) Suppose that #S; > 1, otherwise the result is trivial. Let us observe that for
every s € S, s not being the <-maximal element of S; and with g # 0,

(4.2) min supp f; < supp g < minsupp fe.

The first inequality follows readily from (i). Let us show now the last inequality.
Assume otherwise that min supp f+ < maxsuppg; = max{q, : n € D;}. Then there
exists n € D; such that min supp f+ < g, = maxsupp x,, hence supp f;+ Nranx, #
J, a contradiction since n € D;. It is clear that for every n € E;, it holds that

(4.3) max supp fs,(n) < gn < MAXSUPP foy(n) < MINSUPP fsp ()

and moreover,

(44) An < Zsx(n)» ifgSR(”) 7& 0.

The definition of g together with (4.2), (4.3) and (4.4) gives that H = {e} },cp, U
{g : s€ S, g # 0} is a block family. Let us prove now that the set {q,}ncp, U
{min g }ses, belongs to [Q]=? ® (Ad(F;))[Q. First we order H = {hj}lj?zo according
to the block order, i.e., j < j’ implies supp h; < supph;j,. For every 0 < j < k, let
sj € S; be such that either hj = g, or hj = €, and s; = sg(n). Observe that for every
0 < j < k, either s; < sj;; orelse s; = s;;1 and this can only occur if h; = e;‘“ and
hjv1 = g, withsj = sp(n). Fixt = {m}.cs, € F; that interpolates (supp f)scs,-
We claim that for every even 0 < j < k we have that

(4.5) supphj_p < ms; < supph;.
From this we have that {m;};cven € J; interpolates the set {supph; : 0 < j <k,
jeven}, hence {minsupph; : 0 < j <k, jeven} € Ad(F;)[Q, and so we easily get
(4.1). Let us then show (4.5). Suppose first thats; , = s;_; <s;. Thenh;_, = €,
and hj_; = g, with sg(n) =s;_;. Hence

maxsupphj_, = q, < max f;,_, < m;; < minsupp f;; < minsupp h;,
as desired. Suppose now thats;_, <s;_; <'s;. Then

max supp hj_, < minsupp fs}z < minsupp f;_, < maxsupp f;;_,,

SO

max supp h;j_, < maxsupp f;;,_, < m;; < minsupp f;, < minsupp h;.
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Finally, suppose thats; , <s;_; =s;. Thenh;_, = €, and hj = g;; with sg(n) = s;.
So
max supp hj_, < maxsupp fi,(m) < Mg (nyr < Map(n) = ms; < min supp fsj

< minsupp h;,

and we are done. |

Proposition 4.5 Suppose that (x,),en is in addition normalized.

(i)  For every sequence (a,) of scalars and everyt € T,

A ) =g (Y ae,)

n€D; n€D;

In particular, f(3°, anx,) = gg(ZnEDg aeg,).

(ii) For everyt € T, we have g € %B(T[([Q]Sz ® Ad(F)1Q,0:)i_,1%), where
90 = minlgigr 9,‘.

(iii) For every sequence (ay,) of scalars,

[

Proof (i) can be shown easily by downwards induction on t € 7. (ii) follows from
Proposition 4.4(ii) and the fact that the dual ball of T[([Q]=? ® Ad(F})]Q, 0:)i_,11s
closed on the ([Q]=? ® Ad(F;)[Q, 6;)-operation (see Remark 1.4).

(iii) Follows from (i) and (ii). [ |

1
< S -
T8, bo zn: Tl a0,

Remark 4.6. It is worth pointing out that Proposition 4.5(iii) gives that for every
M C N and every sequence (a,),ep of scalars

1> a,
neM

where Qy = {qn fnem = {maxsupp x, }rem-
Before we give the proof of the main result of the section we need one more aux-
iliary lemma.

1
< —H Z aney, ;
@00, Ol (1QuIS2@A(T) 1Qu 0],

Lemma 4.7 Fix (F;,0;);_, with at least one of the families with infinite index and a
normalized block sequence (x,), in the space T[(J;,0;)7_, 1. Then for every iy such that
W(Ti,) > w, there exists an infinite set M such that

H Z antp,
neM

where p,, = min supp x, for every n.

(7 (T,

ig Vi,

< ZH > anx,
biy) neM
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Proof Set Py = {p,}. Let My C N be infinite and let (B;) be a sequence of regular
families on N with +(B;) = «(F;) and such that

(4.6) every B;-admissible block sequence of subsets of {p, }nenm, is Fi-admissible
forl1 <i<r.

Let M, = {my; }, where {m;} is the increasing enumeration of Mj.

Claim  For every sequence of scalars (an)nem,,
|3 aenl,,, <X o
neM, (Bibiey neM,

Proof of Claim For every n, choose ¢, € K((J;,0;)i_,) such that ¢,x, ~ 1 and
supp ¢, C suppx,. Let Pi = {pn}nem,> and define now F: K ((B;,0,)_,) —
K((37,0:)i_,) by F(e;n) = ¢, and extend it by

(Fi,007_,

F(0;(Yo + -+ +u)) = 0;(F(tpo) + - - - + F(¢))
if ()i, C Kpl((Bi,Hi)le) is a B;-admissible block sequence (1 < i < r). To see

that F is well defined, suppose that (1;)"_, C K"'((B;, 6;)_,) is B;-admissible block

sequence and set minsupp ¢ = P, , Maxsuppy; = pm, (0 < i < n). Then we
have that for every 0 <i < n,

(4'7) SUPPFW:’) g [pmzk,-7pmzz,-+1]'
Since, by (4.6), ({Pums,s Py })ig is Fi-admissible, condition (4.7) yields that

(F(¢))i, is Fi-admissible. It is clear now that the existence of F shows the desired
result. u

Let iy be such that F;, has infinite index A+r, with A > 0 alimit ordinaland r € N.
Let M, C M, be such that Ad(F;,) [P, is homogeneous on P,, where P, = {p,, }nem,-
Then by Proposition 3.9 and the properties of the homogeneous families we know
that

L([P,]52 @ Ad(F;,)[Py) = 20(Ad(F;,) [Py) < 22\ + 1) = A +4r < (A +71)2,
so by Proposition 3.8 we can find M C M, such that, setting P = {p,, }nem»

[P]=? @ Ad(F;,) [P C B;, @ [P]=*.

It follows, by Proposition 2.1 that for every sequence of scalars (a,),em>
ane < ZH a,e
HZ "“‘H(&ﬂ,@g‘ Z b
neM 07710 neM

This, combined with the previous claim, completes the proof. ]

(Biy.0iy)
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Theorem 4.8 Fix a finite sequence (J;, 0;)i_, of compact hereditary families and real
numbers such that there is some 1 < i < r with «(F;) infinite. Then thereis 1 < iy <r
such that every normalized block sequence (x,) C T[(F;,0;)I_,] has a subsequence
(%n)nen which is equivalent to the subsequence (e, )nen of the natural basis (e,)nen of
T(Fi,, 0i,), and where p, = min supp x,, for every n.

Proof Let (x,) C T[(J;,0;);_,] be a normalized block sequence. Let

09

(%) C T[(F},6i)i—1]

be a normalized block sequence. By Proposition 4.5 (see also Remark 4.6) we get that
for every W C N,

1> am,
new

where C = max;<;<, 91-_1, qn = maxsupp x, for each n, and Qw = {g, }new. Find
an infinite set M of integers and a sequence (G;)/_, of regular families such that for
everyl1 <i<r

§CH Za,,eqn} ,
(F3,00;, oW ([Qw]=2®@Ad(F7) 1Qw )i,

(1) Ad(F;)[Qu is homogeneous on Qyy,
(ii) «(Gi) = (Ad([Qu]=? ® Ad(F)Qu)) + 1,
(i) Ad([Qum]=* ® Ad(F;)1Qum) 1Qum C GilQu.
By Theorem 2.13 there is some N C M and D > 1 such that

HZaneqn i) = DHZa,,eqn
neN (G001 neN

where i is such that (.(G;,), 0;,) = max.{(¢(G;),6;) : 1 < i <r}. Notice that ¢(5;,)
and ¢(F;, ) are both infinite. By Corollary 2.3 we can find R C N such that

[Sncsl, <20
neR SUROY neR

where p, = minsuppx, for every n. Now use Proposition 3.11 to find an infinite
subset S of R and a regular family B with the same index as Fj, such that

)

(Sig0i)

)

(Siy By

(4.8) every B-admissible sequence of subsets of { p, }ncr is F;,-admissible.

Since, by the choice of M, the family Ad(F;, ) [Qys is homogeneous on Qs we obtain
by Proposition 3.9 that

(4.9)  (Si) < 2u([QmI=* @ Ad(F;,)[Qm) + 1
= 20([Qum]=H)u(Ad(F;,) [Qu) + 1 < 8u(F;,) + 1.

As G;, and B are both regular and +(J;,) is infinite, (4.9) implies that

U(IN]=? @ Sj,) = 20(S;,) < 166(F;,) +2 < u(F;)2 = (B ® [N]S),
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so we can find an infinite V' C S such that

{Pn}neV ® 910 {Pn}nEV C 3 X [N]

Hence, by Proposition 2.1 (§;, is regular),
|, <2 2o
(Sigbi)

while by Lemma 4.7 we can find W C V such that

Hzan P”H (Fig b )<2H2a"x"

(B,0i,

F 00,
Finally, from (iii) and Proposition 2.1 we get that

H Za”eq”H <2@Ad(T, 0" = H Za”eq”H 0
oW ([Qw]=2®Ad(TF:) [Qw,0i)i_, oW (Gi.00)i_,

Putting all these inequalities together and also using (4.8), we obtain

4CDHZ (Fi,0:)" S4DHZ

([QwI=2®@Ad(F) 1Qw 0i)_,

(G000 4”2

IN
.4;
U:
M

(Sig.0iy)
<5 Zan%nH <[ 3 e
2l & Siy (B.0;)
< H a,e < ZH a,x .
- Z P (500 Z " e,

So, (xp)new € T[(F3,0:)i_,] and (e, )new € T(J;,, 0;,) are equivalent, as desired.
|

We recall from Definition 2.9 that for a given compact and hereditary famﬂy F

we define v(F) = «(F) and n(’J") =0 1f3" has finite index, and v(F) = w“ and

n(F) = n satisfying that w*'" < a < w* "V if F has infinite index. Using this
terminology we can reformulate a result from [8, 9] as follows.

Theorem  Suppose that (F;, 0;)!_, is such that all F; have finite index. Let iy be such
that (F;,,0;,) = max<,.{(F;,0;)}_,, and G be an arbltmry regular family such that

v(9) = v(F},). Then every normalized block sequence (x,) of T[(F;, 0;)i_,] has a block
subsequence (y,), equivalent to the basis of T(3, 6;,).

Notice that in that case, the family § is on a tail equal to [N]<"7), We present
now the natural generalization of this theorem.
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Corollary 4.9 Fix (F;,0;)_,. Let iy be such that (¥, 0;,) = max<, {(F;,6;)}_,.
Suppose that G is an arbitrary compact and hereditary family. If v(G) = v(F;,), then
every normalized block sequence (x,,) of T[(F;, 0;)I_,] has a subsequence (x,)ncpm equiv-
alent to the subsequence (emin supp x, )Jnem 0f the basis of T(G, HZ)(B)/ n(g"")), where we use
the convention 0/0 = 1.

Proof We may assume that at least one of the families F; has infinite index. By
Theorem 4.8, it is enough to have the conclusion for subsequences of the basis of
T(Fj,,0:,), and by Proposition 4.1 we may assume that F;, and G are both regular
families. Let o

UFi) =w ™+ 8, WG = ™R

be canonical decompositions. This is possible since y(F;,) = y(B) is infinite. More-
over & = a. Using

ww"m < L(g:in) _ ww"mﬂ?n +6 < ww“erﬁJrl

and the corresponding inequality for G, by Theorem 2.8 we may assume that
uF:) = w'™ and 1(9) = w*'™ Now the result follows from the application of
Proposition 2.6 to the families F;, and G. |

In particular for Schreier families we obtain the following.

Corollary 4.10 Fix (F;,0;)i_, such that at least one of the families has infinite index.
Let iy be such that (F;,,0;,) = max<, {(F;,0;)}_,, and set «(F;,) = W R
in canonical form. Then every normalized block sequence (x,) of T[(JF;,6;)!_,] has
a subsequence (x,)nem equivalent to the subsequence (emin suppx, Jnem 0f the basis of

T(8.0,0,/").

The last result of the section concerns equivalence of block sequences in the spaces
T(8¢, ).

Proposition 4.11 Let (x,), (y.) be two normalized block sequences in the space
T(8¢,0) such that x, < y, < Xu41 for every n. Then (x,) and (y,) are 2402 -equi-
valent.

Proof For the proof we shall use the following two relations concerning the Schreier
families 8¢, and infinite subsets N of integers with min N > 3.

(4.10) [N]=? © 8¢ C 8 ® [N]=2,
(4.11) [N]1=? ® (8¢ @ [N]=!) C 8¢ ® [N]=>.

The proofs of these two relations follow easily by induction on £. Now we show that
a normalized block sequence (x,) is equivalent to the subsequence (e, ), of the basis,
pn = minsuppx,, and this implies the result. Without loss of generality we may
assume that p, > 3 for every n. It follows easily from the spreading property of the

families S, that
a,e < H a,x

(8e.0)
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For the reverse inequality, by Proposition 4.5 we get
apX, < 971H ae,
Hznz " (seo) Zn: "

where g, = max supp x,, for each n. By (4.10) and Proposition 2.1, we get

|5 =2 S

(INJ=2@8¢.,0)

(8¢ 0
As in the proof of Corollary 2.3, we get that
ae, < H a,e .
H; n=qn (8¢.0) ; nepn (Sg@[N]Sl-ﬂ)
Now by (4.11) and again Proposition 2.1, we get that
< 3H ane
HZ np”H N]<19 Z = pn (S 9)
and this completes the proof. ]

4.1 Incomparability

The goal here is to turn the implication presented in Corollary 4.9 into an equiva-
lence. So we are now going to deal with the incomparability of the Tsirelson-type
spaces. The main tools to distinguish two such spaces are the special convex combi-
nations, introduced in [3]. The following lemma provides the existence of the special
convex combinations, in a more general setting than the one in [3], and it is a version
of the well-known Ptak’s lemma (see [6] for a proof).

Lemma 4.12 Suppose that Fy and F, are two regular families with indices 1(F;) =
wni+ G >0,n € NG <w (i=0,1). Ifoy < oy, then for every € > 0 there
is a convex mean i such that supp pu € Iy and such that sup,c 4. >, p(n) < e.

The first case where the spaces are going to be totally incomparable is if the index
of one of the families is at least the w-power of the other.

Lemma 4.13 Suppose that Ty, F; are two regular families such that «(Fy)* < (F7).
Then T(Fy, 0y) and T(F1, 61) are totally incomparable.

Proof Suppose that the desired result does not hold. By standard arguments we may
assume that there exists a normalized block sequence (x,), € T(F;, 0;) equivalent to
a normalized block sequence (z,), of T(F},0;), j # i. By Theorem 4.8, passing to
subsequences if necessary, we may assume that (x,), is equivalent to a subsequence
(en)nem;, of the natural basis (e,) of T(J, 6;) and that (z,) is equivalent to a subse-
quence (e,)uem; of the natural basis (e,) of T(F, 0).
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For k = 0,1, let ¢x: My — N be the unique order-preserving onto mapping
between M and N. Note that for k = 0,1 the family ¢, 'Fy is regular on M,
L(‘Pk_lgk) = 1(Fy) and (e,)nem, C T(TF, O) is 1-equivalent to

en)nGN c T(SD;:l‘rfku Hk)
So, without loss of generality, we may assume that M; = M, = N. So, we are

supposing that (e,) C T(Fo, ) is, say, C-equivalent to (e,) C T(JFy,6,) i.e., for all
scalars (a,),

el
c zﬂ:anen

(Fo.f)

e
(Fo00) zn: o

< CH a,e
(F1.0) Zn: ""

Let I € N be such that 9(1) < 01/(2C). By our hypothesis over the indices, UF)! <
t(F1). So, by Lemma 4.12 there is some convex mean p such that suppp € J,
and Zneu(n) < 29—(1; for every t € 3"?(171). Observe that every ¢ € K(Fy, 6p)
has a decomposition ¢ = @ + ¢, where suppdo € FSV, [|P1]loe < 6" and
supp ¢o N supp ¢1 = . So, for every ¢ € K(Fy, 6),

‘qﬁ(Zu(n)en) ‘ = ‘qﬁo(Zu(n)en) +¢1(Zu(n)en) ’
nes nes

nes
< D )+ e D uln) < L
= ‘ 2 ¢’
nesupp goMs nes
while
n > 0 = 9 )
H Zu(n)e - 1Zu(n) 1
nes nes
and so, by (4.1),
01 < || nime <[> ume <ch
b= HIE 3,00 = HAIEn ] 00 C’
nes nes
a contradiction. [ |

The second case of total incomparability we consider is when the two families have
the same index, but the corresponding ¢’s are different.

Lemma 4.14 Suppose that Fy and F are two regular families with the same index,
and suppose that 0y # 0, and max{6y, 6} > 1/u(Fo), where by convention, 1 /o = 0
if « is an infinite ordinal. Then the corresponding spaces T(Fy, 0p) and T(F,, 6,) are
totally incomparable.

Proof Suppose first that «(Fy) = ¢(F7) is finite. Then T(Fy, 6y) and T(F;) are iso-
morphic to different classical spaces ¢y or £, (p > 1), and the conclusion of the
lemma trivially holds.
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Suppose that «(Fp) = ¢(F}) is infinite. As in the previous lemma, we may assume
that ¥y = F; = J and that (e,) C T(F, 6y) is C-equivalent to (e,) C T(F,6,), i.e.,
for all scalars (a,,),

1
4.12 —H a,e, < H a,e < CH ae,
(4.12) Czn:””w.ﬂo)_ zn:””(:wl)_ zn:""

Suppose that 6y < 6. Let I € N, I > 1 be such that (91/90)1 > 2C. Let (a,)nes be a
convex mean such thats € ¥ and 3, _, a, < 6} /(2C) for every t € FX=1. As
before, any functional ¢ € K(F, 6) is decomposed ¢ = ¢g + @1, supp ¢oNsupp ¢ =
@, supp o € T2V and ||py || oo < 6). Then

(S| =[n(Sa) + o Sae) | < i <

Finally, by (4.12),

1
6, < H > auen
n

a contradiction. |

(F.00)

0]

<CH ae, <C—
(F0) Zn: " ,00) c’

4.2 Main Result

We collect in a single result the facts we have so far. It is written in terms of the ordinal
invariants  and 7 introduced in Definition 2.9, and using the convention 0/0 = 1.

Theorem 4.15 (Classification theorem) Fix two sequences (F;, 6;)i_, and (Gi, n;)i_,
of pairs of compact and hereditary families and real numbers in (0,1). Let 1 < iy <r
and1 < jo < sbesuch that (F;,,6;,) = max< {(F;,0;) : 1 <i < r},and (G, ;) =
max<,{(Gi,n;) : 1 <i <s}. The following are equivalent:

(i)  Either

(@) YFi),1(G) = w, 7(Fi) = AS;,) and 070 =
(b) both F;,, G;, have finite zndex, and either
(1) 0i,7v(F3,),miv(Gj,) < 1, orelse
(2) log, s, ) 0 =108, (g ) Mjo-
(if) Every closed infinite dimensional subspace of T[(F;,6;)!_,] contains a subspace
isomorphic to a subspace of T[(Gi,ni)i_,].
(iii) For every regular family B such v(B) = ~(§;,) and every normalized block se-

quence of T[(J;, 0;)i_,] thereis a block subsequence (subsequence if G;, has infinite
B)/n(S))
Jo

Fiy)
" or else

index) equivalent to a subsequence of the natural basis of T(B, n;

Proof (ii) implies (iii). Fix a regular family B with same index as §;, and fix a
normalized block sequence (x,) of T[(J;,0;);_;]. By (b), there is some block se-
quence (y,) of (x,) which is equivalent to a semi normalized block sequence (z,) of
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T[(Si,mi)i_;]. By Corollary 4.9, we can find a further block subsequence (w,) of (z,),
which is equivalent to a subsequence of the natural basis of T(B, T];O/n(gj “)), as desired.
(iii) implies (i). First, fix a regular family € with index v(J;,). By Corollary 4.9 we

know that T'((3;, 8;)!_,) is saturated by subsequences of the basis of T(C, 91»10/ "(St’O)).

Notice that (iii) implies that T(B, 7)]1-0/ H(Sj")) and T(C, G:U/n(gi°)) are not totally incom-
parable. Suppose first that G;; has finite index. Lemma 4.13 gives that J;, has also
finite index, and in particular n(J;)) = 1. Now (b) follows from the properties of £,,’s
and cg.

Assume now that G, is infinite. In this case Lemma 4.13 implies that v(F;,) =
v(Gj,)- It follows, by Corollary 4.9 that T[(J7, 6;)]_, ] is saturated by subsequences of
T(B,6,""). Hence T(B,6,""*") and T(B, 7"’
ble, so by Lemma 4.14, 0;0/"(5;'0) = nilo/n(gj“).

(1) implies (ii) follows from Corollary 4.9. |

) are not totally incompara-

Remark 4.16. (i) If the families J are compact but not necessarily hereditary,
Theorem 4.15 remains true. The main observation is that if F is an arbitrary com-
pact family, then there is some infinite set M such that F[M] = {sNM : s€ F}
is hereditary (see [5]). This fact, when applied to the family Ad(F) of F-admissible
sets, guarantees we can follow the same arguments we use for the case of hereditary
families, starting with Proposition 4.5.

(ii) The problem of classification of full mixed Tsirelson spaces T[(J;, 0;)7%,]
seems rather unclear. There are several obstacles for someone wanting to extend
the techniques presented in this paper to the general case.
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