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H-3OINT NUMERICAL RANGES

CHI-KWONG L I AND LEIBA RODMAN

The notion of the joint numerical range of several linear operators with respect to a
sesquilinear form is introduced. Geometrical properties of the joint numerical range
are studied, in particular, convexity and angle points, in connection with the algebraic
properties of the operators. The main focus is on the finite dimensional case.

1. INTRODUCTION AND ELEMENTARY PROPERTIES

The joint numerical range of a A;-tuple o f n x n Hermitian matrices A = (Ai,..., Ak)

is defined by

W(Au...,Ak) = {{x'Axx,...,x'Akx) :ieC",i'a: = l} C Klx*.

We denote by C" the n-dimensional complex linear space of column vectors, and by Rlxfc

the A;-dimensional real linear space of row vectors. The joint numerical range has been
studied by many researchers (for example, see [1, 2, 10] and their references), and is
useful in various theoretical and applied subjects, (for example, see [7, 12] and their
references), in particular, control systems (structured singular value) [4, 14].

By analogy with the joint numerical range of several Hermitian matrices, we intro-
duce the notion of joint numerical range with respect to a Hermitian matrix.

To set up notation, let Hn be the set o f n x n Hermitian matrices. Suppose H € 7in

and A = (Ai,..., Ak) € V.kn. Then the H-joint numerical range of (A\,..., Ak), or in
short the H-numerical range of A is defined by

WH(A) = WH(AU ...,Ak) = { ( I M , I , . . . , x'Akx)/(x'Hx) :xeCn, x'Hx / 0} C l l x f c .

We also consider the sets

W±(A) = {±(x'Alx,...,x'Akx) : x € Cn,x'Hx = ±l}.

It will be implicitly assumed for the definition of WH{A) that x'Hx ^ 0 for some x 6 C",
and for the definitions of W^(A) we assume that x'Hx = ±1 for some x 6 Cn.

When H = I, WH(A) = W^(A) reduces to the usual joint numerical range W(A).

The following properties can be easily proved.
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106 C-K. Li and L. Rodman [2]

(A) WH(A)

(B) Wa(A) = W+H)(-A).

By Property (B), we can focus our study on W^(/l) and translate the results on
W£(A) to WH(A) and WH{A).

In this paper we study geometric properties, such as convexity, closedness, bounded-
ness, et cetera of the sets WH(A) and W^(A) in connection with the algebraic properties
of Ai,..., Ak- These problems were raised in [10].

In studies of the numerical range and its generalisations, a useful technique is re-
ducing the problems to the 2 x 2 case. For instance, convexity results are proven using
such a reduction (in clever ways), see [1, 5, 9, 13]. So, in Section 2 we give a com-
plete description of the 2 x 2 case in our study of if-joint numerical ranges, and use
this description in Section 3, as well as known results on convexity of joint numerical
ranges of Hermitian matrices, to derive convexity results for i/-joint numerical ranges.
Furthermore, the careful analysis of the 2 x 2 case often leads to interesting results, such
as characterisation of non-differentiable boundary points of the (generalised) numerical
range, and of the conditions under which the (generalised) numerical range is a polygon
(with interior), a line segment, or a singleton, see [3, 6, 11]. In fact, we address these
problems for 77-joint numerical ranges in Sections 3 and 4. In the last section we consider
i/-joint numerical ranges in infinite dimensional spaces.

In the remaining part of the introduction, we list several elementary and useful
properties of .fir-joint numerical ranges.

(C) For any n x m matrix S , let S'AS = (S*AXS,..., S*AkS). Then

WS.HS{S*AS) C WH{A) and W+HS{S*AS) C W+{A).

The set inclusions become equalities if 5 is n x n and invertible.
(D) Suppose T = (Uj) is a k x q real matrix and B = (Bx,..., Bq) € Wn is such

k
that Bj = £ t i j A t , j = l,...,q. Then

t=i

Wn{B) = {vT:v e WH{A)} and W+(B) = {vT : v 6 W+{A)}.

Consequently, if H/^(J4) is convex, or bounded, or compact, then W^(B)

has the corresponding property. In particular, if T is square size and

invertible, then W (̂.<4) and W£(B) share the same geometrical prop-

erties. Thus, to study the geometrical properties of ^^(^4), we may

replace A = (Au-..,Ak) by B = (Bu... ,Bm,0,... ,0 ) , or simply by

B = (Bi,... ,f?m), where {Bi,... ,Bm} is a basis for span{/li,... ,Ak}.

The next observation was made in [10]. It shows that one can study W^(/l) and

WH (A) via the cone generated by the usual joint numerical range. Define

(1) K(H, Au..., Ak) = {(x'Hx^'A.x,.. .,x'Akx) : x € C"} .
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(E) Let ( d , . . . , ak) be a real vector. Then ( o i , . . . , ak) G W%(A\,..., Ak) if and

only if (l,ai,...,ak) G K{H,A1,...,Ak); (au...,ak) G WH{AU... ,Ak) if

and only if

(l,au...,ak) eK(H,A1,...,Ak) or -(l,au...,ak) G K{H,AU.. .,Ak).

(F) If H is positive definite, then Wg(Ai,...,Ak) is compact; otherwise,
W^{Ai,..., j4jfe) need not be closed or bounded.

The next observation is an extension of an idea in [7]. We denote by tr X the trace
of a matrix X.

(G) Let
VH = {xx* :xeCn, x'Kx = 1}.

Then W^(A) is the image of the set VH under the linear map <f>A : Hn

->Rlxk defined by

(2) <j>A{X) = {txAlX,...,txAkX), Xenn.

We have:

(3) rank<f>A — dimension of span {A\,..., Ak}.

To verify (3), observe that by Property (D) we may assume that Ai,...,Ak are

linearly independent. Then (3) amounts to the assertion that <f>A is onto. If <f>A were not

onto, then there would exist 3 /1 , . . . , j/jt G R, not all zeros, such that 5Z% *r AjX = 0 for
/ k \ j=i *

all X G %n. Then tr J2 yjAj )X = 0 for all X G Hn, which implies £ 2/,A, = 0, a
Vi=i / i=i

contradiction with the linear independence of Ax,..., Ak.

(H) The set WH{A) is always connected. Indeed, it is easy to see that the set

is connected (assuming without loss of generality that H is diagonal).
Therefore, the set VH is connected. The assertion now follows readily from
Property (G).

2. TWO BY TWO CASE

We first consider the two by two case. In view of Property (G) and equality (3),
the shape of W ^ ^ ! , . . . , Ak) can be determined via the description of VH- Recall that a
subset <S in Klx* has affine dimension m if there exists D £ 5 such that the linear span of
S - v has dimension m. Since VH C %2 has real affine dimension 4, we see by (G) that
W^(A) has affine dimension at most 4. We have the following theorem.
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THEOREM 2 . 1 . Suppose H,Ai,...,Ak e K2, A = (Ai,...,Ak), and

span{H, Ai,..., Ak} has dimension m ^ 4. Then W^(A) has affine dimension m - 1.
In particular, ifm — 1, then W#(/l) is a singleton. Assume m > 1 in (a), (b), and (c)
below.

(a) Suppose H is positive definite. Then

(4) VH =

Moreover, Wfl{A) is a closed line segment, a closed ellipse with interior, or a closed
ellipsoid without interior, depending on m = 2,3, or 4, respectiveiy.

(b) Suppose there is an invertible matrix S such that S'HS — diag(l,O). Then

(5) VH =

Moreover, W^(A) is a closed half line or a straight line ifm = 2; W^(A) is a closed
parabola with interior or a two-dimensional plane ifm — 3; W^(A) is a closed paraboloid
without interior ifm = 4.

(c) Suppose there is an invertible matrix S such that S*HS = diag(l, - 1 ) . Then

V
I

( 6 ) V » = < S \ , - i c a - l / 2 ) S : a = 6 + c + l / 4 . n d a > l / 2

Moreover, Wfj(A) a closed or open half line or a straight line ifm — 2; W^(A) is a

closed one-component hyperbola with interior, an open two-dimensional half plane, or a

two-dimensional plane ifm — 3; a closed one-component hyperboloid without interior if

m — 4.

PROOF: If m — I, then all Aj's are multiples of H. Thus, W^(A) is a singleton.

Suppose m > I. Note that

Thus, to prove (a) - (c), we can always assume that H £ spanf .^ , . . . , Ak}. Replacing
each Aj by a suitable linear combination of A\,... ,Ak and using Property (D), we may
assume without loss of generality that Ai = H and k = m.

If k — 4, then by (3) the map 4>A defined in (2) is invertible, and therefore W^(A)
= ^AV^H) has the same geometric shape as VH, and the result follows by inspection of
the shape of VH. Thus, we shall focus on the cases 1 < k < 4 in the following discussion
once VH is determined.

(a) By Property (C), without loss of generality we may assume H = I. Note that

( ' I, where a2 + b2 + c2 = 1/4, is a general form pf a 2 x 2 rank 1

b — ic 1/2 — a I
orthogonal projection. Thus, VH indeed is given by (4).
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Assume 1 • < k < 4. Since Ai — I2, we may replace each Aj by a suitable linear

combinations of A\,..., Ak so that

A2=(d\ * V and A3=(\ A if * = 3.

By (4) and (G), we have

W£{A) = | ( l , 2 [ d 2 a + Re(q2(b- ic))]) : a2 + 62 + c2 = 1/4} if jfc = 2;

and

W£(i4) = { ( l , 2[d2a + Re(q2{b - ic))], 2 Re(q3(b- ic))) : a2 + b2 + c2 - 1/4} if k = 3.

By elementary considerations, we see that Wfj(Ai,..., Ak) satisfies condition (a).

(b) Let 5 be invertible such that S*HS = diag(l, 0). Then x*Hx = 1 if and only
if x = Sy such that y*diag(l, Q)y = 1, equivalently, xx* — Syy'S* with

, ( \ b + ic\
yy' = , .

V 0 — ic a I

for some a,b,c € R satisfying a = b2 + c2. Thus, without loss of generality, we may
assume that H = diag(l, 0) and S = I. Then

Assume first k = 2. Recalling our standing assumption J4J = / / , and replacing if necessary

A2 by a linear combination of Ai and A2, we may assume that A2 has the form J42

= 1 1 , for some a £ C and s € R, O 0, where s and o are not both zeros. Then,

\q* sj
for X 6 V// given in the form (7), we have

(8) ' tr (A2X) = 2Re (q\/aeu) + so,

where v/ae1' — b - ic. So, as a ^ 0 and t € R vary, the range of ^ on Kw is a straight
line if s = 0, and is a closed half line with end point

in{2Re (qVaeu) + sa:a^Q, t € R } = —|

if s > 0.

Assume now A; = 3. Again, j4t = H, and replacing ^2 and A3 by their suitable linear

combinations with H, we can assume that
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where <72,g3 € C, and either s2 = 1 or s2 = 0. In the latter case (s2 = 0), the function
(tr(A2X),tT(A3X)) maps VH onto E l x 2 , hence W£ is a two-dimensional plane. In the
former case (s2 = 1) the function (tr(A2X),tr(A3X)) maps VH onto a closed parabola
with interior in Kl x 2.

(c) Let 5 be invertible such that S'HS - diag(l, - 1 ) . Then x*Hx = 1 if and only
if x — Sy such that y*diag(l, — l)y = 1, equivalently, xx* = Syy'S* with

, _ fa + 1/2 b + ic \
VV ~ \b-ic a- 1/2J

for some a , J , c € l satisfying a2 — b2 + c2 +1 /4 and a ^ 1/2. We may assume therefore
that H - diag(l, - 1 ) and

(10) VH = l (a + 1/2 b + l c ) . a , 6 , c e K s u c h t h a t a 2 - 6 2 + c2 + l / 4 , a ^ l / 2 l .
[\̂  b - ic a- 1/2 J J

Assume k = 2. Since A\ — H = diag(l, — 1), we may assume that A2 — I I for
V s)

some ? £ C, O 0, where q and s are not both zero. Then for X € VH given by (10), we
have

tr{A2X) = 2Re (q(b - ic)) + s(a - 1/2).
So, if s — 0, then W^(A) is a straight line, and if q — 0, then W^(^4) is a closed half line.
Otherwise, applying simultaneous congruence A\ = T*A{T, A2 —>• TM 2 T, for a suitable
unitary diagonal matrix T, and scaling A2, we can further assume that s = 1 and g > 0.
Then for X e V#, where A" is given by the matrix in the right hand side of (10), we have
tT(A2X) = 2qb+(a- 1/2), where |6| ^ y/a2 - (1/4). Denoting y = a- 1/2, it is easy to
see that the range of tr(A2X) coincides with the range of the function

Elementary analysis shows that the function fq(y) has only one minimum if 0 < g < 1/2,
which is attained at y - ( - 1 + (1 - 4q2)~l/2)/2. Also, if q > 1/2, then fq(y) -> -00
as y —> 00, and if q = 1/2, then fq(y) is a decreasing function with fq(y) -4 - 1 / 2 as
y —¥ 00. Thus, the range of tr(j42X), X 6 VH, is a closed half line if 0 < q < 1/2, an
open half line if q = 1/2, and the whole of K if q > 1/2.

Assume now k = 3. We may further assume that A2 and A3 have the form (9),
where either s2 = 0 or s2 — 1. In the former case,

= {(l,2Re(q2(b-ic)),2Re(q3(b-ic))):b,ceR}.

Since g2 and q3 are linearly independent over R, we see that VF^(/1) is a two-dimensional

plane.
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In the latter case, that is, when s2 = 1, we may assume that q3 > 0. Otherwise,
let D be a diagonal unitary matrix such that the (1,2) and (2,1) entry of D*A3D equal
\d3\, and replace (Ai,A2,A3) by (D* A\D, D* A2D, D* A3D). We may further replace A2

by 2A2 + Ai- 2(Re q2/q3)A3 so that

M ( \
\-iv

Then
W+(Al,A2,A3) = {(l, 2x/b

2 + c2 + l/4 + 2yc, 2q3b) : b,c €

For each 6 € R, we can apply elementary calculus to the function

/(c) = y/b2 + c2 + 1/4 + yc, c € R,

to conclude that

(i) if \y\ = l, then f(c) > 0 for all c € R, and inf /(c) = 0;

(ii) if \y\ < 1, then '

min/(c) = ^/(l - y2W + 1/4) occurs at c = -y^(b2 + l/4)/(l - y2).

As a result,

{/(c) :

Hence, H^̂ (>4) is a closed one-component hyperbola with interior, an open two-dimensional
half plane, or a two-dimensional plane. D

All the shapes of Wfj(A) of fc-tuples A of 2 x 2 Hermitian matrices as asserted in
Theorem 2.1 actually appear in examples. We present here only one example (taken from
[10]) in which the joint numerical range is an open half plane.

EXAMPLE 2.2. Let

„ (0 l\ . (2 0\ (0 -i\
H={i o)> A> = {o 0)' A*=[i o j -

Letting x = I 6 C2, y, z 6 C, a computation shows thatw
W+(A) = {(2y*y, iz'y - iy'z) e Rlx2 : z'y + yz* = l } .

Thus, W£(A) = {(a, b) € R : a > 0} is indeed an open half plane.

https://doi.org/10.1017/S0004972700020724 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700020724


112 C-K. Li and L. Rodman [8]

The proof of Theorem 2.1 shows that under given hypotheses some shapes of
are generic, that is, for fixed H they appear for all /c-tuples of linearly independent 2 x 2
Hermitian matrices A = (Ax,..., Ak), excepting a proper algebraic set, and other shapes
are special, that is, they appear for A belonging in a proper algebraic set, as follows:

COROLLARY 2 . 3 . Suppose H,Ai,...,Ak € %2, A = {Ax,...,Ak), and

s p a n { i / , A x , . . . , Ak} has dimension m ^ 4.

(a) Assume that H is positive semidefinite and singular. Then for m = 2 the
closed half line is a generic shape ofW^(A), whereas the straight line is
a special shape; for m = 3, tie closed parabola with interior is a generic
shape ofWff(A), whereas the two-dimensional plane is a special shape.

(b) Assume that H is indefinite. Then for m — 2, the shape ofW^(A) which
is either the closed half line or the straight line is generic, whereas the open
half line is a special shape; for m = 3, the closed one-component hyperbola
with interior and the two-dimensional plane are generic shapes ofW^(A),
whereas the open two-dimensional half plane is a special shape.

3. CONVEXITY AND AFFINE DIMENSION

By Theorem 2.1, we have the following result concerning the convexity of W£(A)

for matrices in %2.

P R O P O S I T I O N 3 . 1 . Let H,Ai,...,Ak e H2 and A = {Ax,...,Ak). Then

W£(A) is convex if and only if span {H, Ai,A2,..., Ak} has dimension less than 4.

In general, we only have sufficient conditions for the convexity of Wj^(A) as shown

in the following.

THEOREM 3 . 2 . Let H € nn, and A - {Al,...,Ak) e Uk
n. Then W+(A) is

convex if one of the following holds.

(a) span{H, Ax,..., Ak} has dimension less than or equal to three.

(b) n ^ 3 and span{if, Ax,... ,Ak) has dimension four and contains a (positive

or negative) definite matrix.

(c) There exists an invertible S such that span{S'HS, S'AXS,... ,S'AkS}
C 5 , where S is one of the following subspaces:

\
Il = \aIn+I

or
52 = {A € Hn : A is a reai tridiagonal matrix }.

PROOF: Suppose (a) holds. By Property (D), we may assume that A; < 2. Then

for any x,y € C" satisfying x'Hx = y*Hy = 1, we can consider 5 = [x\y]. By Theorem
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2.1, Wg.HS(S*AiS,..., S*AkS) is a convex set containing the points (x'AiX,..., I '
and (y*Aiy,... ,y*Aky), and thus containing the whole line segment joining them. By
Property (C), we see that the line segment lies in W^{A\,..., At).

Suppose (b) holds. By Property (D), we may assume that k = 3 and A3 is positive
definite. We may further assume that A3 — /„; otherwise, replace X by A3

l^2XA3
1^2

for X = H,AUA2,A3. Then W(H,AUA2,I) = {(o,fc,c,l) : (a,b,c) eW(H,AuA2)} is
convex and so is K(H,Ai,A2,I). By Property (E), Wg(A\, A2, A3) is convex.

Suppose condition (c) holds. By Theorems 2.1 and 3.2 of [7], W(H, A\,.. .,Ak) is
convex. By Property (E), the result follows. D

By Theorem 3.2 (c), for n > 3, there exist linearly independent H, Ai,A2,A3 G <Si
such that sp&n{H,Ai,A2,A3} does not contain a definite matrix, but W^{AUA2,A3)
is convex. However, in general, there exist Ai,A2,A3 such that Wf}(Ai,A2,A3) is not
convex. We have the following stronger non-convexity result.

THEOREM 3 . 3 . Suppose H,Ai,A2 S Tin are linearly independent, and
span{i/, A\, A2} does not contain a positive definite matrix. Then there exists A3 € %„.
such that Wfj(Ai, A2, A3) is not convex.

PROOF: Suppose H, AX,A2 e %n satisfy the hypotheses. Then the set {/, H, At, A2}
is linearly independent. By Theorem 4.1 and its proof in [7, pp. 673-674], we
see that there exists an n x 2 matrix P such that P*P = I2 and the three matri-
ces P'HP, P*BiP, P*B2P, are linearly independent and indefinite, where BX,B2

€ span{J,4i, A2}. Let A3 = PP*. Then

W+(BuB2,A3)n{(a,b,l)-a,beR}

is not convex. Thus, W^(Bi, B2, A3) is not convex. It follows that W^{Ai, A2, A3) is not
convex. D

Theorem 2.1 contains information about the affine dimension of H^( J4 ) for matrices
in H2. We show that the result is also valid for higher dimensions.

THEOREM 3 . 4 . Let H, Ax,..., Ak € Un. Then W^{AU ...,Ak) has affine di-
mension m if and only if span{//, A\,..., Ak} has dimension m + 1. Consequentiy,

(a) Wfi(Ai,..., Ak) is a point if and only if Aj is a multiple of H for each

(b) Wff(Ai,...,Aic) is a subset of a line if and only if Aj = djH + bjK forsome
K e Hn for each j € {l,...,k}.

PROOF: Note that

W+(H, Au..., Ak) = {(1, O l , . . . , ak) : (a i > . . . , ofc) € W$(A)}.

Thus, the sets W£(H, Ax,..., Ak) and Wfi(A) have the same affine dimension. Further-
more, using Property (D), we may assume without loss of generality that H, At, A2,..., Ak
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are linearly independent, that is, m = k. Then for any v e Wfj(H, A\,..., Ak), we have

W+(H,Al,...,Ak)-vC{(0,al,...,ak):aj<ER, j = l,...,k}.

We see that the affine dimension of W^(.4) is at most A;. Using arguments in the proof
of (3), we see that the affine dimension of W£(A) is indeed k = m. Statements (a) and
(b) are now clear. U

4. POLYHEDRAL PROPERTIES AND ANGLE POINTS

We describe a sufficient condition on H, Ay,. ..,Ak € Hn so that W^{A\,..., Ak) is
polyhedral, that is, the set is the intersection of finitely many half spaces.

T H E O R E M 4 . 1 . Suppose H,Ai,...,Ak£Kn a n d i i e r e exists an invertible ma-
trix S such that S'HS - D0®B0 and S'AjS = Dj®Bj forj = l,...,k, where D0,...,Dk

are diagonal matrices and W(B0, ..-,Bk)C W(H, A l t . . . , A k ) . Then W£(Ai, ...,Ak) is
a polyhedral set.

PROOF: By the assumption, we have (see (1) and (C))

which is a polyhedral cone; see [2]. By Property (E), the result follows. D

A point q € W^(A) is called an angle point of W£(A) if there exist a nonzero
p e Rlx* and a positive number a such that

(11) p(v-q)T>a\\v-q\\

for all v G W£(A) sufficiently close to q.

THEOREM 4 . 2 . Let H,Au...,Ak e Hn. Ifq€W£(Al,...,Ak),q = (x*A1x,
. . . , X'AJX) for some x such that x'Hx — 1 is an angle point of W^(Ai,... Ak), then

(12) AjX = (X*AJX)HX, j = 1 , . . . , As.

As we shall see later, equation (12) when suitably interpreted under some additional
hypotheses, shows existence of a joint eigenvector. Thus, Theorem 4.2 can be thought of
as a generalisation of Theorem 3.1 in [8].

PROOF: For simplicity of notation we assume that the nonzero vector p e M1'**,
whose existence is assured by q being an angle point of W^(A) = W^(A\,...Ak), is
equal to (1 ,0 , . . . , 0). Fix an arbitrary vector y € C . Then for real t sufficiently close to

zero,
_ {(x + tyYA^x + ty) (x + ty)'Ak(x + ty)\

\(x + ty)'H(x + ty) ' " • ' ( * + ty)'H(x + to) / "K '
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is close to q. Write v = (v\,... ,vk), q = (<?i, • • • , %)• Then

Vj ~ Qj = ttfAjX + x'AjV - [x'Ajx){y'Hx + x'Hy)) + O(t2)

as t approaches zero. Thus, equation (11) gives

(13) t(y'AlX + I 'AIJI - (x*Aix){y*Hx + x'Hy)) + 0{t2)
v 1/2

~ (x*AjX){y*Hx + x'Hy))2 ) .

If y'AiX + x'Aiy—(x'Aix)(y'Hx + x'Hy) were positive, we would obtain a contradiction
with (13) when t < 0, and if y'Aix + x'Axy - (x'Aix)(y'Hx + x'Hy) were negative, we
would obtain a contradiction with (13) when t > 0. Thus,

y'Aix + x'Aiy - (x*Aix){y*Hx + x'Hy) - 0.

Therefore, since y is arbitrary, we obtain

A^x - {x'Aix)Hx = 0.

Now (13) gives

y' {AjX - (X'AJX)HX) + (AjX - {x'Ajx)HXyy = 0, j = 2 ,3 , . . . ,

for every vector y. Therefore,

AjX - {X'AJX)HX = 0, j = 2 , 3 , . . . .

5. A DIFFERENT FORMULATION AND THE INFINITE DIMENSIONAL CASE

We now offer a slightly different interpretation of M ^ ( J 4 ) and Wn(A). Consider a
fixed sesquilinear form [x,y], x,y € C". We introduce the joint numerical range with
respect to [•, •]. Namely, let X — {Xi,... ,Xk) be an ordered fc-tuple of linear transfor-
mations on Cn such that each Xj is [•,-]-selfadjoint, that is, [X,x,j/] = [x, Xjy] for all
x, y € Cn. Define the joint numerical range of X with respect to [•, •] by

WW](X) = {{[XlX,x],..., [Xkxtx])/[x,x] € R1** : x € C", [x,x] ? o}.

Define also the related sets

W+A(X) = {([Xlx,x],...,[Xkx,x]) 6 Klx* :x e Cn,[x,x) =

and
,x],..., [Xkx,x]) G Rlx* : i £ C " , [x,x] = - l } .
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If k = 1, then we obtain the notion of numerical range of A" with respect to a sesquilinear
form that was studied in [8, 10].

It will be convenient to work with matrices representing linear transformations with
respect to the standard basis in C". Thus, let H be an n x n Hermitian matrix such
that [x, y] — y'Hx for all x,y e Cn. A matrix Xj is [•, ]-selfadjoint if and only if HXj is
Hermitian. Hence

W[.,](X) = {(x'HXiX,...,x*HXkx)/{x'Hx) : x € Cn,x'Hx / 0}

and

(14) Wfc](X) = {±(x'HXlx,...,x*HXkx):xeCn,x'Hx =
= W%(HXu...HXk)

™-(?!)••If a n i n v e r t i b l e m a t r i x S is s u c h t h a t S'HS = \ n n], w h e r e Ho is p x p a n d inve r t i b l e ,

i t is e a s y t o see t h a t

Wfa(X) = {±(x*^o(5"1X15)ox,... ,x*Ho(S-lXkS)ox) : x e Cp,x*Hox = ± l} ,

where ()o indicates projection on the component that corresponds to Ho. Similar formula
holds for W[V](AT). This allows us to assume in the study of joint numerical ranges with
respect to a sesquilinear form that the sesquilinear form is non-degenerate, that is, the
corresponding matrix H is invertible. One can easily translate the results in the previous
sections in this context. Some of them have interesting forms. For example, assuming
the sesquilinear form is nondegenerate, Theorem 4.2 gives:

THEOREM 5 . 1 . Suppose that the sesquilinear form is nondegenerate, that is,

[xo,y] = 0 for all y € Cn implies that x0 = 0. If q = ([Xix,x],..., [Xkx,x]), x G Cn,
[x, x] = 1 is an angle point of WfAXi,..., Xk), then

XjX = (x'HXjX)x = [Xp, x)x, j = 1,2, . . . , * .

Here H is the Hermitian matrix that determines [•,•}.

The proof is obvious from Theorem 4.2 and equation (14).

Many statements and results of previous sections can be extended verbatim to the
infinite dimensional case. Thus, let Q be a Hilbert space with the inner product (• ,) ,
H a (bounded) selfadjoint operator on Q, and A = (A\,..., Ak) a fc-tuple of selfadjoint
operators on Q. Define

W^{A)^^±((x,Alx),...,(x,Akx)) :xeg,(x,Hx) = ±iy

When using W^(A) it will be implicitly assumed that the set of vectors x € Q such that

(x, Hx) — ±1 is not empty.
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Statements (A) through (E), and (H) remain valid. (The connectedness of the set
Q :— {x e Q : (x,Hx) = l} is easily seen upon restricting H to the two dimensional
subspace generated by given x e Q and y € Q).

Theorem 3.2, parts (a) and (b), and Theorems 5.1 and 4.2 are valid in the infinite
dimensional case as well.
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