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In this work, we revisit the linear gyro-kinetic theory of geodesic acoustic modes (GAMs)
and derive a general dispersion relation for an arbitrary equilibrium distribution function
of ions. A bi-Maxwellian distribution of ions is then used to study the effects of ion
temperature anisotropy on GAM frequency and growth rate. We find that ion temperature
anisotropy yields sensible modifications to both the GAM frequency and growth rate as
both tend to increase with anisotropy and these results are strongly affected by the electron
to ion temperature ratio.
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1. Introduction

Geodesic acoustic modes (GAMs) (Winsor, Johnson & Dawson 1968) are oscillating
axisymmetric perturbations that are unique to configurations with closed magnetic field
lines with a geodesic curvature, like tokamaks. They are the oscillating counterparts of the
zero-frequency zonal flow (Hasegawa, Maclennan & Kodama 1979) and are examples of
zonal structures. Zonal structures are of great interest to magnetic fusion reactors due to
their potential capabilities of generating nonlinear equilibrium (Chen & Zonca 2007) by
regulating microscopic turbulence and its associated heat and particle transport.

Geodesic acoustic modes have been largely studied in the literature, both analytically
(see Garbet et al. 2006; Smolyakov et al. 2008; Zonca & Chen 2008; Qiu, Chen & Zonca
2009; Chakrabarti et al. 2010; Zhang & Zhou 2010; Hassam & Kleva 2011; Zarzoso et al.
2012; Gao 2013; Girardo et al. 2014; Ren 2015; Ming, Zhou & Wamg 2018; Conway,
Smolyakov & Ido 2022) and numerically (see Biancalani et al. 2014; Novikau et al. 2017;
Grandgirard et al. 2019). A key aspect in the linear gyro-kinetic theory of GAMs is the
determination of mode frequency and damping rate. The GAM frequency is of the order
of the ion sound frequency, and its major damping mechanism is collisionless damping.
Analytical expressions of GAM frequency and growth rate can be found, for example,
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in Sugama & Watanabe (2006) and Qiu et al. (2009). These expressions were obtained
assuming Maxwellian distributions of ions and electrons with no temperature anisotropy.

Tokamak plasmas are generally modelled in analytical theory, assuming isotropic
Maxwellian distributions of ions and electrons. However, in reality, there can be several
sources of anisotropy in tokamak plasmas. Anisotropy in tokamaks can be introduced by
auxiliary heating such as neutral beam injection, which can generate a strong parallel
temperature anisotropy, whereas strong perpendicular temperature anisotropy can be
observed when using ion cyclotron resonance heating. Parallel and perpendicular here
are defined with respect to the equilibrium magnetic field. Generally, ion temperature
anisotropy, both gyro-tropic and non-gyro-tropic, can be generated due to the action of
the traceless rate of shear, which anisotropically heats the in-plane components of the
pressure tensor by tapping kinetic energy from shear flow when the local gradient of the
ion fluid velocity, say ω ∼ ‖∇ui‖, is not negligible with respect to the local ion cyclotron
frequency Ωi and the collision rate (Del Sarto, Pegoraro & Califano 2016). This condition
is likely to occur in developed turbulence, since it can be verified on vorticity sheets
delimiting vortex structures (Del Sarto & Pegoraro 2018a). In particular, as long as the
ratio ω/Ωi remains small enough, the generated anisotropy is mostly gyro-tropic and thus
compatible with a gyro-kinetic description (Del Sarto & Pegoraro 2018b) and it can be
thus related to the first-order finite-Larmor radius corrections to double-adiabatic closures
(Kaufman 1960; Thompson 1961; Macmahon 1965; Cerri et al. 2013). Sasaki et al. (1997)
measured reasonably high ion temperature anisotropy in EXTRAP-T2, and large pressure
anisotropies have also been reported in Hole et al. (2001) and Hole et al. (2011). Ren & Cao
(2014) studied the impact of ion temperature anisotropy on GAM frequency and growth
rate in the limit of a vanishing electron to ion temperature ratio, with ions described by a
bi-Maxwellian distribution. Those authors found that ion temperature anisotropy modifies
the linear dynamics of GAMs. However, the GAM dynamics is known to strongly depend
on the electron to ion temperature ratio (see Sugama & Watanabe 2006; Zonca & Chen
2008; Qiu et al. 2009; Biancalani et al. 2014). Hence, a finite electron to ion temperature
ratio must be retained in a complete linear theory of GAMs.

In this work, we investigate the linear dynamics of GAMs with a bi-Maxwellian
distribution of ions and assuming adiabatic electrons, as in Zonca & Chen (2008) and
Sugama & Watanabe (2006). We generalize the work of Ren & Cao (2014) to a general
value of electron to ion temperature ratio and by keeping account of a gyro-tropic ion
temperature anisotropy, using an approach based on the standard limit of small finite orbit
radius and small finite orbit width, kept up to the leading order (consistently with Zonca,
Chen & Santoro (1996) and Zonca & Chen (2008)). We show that in the appropriate
limits, we recover the GAM dispersion derived in Ren & Cao (2014), Zonca & Chen
(2008) and Girardo et al. (2014) from the general GAM dispersion relation which we
here obtain. From our study, we find that the ion temperature anisotropy yields a sensible
modification to both the real and imaginary parts of the frequency, as both tend to be
increasing functions of χ = T⊥,i/T‖,i, and this result is strongly affected by the electron
to ion temperature ratio, τ = Te/Ti. The equivalent ion temperature Ti is defined such
that it corresponds to the same total pressure as that of the anisotropic distribution
(Ti = T‖,i/3 + 2T⊥,i/3).

This first section is an introduction, which describes the motivations for this work. In § 2,
we derive a general linear GAM dispersion relation for an arbitrary distribution function.
In § 3, we solve the dispersion relation with a bi-Maxwellian distribution of ions and study
the impact of ion temperature anisotropy and electron to ion temperature ratio on GAM
frequency and growth rate. We apply our theory to an experimentally relevant case in § 4
and conclusions are reported in § 5.

https://doi.org/10.1017/S0022377823000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000016


Effect of temperature anisotropy on geodesic acoustic modes 3

2. The model for a general distribution function

In this section, we use the gyro-kinetic formalism to study the physics of GAMs in the
electrostatic limit. The fundamental equations of this model are the gyro-kinetic Vlasov
equation (2.1) and Poisson equations (2.2):

∂fs

∂t
+ Ṙ · ∂fs

∂R
+ Ė

∂fs

∂E
= 0, (2.1)

−∇ ·
(

n0,imic2

B2
∇⊥Φ

)
=

∫
dWiZieJ0,ifi −

∫
dWeefe, (2.2)

where fs is the distribution function of a given species, R the particle position vector, E =
(ms/2)(v2

‖ + v2
⊥) the particle energy, e the electron charge, n0,s the equilibrium density of

a species s, m the particle mass, c the speed of light, B the magnitude of magnetic field, Zs
the species charge number, J0,i the ion gyro-average operator and dWs a volume element
in velocity space.

We make the following assumptions:

(i) We consider adiabatic electrons.
(ii) We neglect magnetic fluctuations.

(iii) We use flat density and temperature profiles.

2.1. Linear analysis
We linearize the Vlasov and quasi-neutrality equations by splitting each quantity into an
equilibrium and a perturbed component, such that

fs = f0,s + f1,s, (2.3)

Ṙ = Ṙ0 + Ṙ1, (2.4)

Ė = Ė0 + Ė1, (2.5)

Φ = Φ1, (2.6)

where Ṙ0 is the unperturbed particle velocity, i.e. Ṙ0 = v‖ + v∇B + vcurvB, and E0 =
(m(v2

‖ + v2
⊥))/2.

2.2. Linear Vlasov equation
Substituting (2.3)–(2.6) in (2.1), and neglecting second- and higher-order terms, the linear
Vlasov equation reads

∂f1,s

∂t
+ Ṙ0 · ∂f1,s

∂R
= −Ė1

∂f0,s

∂E
. (2.7)

This linear Vlasov equation can be further simplified by splitting the perturbed distribution
function into an adiabatic and a non-adiabatic component:

f1,s = E1
∂f0,s

∂E
+ hs. (2.8)

Substituting (2.8) in (2.7), we obtain the equation for the non-adiabatic part of the
perturbed distribution function:

∂hs

∂t
+ Ṙ0 · ∂hs

∂R
= −Ė1

∂f0,s

∂E
. (2.9)
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Using the expression of the equilibrium velocity and perturbations of the form x −→
exp (ikr − iωt) + c.c. in (2.9), we obtain the expression

(
ωt,s

∂

∂θ
− i(ω + ωd,s)

)
hs = iωE1

∂f0,s

∂E
, (2.10)

where ωt = v‖/qR0 is the transit frequency, q is the safety factor, ωd,s = ω̄d,s sin θ is the
drift frequency, with ω̄d,s = (cmskr/ZseB0R0)(v

2
‖ + v2

⊥/2), E1 = ZseJ0,sΦ1 and kr is the
radial wavenumber. Since GAMs are predominantly zonal, we can further divide the
non-adiabatic part of the perturbed distribution function into a zonal and a non-zonal part:

h = h̄ + δh. (2.11)

Similarly, we write the scalar potential as

Φ1 = Φ̄ + Φ̃, (2.12)

where the overbar represents the zonal components. Using these definitions, and making
a flux surface average of the gyro-kinetic equation to eliminate the zonal component of
the non-adiabatic part of the perturbed distribution function, the linear Vlasov equation
reduces to (

ωt,s
∂

∂θ
− i(ω + ωd,s)

)
δhs = iZs

∂f0,s

∂E

(
ωJ0,sΦ̃ − ωd,sJ0,sΦ̄

)
. (2.13)

The corresponding vorticity equation is obtained by multiplying this relation by the
gyro-average operator and integrating over the velocity space:

〈
J0,s

(
ωt,s

∂

∂θ
− i(ω + ωd,s)

)
δhs

〉
W

=
〈
iZs

∂f0,s

∂E

(
ωJ2

0,sΦ̃ − ωd,sJ2
0,sΦ̄

)〉
W

. (2.14)

Considering all the changes of variable we have made, the perturbed distribution function
has the form

f1,s = ZseJ0,s
∂f0,s

∂E
Φ̃ + δhs. (2.15)

2.3. Linear quasi-neutrality equation
Using a similar approach, we substitute (2.3) and (2.6) into (2.2) and we thus obtain the
following equation:

mic2

B2
k2

r Φ̄ = e2

〈
J2

0,i
∂f0,i

∂E

〉
W

⎛
⎜⎜⎝1 +

〈
J2

0,e
∂f0,e

∂E

〉
W〈

J2
0,i

∂f0,i

∂E

〉
W

⎞
⎟⎟⎠ Φ̃ + e

〈
J0,iδhi

〉
W , (2.16)

where 〈· · · 〉W represents the integral over velocity space. The non-adiabatic part of
the perturbed electron distribution function has been neglected in accordance with our
assumptions.
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2.4. Ordering of the gyro-kinetic equation
The gyro-kinetic equation (2.13) describes a wide range of phenomena at different time
scales. In order to study GAMs, we need to apply an appropriate ordering that will filter
out time scales which are irrelevant to GAM dynamics. The GAM frequency is of the
order of ion sound frequency. The ordering is done by comparing this frequency with the
characteristic frequencies in our system, i.e. ωt,s, ωd,s:

ωt,i

ω
∼ O(1),

ωd,i

ω
∼ O(ε),

δhi

f0,i
∼ O(ε), (2.17a–c)

ωt,e

ω
� 1,

ωd,e

ω
∼ O(1),

δhe

f0,e
∼ O(ε). (2.18a–c)

To leading order, the ion and electron gyro-kinetic equations are, respectively,

(
ωt,i

ω

∂

∂θ
− i

)
δhi = iZie

∂f0,i

∂E

(
J0,iΦ̃ − J0,i

ωd,i

ω
Φ̄
)

, (2.19)

δhe = 0. (2.20)

2.5. General form of dispersion relation
We consider the following form for the non-zonal perturbed ion distribution function and
scalar potential:

Φ̃ = Φ̃s sin θ + Φ̃c cos θ, (2.21)

δhi = δhi,s sin θ + δhi,c cos θ. (2.22)

Substituting these relations into (2.19) and separating the sine and cosine components, we
obtain

δhi,s =
iZiJ0,i

∂f0,i

∂E(ωt,i

ω

)2
− 1

[
−i

(
Φ̃s −

(
ω̄d,i

ω

)
Φ̄

)
+ ωt,i

ω
Φ̃c

]
, (2.23)

δhi,c = −
iZiJ0,i

∂f0,i

∂E(ωt,i

ω

)2
− 1

[
ωt,i

ω

(
Φ̃s −

(
ω̄d,i

ω

)
Φ̄

)
+ iΦ̃c

]
. (2.24)
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Following the same procedure with the quasi-neutrality equation:

Φ̃c = −
〈
J0,iδhi,c

〉
W

e
〈
J2

0,i
∂f0,i

∂E

〉
W

⎛
⎜⎜⎝1 +

〈
J2

0,e
∂f0,e

∂E

〉
W〈

J2
0,i

∂f0,i

∂E

〉
W

⎞
⎟⎟⎠

, (2.25)

Φ̃s = −
〈
J0,iδhi,s

〉
W

e
〈
J2

0,i
∂f0,i

∂E

〉
W

⎛
⎜⎜⎝1 +

〈
J2

0,e
∂f0,e

∂E

〉
W〈

J2
0,i

∂f0,i

∂E

〉
W

⎞
⎟⎟⎠

. (2.26)

Taking the flux surface average of the quasi-neutrality equation (2.19) and the vorticity
equation (2.14), we have, respectively,

mic2

B2
k2

r Φ̄ = e
〈
J0,iδhi

〉
W, (2.27)

〈
J0,iδhi

〉
W = −

〈
J0,iωd,iδhi

〉
W

ω
. (2.28)

Substituting (2.28) into (2.27) and evaluating the flux surface average, we obtain

2mi

B2
k2

r Φ̄ = − e
c2ω

〈
J0,iω̄d,iδhi,s

〉
. (2.29)

Substituting (2.23), we obtain the general dispersion relation of GAMs to leading order:

2mic2k2
r

B2
Φ̄ = −e2ω

〈J2
0,iω̄d,i

∂f0,i

∂E
ω2

t,i − ω2

〉
W

Φ̃s + e2

〈J2
0,iω̄

2
d,i

∂f0,i

∂E
ω2

t,i − ω2

〉
W

Φ̄. (2.30)

3. Bi-Maxwellian case
3.1. Derivation of dispersion relation

To evaluate the integrals over the velocity space given in the general linear GAM
dispersion relation equation (2.30), we have to choose an equilibrium distribution function
for ions. In this work, we consider it to be a bi-Maxwellian, while a regular Maxwellian is
used for electrons. The ion distribution function is normalized such that its integral over
velocity space equals one (n0,i = 1). We take J0,i = 1 (drift kinetic limit):

f0,i =
(

mi

2πT‖

)1/2 ( mi

2πT⊥

)
exp

[
−mi

2

(
v2

‖
T‖

+ v2
⊥

T⊥

)]
. (3.1)

By defining an equivalent temperature, Ti = T‖,i/3 + 2T⊥,i/3, the bi-Maxwellian can be
written in the form

f0,i = b3/2

π3/2v3
t χ

exp

[
−b

(
v2

‖ + v2
⊥χ−1

v2
t

)]
, (3.2)
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where b = (2χ + 1)/3, with χ = T⊥,i/T‖,i, vt = √
2Ti/m and E = (m/2)(v2

‖ + v2
⊥). We

have
∂f0,i

∂E
= − b

Ti
f0,i. (3.3)

Equation (2.26) then reduces to

Φ̃s =
ω

〈
ω̄d,if0,i

ω2
t − ω2

〉
W

1 + 1
τb

+ ω2

〈
f0,i

ω2
t − ω2

〉
W

Φ̄, (3.4)

where τ = Te/Ti. Substituting this result in the general dispersion relation, we have

2mic2k2
r

B2
+ e2b

Ti

⎡
⎢⎢⎢⎣
〈

ω̄2
d,if0,i

ω2
t − ω2

〉
W

−
ω2

〈
ω̄d,if0,i

ω2
t − ω2

〉2

W

1 + 1
τb

+ ω2

〈
f0,i

ω2
t − ω2

〉
W

⎤
⎥⎥⎥⎦ = 0. (3.5)

These three velocity integrals once evaluated read

〈
ω̄d,if0,i

ω2
t − ω2

〉
W

= cmikrv
2
t

eB0R0bω2
0y

[
y +

(χ

2
+ y2

)
Z( y)

]
, (3.6)

〈
ω̄2

d,if0,i

ω2
t − ω2

〉
W

=
(

cmikrv
2
t

eB0R0b

)2 1
ω2

0y

[
y
2

+ y3 + yχ +
(

χ 2

2
+ χy2 + y4

)
Z( y)

]
, (3.7)

〈
f0,i

ω2
t − ω2

〉
W

= 1
ω2

0

Z( y)
y

, (3.8)

where Z( y) is the plasma dispersion function and

y = ω

ω0
, ω0 = vt

qR0
√

b
. (3.9a,b)

Then (3.5) becomes

y + q2

[
F( y) − N2( y)

D( y)

]
= 0, (3.10)

with

F( y) = y
2

+ y3 + yχ +
(

χ 2

2
+ y2χ + y4

)
Z( y), (3.11)

N( y) = y +
(χ

2
+ y2

)
Z( y), (3.12)

D( y) = 1
y

(
1 + 1

τb

)
+ Z( y). (3.13)
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3.2. Comparison with fluid limit and with previous results
In the limit χ = 1, we recover the GAM dispersion relations in Zonca & Chen (2008),
Zonca et al. (1996) and Girardo et al. (2014). In the fluid limit, we can show that the
dispersion relation equation (3.10) reduces to

ω2 =
(

3
4

+ χ

2
+ χ 2

2
+ bτ

(
χ 2

4
+ χ

2
+ 1

4

))
v2

t

bR2
0
. (3.14)

If we consider the isotropic limit of this fluid dispersion relation, we obtain
ω2

GAM = (7/4 + τ)(v2
t /R2

0), which is the same GAM dispersion relation obtained using
magnetohydrodynamics with a double adiabatic closure (Smolyakov et al. 2008). The
GAMs are special types of sound waves and, as sound waves, their frequency strongly
depends on the equilibrium pressure. Considering the magnetohydrodynamic description
of GAMs with a double adiabatic closure, χ in our work is equivalent to the ratio p⊥,0/p‖,0,
with p⊥,0 the equilibrium perpendicular pressure and p‖,0 the equilibrium parallel pressure.
So increasing χ for a fixed p‖,0 is equivalent to changing the equilibrium perpendicular
pressure, which directly modifies the GAM frequency due to its dependence on the
equilibrium pressure. This explains the global growing dependence of both the growth rate
and frequency on χ , which is evident in the figures presented below. The GAM frequency
can be written in terms of the equilibrium parallel and perpendicular pressures as follows
(neglecting τ ):

ω2
GAM =

(
3
2

+ p⊥,0

p‖,0
+ p2

⊥,0

p2
‖,0

)
p‖,0
ρ0R2

0
, (3.15)

where ρ0 is the equilibrium mass density. The dispersion relation equation (3.10) can be
written in the following form by substituting (3.11), (3.12) and (3.13) in (3.10):

1
bτ

[
1
q2

+ 1
2

+ χ + y2 +
(

y3 + yχ + χ 2

2y

)
Z( y)

]

+
[

1
q2

+ 1
2

+ χ + yZ( y)
q2

+
(

y
2

+ yχ + χ 2

2y

)
+ χ 2

4
Z( y)2

]
= 0. (3.16)

3.3. Asymptotic behaviour: case τ → 0
In this limit, the first term in the square brackets is large compared with the second term.
Neglecting this second term, we recover the dispersion relation in Ren & Cao (2014):

1
q2

+ 1
2

+ χ + y2 +
(

y3 + yχ + χ 2

2y

)
Z( y) = 0. (3.17)

Figure 1 shows the frequency and growth rate obtained from the complete dispersion
relation (3.10) (blue curve) and the same quantities obtained in the τ → 0 limit (red curve).

3.4. Asymptotic behaviour: case τ → ∞
In this limit, the terms in the second square brackets in (3.16) are larger in comparison
with those in the first. So the dispersion relation reduces to

1
q2

+ 1
2

+ χ + yZ( y)
q2

+
(

y
2

+ yχ + χ 2

2y

)
+ χ 2

4
Z( y)2 = 0. (3.18)
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FIGURE 1. (a) Frequency. (b) Growth rate.
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FIGURE 2. (a) Frequency. (b) Growth rate.

Figure 2 shows the frequency and growth rate obtained from the complete dispersion
relation (3.10) (blue curve) and those obtained in the τ → ∞ limit (red dashed curve).

In the following sections, we solve the complete dispersion relation, (3.10), with values
of τ that are more realistic for tokamak plasmas.

3.5. Effect of ion temperature anisotropy on GAM frequency and growth rate
The GAM frequency and growth rate increase with χ (figure 3). However, the growth rate
saturates for values of the parameters for which the instability becomes marginally stable.
This saturation occurs at lower values of χ for higher values of q. It should be noted that
the growth rate at higher values of q is overestimated, since damping effects due to finite
orbit width are not considered in our model. These effects tend to be more important when
q increases (Biancalani et al. 2014). Similar results were obtained in Ren & Cao (2014).
The regime of validity of our model is the plasma core. This is the region of excitation
of energetic-particle-induced GAMs (EGAMs). Incidentally, the zonal flow residual level
(Cho & Hahm 2021) can be enhanced by the anisotropic energetic particle distribution
dominated by barely passing/barely trapped particles or by deeply trapped particles (Lu
et al. 2019).
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FIGURE 3. (a) Frequency. (b) Growth rate.

3.6. Effects of electron to ion temperature ratio
In this section, we study the effect of a finite τ (this parameter was neglected in Ren &
Cao 2014). Figure 4(a,b) shows the effects of χ on GAM frequency and growth rate for
two different values of τ . We observe, as expected, that these quantities are increasing
functions of χ . However, there is a significant increase in frequency and growth rate
with τ . Figure 4(c,d) shows the variation of GAM frequency and growth rate with τ for two
values of χ . We recover the isotropic τ dependence of GAMs (i.e. increasing frequency
with increasing τ ). This effect is more pronounced for higher values of χ in the anisotropic
case. Figure 5 shows the effect of τ on GAM frequency and growth rate for two different
values of the safety factor q and for a fixed χ . We observe stronger damping for smaller
values of q. This confirms the fact that even in the anisotropic case, GAMs are more
stable in the core than at the edge of the tokamak plasma, where the safety factor q has
large values. We can conclude from figures 4 and 5 that GAM frequency and growth rate
significantly increase with τ and neglecting this parameter can lead to an underestimation
of the frequency and to an overestimation of the damping rate.

4. Application to an experimentally relevant case

In this section, we apply the theory we have developed to a case of likely experimental
relevance. For simplicity, we consider the case where the electron to ion temperature ratio
is one (τ = 1), which is compatible with experimental conditions. Sasaki et al. (1997)
studied the ion temperature anisotropy in the reverse field pinch device EXTRAP-T2. In
that work, χ ∼ 0.5 was measured. We here assume such values of χ are comparable with
those that can be measured in tokamaks. To plot the GAM frequency spectrum for values
of this parameter, we use the safety factor profile from the experimental benchmark test
case selected for NonLinear Energetic-particle Dynamics EuroFusion project for Asdex
Upgrade (NLED-AUG) (Vlad et al. 2021).

Figure 6 shows that the frequency spectrum of GAMs is very sensitive to the safety
factor in the presence of ion anisotropy (Figure 7 shows the NLED-AUG safety factor
profile used for these plots). This is particularly true closer to the plasma core where
the GAM damping rate is almost an order of magnitude higher than in the isotropic case
(damping due to finite orbit width which is important at higher values of q is not considered
in this work). Even though GAMs are heavily damped in the core in the presence of
anisotropy, as shown in figure 6, the core dynamic of GAMs is, however, important, since
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FIGURE 4. Effects of τ : (a,c) frequency; (b,d) growth rate.
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FIGURE 5. Effects of τ : (a) frequency; (b) growth rate.

it can significantly modify the interaction of GAMs and energetic particles in the core,
which leads to the so-called EGAMs (Fu 2008; Vannini et al. 2021; Rettino et al. 2022).

5. Conclusion

Zonal structures are axisymmetric perturbations that are nonlinearly generated by
turbulence in fusion plasmas. There are two main types of zonal flows, namely the
zero-frequency zonal flow and its finite-frequency counterpart, the GAM. The GAMs are
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(r) for the set of parameters of potential experimental relevance discussed in § 4.
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unique to configurations with closed magnetic field lines with a geodesic curvature, like
tokamaks. The GAM frequency is of the order of the ion sound frequency, and its major
damping mechanism in fusion plasma is collisionless damping (ion Landau damping).
The GAMs are of interest to future magnetic fusion devices due to their potential role in
regulating microscopic turbulence and its associated heat and particle transport.

In this work we revisited the linear gyro-kinetic theory of GAMs with adiabatic
electrons described by a Maxwellian distribution function by including the effects
of kinetic ions displaying a gyro-tropic temperature anisotropy modelled with a
bi-Maxwellian distribution. We thus extended the linear GAM theory with an anisotropic
ion temperature to include a general value of the electron to ion temperature ratio and we
derived a general linear dispersion relation for an arbitrary ion distribution function. In
the appropriate limit of a negligible electron to ion temperature ratio, we thus recovered
the GAM dispersion relation in Ren & Cao (2014). Solving the dispersion relation for the
GAM frequency and damping rate for the more general case of interest here, we found that
the ion temperature anisotropy yields non-negligible changes to both the GAM frequency
and damping rate, as both tend to be increasing functions of χ = T⊥,i/T‖,i. The ion Landau
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damping is confirmed to be stronger for smaller values of the safety factor. These features
become more pronounced when a finite electron to ion temperature ratio is considered. The
values of the frequency and growth rate for a given χ increase significantly as τ = Te/Ti
increases. Hence, the effect of τ on GAM dynamics is not negligible and must be included
in a complete model.

We applied our theory to a scenario of potential experimental relevance by using the
safety factor profile from the NLED-AUG experimental benchmark test case and assuming
the ion temperature anisotropy in tokamaks is close to that measured in the reversed field
pinch device EXTRAP-T2. Plotting the frequency spectrum and the damping rate as a
function of position (while restricting for simplicity to the case of equal total electron and
ion temperature), we find that in this scenario the core dynamics of GAMs is significantly
modified in the presence of ion temperature anisotropy. Such a modification of the core
dynamics of GAMs can impact the the interaction of GAMs and energetic particles in the
plasma core.

In future works, we shall extend this linear theory of GAMs with inclusion of ion
anisotropy effects in order to study the interaction of GAMs and energetic particles
in the plasma core (EGAMs), since we have seen that the linear core dynamics of
GAMs in relevant experimental scenarios is significantly modified by the ion temperature
anisotropy.
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