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1. Introduction

It is well-known that a homomorphism cj)(A-yB) between groups A and B
induces a homomorphism <j)*(ZA-yZB) between the corresponding group rings
ZA and ZB over the ring of integers Z. The identical congruence O on B and
the unit element eB of B can be characterised by the equations x—y = 0 and
x—eB = 0 (x, ye B) respectively. Similarly the congruence r^, corresponding
to (f> and the corresponding normal subgroup of A are

and {xe A1 = A, {x—eA)(j> = 0} respectively. Suppose that instead of groups
we choose any class L of algebraic systems each with a binary operation
(groupoids), and replace x—y or x—eA by a fixed polynomial P(x), where
x = (jq, ..., xn), defined for all groupoid rings ZA (A eL). Then the P-kernel
of the homomorphism <j> from A to B (A, B e L) can in general be defined by
N^ = {(*) e A", P(x)<l> = 0}. It seems desirable that (a) the P-kernels can be
characterised, independently of homomorphisms, as those subsets of A" which
are /"-closed with respect to an appropriate closure operation ClP, {b) given any
P-closed set N £ A", the P-factor groupoid (A[N)P and the homomorphism
r\ : A-y{AjN)P with P-kernel N correspond canonically to N and (c) the corres-
pondence r^N^ is monotone, as in the case, for example, of semigroups A
with zero element OA, with respect to the polynomial x— OA.

Following this approach, G. Losey (6) has found that, by specifying P,
various known results on kernels for groupoids can be included in the theory.
However, at a crucial point ((6), p. 132, proof of Theorem 3.4), Losey seems to
have confused the zero element of the groupoid ring Z(A/N)P with the zero
element of the factor ring ZA with respect to the kernel {0}rj* ~X of the mapping
rj* : ZA-*Z(A/N)P. Thus the proofs of all the theorems in (6) concerning the
P-factor groupoid (A/N)P and the identification of P-kernels with P-closed sets
contain a gap. The example of the class of all groupoids with P(x) = x as the
polynomial shows easily that the theorem in question is certainly not valid in
the generality asserted. In this note it is shown that the gap can be closed if the
polynomial P satisfies a crucial but necessary and sufficient condition. In
many important cases this condition is fulfilled.
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At the same time the concept of groupoid ring is so generalised that any
(not necessarily binary) algebra can be included. Then P can be denned by a
positive formula in a first order predicate calculus with identity.

The author gratefully acknowledges the assistance of Mr G. Martin and
Professor E. M. Patterson of Aberdeen in translating and submitting the paper.

2. The algebra-ringoid ZA

Let L be a class of universal algebras of the same finitary type Q with ground
operations <xeQ. If A e L, let ZA be the aggregate of formal sums £ n(ci)a,

aeA

with coefficients fi{a) from the ring of integers Z, such that /i(a) = 0 for all but
a finite number of elements ae A. Two such sums with coefficients n(a), v(a)
are equal precisely when n{a) = v(a) for each ae A. Given an «-ary operation
a e Q, where n ^ 1, we write

( Z a, ••., £ ^n(a)a) = £ ••• £ M"i)-C»W«(fli "«)
aeA aeA aieA aneA

and for each constant operation cc = ae A,v/e write a = la. Then ZA becomes
an algebra of the same type as A: that is, of type Q. If we write

£ Ka)a+ £ v(a)a = £ (/i(a) + v(a))a,
a eX aeA aeA

then Zyi becomes an additive abelian group. Henceforth we shall regard ZA
as an algebra of the type Qu{+} and call this algebra the algebra-ringoid of A
overZ. This clearly generalises the concept of groupoid ring. Ifs, su ...,sneZA,
n S; 1 and aed, the distributive law holds in the generalised form

= a (5 1 ; . . . , S;_i, Si, Si+l, ..., Sn) + CC{S1, ..., Si-i, S, S(+i, . . . , Sn).

In general, we shall call an algebra R of the type £Su{+} a ringoid whenever the
( + )-structure R+ of R determines an abelian group and the above distributive
law is satisfied. The Q-structure of R will be denoted by Rn. This concept of
ringoid is not the same as that of (2), nor is it the same as the concept of Q-
ringoid of (3). Since our ringoids are closely related to rings, they could also
be called Q-rings. From the distributive law with s = 0 it follows that

a(sx, ...,si-l,0,si+u ...,sn) = 0 (n ^ 1).

The correspondence b-+ £ Ka)fl> where fi(a) = 1 if a = b and fi(a) = 0
aeA

ifa^b, determines an isomorphism of A into {ZA)a; we may therefore identify
be A with its image in ZA.

Any homomorphism <j>(A-+B) from A into B, where A, BeL, can be exten-
ded linearly to a ringoid-homomorphism <f>*(ZA-+ZB) by writing

£
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Conversely, any ringoid-homomorphism 0(Z/4->l?) of ZA into a ringoid R
induces a homomorphism of the algebra A £ (ZA)n into a subalgebra of Rn.
If (t>(Rl->R2) is a ringoid-homomorphism, then

is called the kernel of 0. The kernel {O}^*"1 of the linear extension 0*(Z/l->Zfl)
of <j)(A-+B) is also called the r-kernel K$ of the homomorphism 0.

A non-empty subset K of a ringoid R is called a subringoid of /? if # is a
ringoid with respect to the operations denned in R; K is called an /We#/ of R
if for all s e K, su ..., sae R and all a. e Q, we have

«(.$,, . . . , « , - _ ! , j , 5 i + 1 , . . . , s , ) e ^ (« ^ 1)

and f̂ is a subgroup of /{ + . The kernel {O}0-1 of a ringoid-homomorphism
<j>(Rl->R2) is an ideal of JRt. Conversely, any ideal /Tof a ringoid i? corresponds
canonically to a factor ringoid R/K = { i + ^ , s e i ?} and a homomorphism
R-+R/K denned by s-*s + K. For <j>(Rl-*R2), RX4> is a subringoid of i?2

 a n d
J?!0 s /JJA:, where K = {O}^"1. If AeL, if K is an ideal of Z/4 and
ri(ZA-*(ZA)IK) is the canonical homomorphism, then ?; induces a homomor-
phism jj of 4̂ S (Zy4)n onto a subalgebra ,4f/ s {(ZA)/K)a; we also denote
/Ijj by 4̂/A" and call fj(A-*AIK) the canonical homomorphism.

2.1. Lei <f>(A-+B) be a homomorphism of A into B (A, Be L) with r-kernel
K,p and let n^A^AjK^) be the canonical homomorphism. Then there exists a
unique isomorphism ^(A/K^^B) such that t]<fi = </>. (Compare (6), p. 130,
Theorem 2.2).

Proof. If F^ denotes the congruence on A corresponding to <j), then
Ftf, = T,, since if (a, b) 6 A x A then
{a, b) e r # o a<j) = 60 o (a-6)0* = 0 o a-b e K^,

oa + K^, = b + K^oat] = bn o (a, b) e Tn-

Like Theorem 2.1 of (6), p. 130, we can prove:

2.2. / / {at}i ei is a representative system of the congruence classes of AeL
with respect to the congruence F ^ on A corresponding to the homomorphism
<t>(A-+B), then

A/V = {a-at | a e A, {a, a,) e ^ , M ah i e /}

is a Z-basis for the r-kernel K$ of 0.

Similarly Theorems 2.3 and 2.4 of (6), p. 131, can be extended to our case.
An ideal of ZA which coincides with the r-kernel K$ of a homomorphism

0(/4-»B) we shall also call an r-kernel of A. From {a, b) e F^ oa—b e K^ for
alia, be A, together with 2.2, we get

2.3. The correspondence T^-yK^, determines an isomorphism of the lattice
of congruences on A e L onto the lattice of all r-kernels of A.

This proposition incidentally has an interesting application in the theory of
semigroups. Since the lattice of congruences on A can be imbedded in the
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lattice of ideals of ZA, we can prove directly Redei's theorem that any com-
mutative semigroup A which can be finitely generated is Noetherian: that is, A
satisfies the maximal condition for congruences. For if A is generated by n
elements and Z{x), where [xj = [JCJ, ..., xn], is the polynomial ring in n indeter-
minates over Z, then ZA is a homomorphic image of the subring R £ Z[x] of
all polynomials with zero constant term. Since every ideal of R is also an ideal
of the Noetherian ring Z[x~\, then R and therefore ZA and A are Noetherian.
(Compare (1), p. 88).

3. The closure operation ClP

We now make our prerequisites concerning the class L more precise by
adding that L is to be closed under the operation of taking homomorphic
images. Let A denote the class of all surjective homomorphisms of algebras of
L. For a natural number n, let A" denote the nth cross-product A x ... x A and
let {ZA)n denote ZA x ... xZA.

With each algebra AeLv/e associate a function P{A"^ZA) with the follow-
ing property:

3.1. P(au ..., an)<t>* = P ( o i 0 , . . . , an<t>)

for all au ..., ane A and all <f>(A->B) e A.

This condition is satisfied for example when for P we choose a fixed poly-
nomial P(xu ..., xn) in n indeterminates xu ..., xn, formed with the operations
of Qu{+}. More generally, suppose that we define a function P((ZA)"-+ZA)
as follows: let p(x0, xu ..., xn) be a given positive formula in the first order
predicate calculus with identity over the predicate domain Qu{+}. For all
ZA (such that AeL) let

3.2. AX1..,AXnVX0p(x0,Xu...,Xn)

be the defining condition, and let

3.3. Ax0Ay0Ax1...Axn(p(x0,x1,...,xn)Ap(y0,xl,...,xn)^-x0 = y0)

be the condition of unambiguity. Then for all s0, st, ..., sn eZA, write

•So = POi, ••-, sn) o p(s0, su . . . , sn).

This definition obviously remains meaningful when su ..., sn are restricted to
A s ZA and similarly A ^ . - . A ^ i n 3.2 and 3.3 are restricted to A, but in this
case P naturally has the form P(A"^>ZA). Again 3.1 is satisfied. The relation
3.1 is even valid for all homomorphisms 4> of A into B (A, BeL) when the
universal quantifier A does not occur in the positive formula p. But, since we
shall only consider surjective homomorphisms, this restriction is superfluous.
On the other hand, our results are valid with certain modifications even for
homomorphisms which are " into " if 3.1 is satisfied for such homomorphisms.
(For example, in the statement of 3.6, = would be replaced by s ) .

Let N be a subset of A" and let AP(N) be the ideal of the ringoid ZA (where
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A e L) generated by all elements of the form P(a), where (a) = [au ..., an) e N.
Evidently if N = 0, then AP(N) = {0}. Further, let

ClP(N) = {(a) e A", P{a) e AP(N)}.

In particular, ClP{0) = IP(A) =D c f {(a) e A", P(a) = {0}}. A subset N £ A" is
said to be P-closed whenever N = ClP(N). The following result can easily be
verified.

3.4. ClP is a closure operation in the lattice 3P(An) of all subsets of A".

Thus the aggregate "VP(A) of all P-closed subsets of A" is a closure system
of SP(A") and so is a complete lattice. Its smallest element is IP(A) and its
largest element is An. From the definitions of AP(iV) and ClP(N) we can immedi-
ately deduce the following:

3.5. The correspondence N^AP(N) determines an isomorphic mapping of the
lattice VP(A) into the lattice J{ZA) of ideals of the ringoidZA.

Just as in Lemma 3.2 of (6), p. 132, we can prove:

3.6. For all N £ A" and all <p(A^>B) e A,

Here 4>n(An-±Bn) is defined by

(au ...,an)(t>" =
For N s 5" we also define N(f>-" to be

Let tj/(E-*F) be a monotone mapping of a partial ordering E into a partial
ordering F; in agreement with (9), (10), we call \j/ fully infimum-true or, more
briefly, 8-true, whenever for all subsets M E £ such that inf M exists in E,

{y e F, y ^ x\j/ for all x e M} => y ^ (inf M)\p.

Using this terminology the following proposition, which generalises Theorem
3.3 of (6), p. 132, can be deduced from 3.6.

3.7. For 4> = (j)(A-+B) e A, the mapping of 0>{Bn) into ^(A") given by
N-*N(j)~n, N s B", induces a 8-true mapping oj'VP(B) into yP{A).

4. P-factor algebras and P-kemels

Given a P-closed subset iV £ A", we call (A/N)P =D e f A/AP(N) the P-factor
algebra of A with respect to N.

Given (j>(A^B) e A we call Ip(B)<f>~n the P-kernel of <p.
It follows from 3.7 that the P-kernel of ^ is a P-closed subset of A". We

observe that for all (a) e A" and all cf)(A-*B) e A we have

(a)eIP(B)(t)-'1 o (a)<f>neIP(B) o P((a)^>n) = PiflW = 0 <*> P(a)eK^.

The homomorphism $(-4->fl) e A is called P-/rwe whenever the P-kernel of
<f> is equal to IP{A).

Given an ideal A: of ZA let A# be the Z-submodule of (ZA)+ generated by
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all elements of K of the form a — b, where a, be A. Clearly AK is also, like K,
an ideal of ZA. It can easily be seen that A defines a closure operation in the
lattice J(ZAy dual to J(ZA). For the canonical mapping n(A-+A/K) we
obviously have Kn = AK and A/K ̂  A/Kn. Conversely K$ = AK$ holds for
all <f>. Thus given an ideal K of ZA the relation K = AK holds precisely when
K = K$ for some suitable 0 = <j>(A->B) e A.

4.1. For any P-closed subset N £ A" the following statements are equivalent:

a) AP(N) = AAP{N),

b) the P-kernel of the canonical homomorphism n(A-*(A/N)P) is equal to N.

Proof. a)=> b). On the one hand

(a) e IP(A/AP(N))r)-" o P(a) e Kn = AAP(N)

and on the other hand

(a)eNoP(a)eAP(N).

Thus, since AP(7V) = AAP(N), b) holds.

b) => a). By hypothesis,

P(a) e AAP(N) o P(a) e AP(N)
holds for all (a) e ̂ 4". Since this is true in particular for (a) e N, and since AP(N)
is generated by all ^(a) where (a) e ./V, it follows that

AP(W) = AAp(Af).

The validity of the complicated condition 4.1 a) can be verified in many
cases from the following sufficient and easily recognisable criterion.

4.2. Condition 4.1 a) is satisfied when for all (a) e A" and all ideals K of
ZA we have

a) P(a) e K => P{a) e AK.

This condition is equivalent to

b) P(a) € A(P(a))for all (a) e A",

where (P(a)) denotes the ideal of ZA generated by P(a) (principal ideal).

From 3.7 and 4.1 we get:

4.3. Assuming that 4.1 a) holds for all N e "VP(A), the P-kernels are identical
with the P-closed subsets of A".

Theorem 3.4 of (6), p. 132, which corresponds to our Proposition 4.1, is
obviously incorrect since it omits the condition 4.1 a). For the same reason,
all the theorems which follow from Theorem 3.4 in (6) hold only if condition
4.1 a) is inserted. For example, from 4.1 we get:

4.4. Let <f>(A^>B)e A be a homomorphism with P-kernel N. Further let
4.1 a) be satisfied.
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Then there exists a unique P-true homomorphism {P-isomorphism)

such that n<fr = <j>, where n{A-*{AjN)P) is the canonical homomorphism.

From 4.3 and 4.1 it follows that the requirements a) and b) made in the
introduction are satisfied. The following proposition shows that requirement
c) is also satisfied.

4.5. / / every N e "Vp(A) satisfies condition 4.1 a), then the correspondence
F̂ ,—>JP(fi)</>~'1, where (p(A-*B) e A, determines a d-true mapping of the lattice
of congruences on A into the lattice "VP(A).

Proof. From the relation

it follows that the mapping F^->JP(.B)$~" can be decomposed into

where T^K^, is an isomorphism, because of 2.3. Thus it is sufficient to show
that the mapping K^-*Ip(E)4>~", where <f> e A, is (5-true. The monotonicity
follows directly from the inclusion

{(a) 6 A", P(a) e K+J S {(a) e A", P{a) e K^}

where K<t>i £ K^ and ^^A-^BJ, ^ - > B 2 ) e A . Now let ^^A-^B,) e A,
where i e I. Then we have

H K4l->{(a) e A", P{a) e f) **} = f) {(«) e A', P(a) e K+,}.
iel i s / ieJ

5. Examples
In the following examples we assume that the class L is always closed under

homomorphic images.

5.1. Let L be a class of algebras of type Q. and let P{x, y) = x—y. Clearly
P satisfies condition 4.2 a). We assert that the P-closed subsets of Ax. A are
precisely the congruences on A. This assertion was confirmed in (6), p. 134,
by explicit calculation (in the case in which L is the class of all groupoids).
However the assertion is clear even without the calculation, since by 4.3 the
P-closed sets are identical with the P-kernels. Now the smallest P-closed subset
of A x A is the identity relation O. Thus if <t>(A-+B) e A, then O(j>~2 = F0 is
P-closed.

If N is a congruence on A eL and r]{A-*A/N) is the canonical mapping,
then the kernel Kn of the homomorphism n*(ZA->A(Z/N)) consists precisely
of the elements of the form £ «;(*(—yd, where nt e Z and (xh yt) e ./V. Since

i s /

AP(N) is generated by the elements x , - j j ((*;,yi)eN), we have AP(7V) = Kn

and (A/N)P = A\Kn s A\Tn = A/N.
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5.2. Let L be a class of ringoids of the type Q0u{ + 0} = Q, addition in a
ringoid A eL being denoted by +0. The corresponding algebra-ringoid ZA
(we avoid the word " ringoid-ringoid ") is then of the type

Qu{+} = Qou{+O}u{+}.

For A eL, write P(x) = x—OA. Since condition 4.2 a) is satisfied and {OA}
is the smallest P-closed subset of A, the /'-closed subsets are identical with the
P-kernels, which coincide with the ideals of A.

Let N be an ideal of A and let N' be the congruence on A corresponding to
N, so that

N' = {(a+0 b, b), where a e N, b e A).

As well as P(x) = x—OA we shall consider P'(x, y) = x—y. Since AP(N) and
AP,(N') are the ideals of Ẑ 4 generated by all the elements of the forms a—OA

and (a + ob)—b respectively, where aeN, be A, we have AP(N) s Ar(iV').
Since c — 0^ e AP(N), we have

( « - 0 J + o Z> = O + o 6)-(O^ + 0 b) = (a+o b)-beAP(N).

Therefore we also have AP(W) 2 AP,(N') and so AP(N) = Ar(N'). Thus
=De[A/N>.

5.3. Let L be a class of algebras of finitary type Q. With each A eL
associate an element eA s A such that eA<f> = eB for all <f>(A^>B) e A. A non-
empty subset N £ A is called normal ((8), p. 8), when for all polynomials
Q(x0, xu ..., xm) over Q and all aeN, au ..., am e A, it is true that

Q(a, au .... o j e JV=> )2(A, a,, ...,am)eN for all 6 6 N.

From (8), p. 8, Theorem 5, it follows that a subset N ^ A is a congruence class
of some congruence on A precisely when N is normal. A normal subset N
of A will be called e-normal whenever eA e iV. We write P(x) = x — eA. Since
4.2 a) is satisfied and {eA} is the smallest P-closed subset of A, the P-closed
subsets of A are identical with the P-kernels, which coincide with the e-normal
subsets of A.

Given an e-normal subset N £ A, let N' £ A x A be the Malcev congruence
on A corresponding to N: that is, the transitive closure of the relation (~) on
A, with x~y o x = y,orx,yeN,or there exists a polynomial Q(x0, xt, ..., xm)
over Q. and elements alf ...,ameA such that x, y e Q(N, ax, ..., am), where
Q{N, au ..., am) =Def {Q(a, au ..., am), where aeN}. It is obvious that iV' is
the smallest congruence on A with N as a congruence class. If P'(x, y) = x—y,
we have AP(N) = AP,(N'). For since AP(AQ is generated by all a—eA such
that aeN and since a s e^ mod iV', then AP(N) £ AP,(N'). On the other
hand the ideal AP.(iV') is generated linearly over Z from all x—y, where
x,yeA and x~y. Now if x~^ and x ^ y, then either *, y e N and
so x—y = x—ê —(j>—eA) e AP(N), or there exist a polynomial Q over D and
u,veN, au ...,ame A such that * = £>(w, au ..., am), y = Q(v, au ..., a j .
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From this it follows that

x-y= Q(u,a1,...,am)-Q(eA,al, ...,am)~Q(v,au ...,aj
+ Q{eA,au...,am)

= Q(M-eA, au ..., am)- Q(v-eA, au ..., am) e AP(N),

so that we have AP.(N') e AP(N). Thus equality holds. Since by 5.1 N' is
P-closed, then N' = Tn., where r\'(A-+(A/N)P) is the canonical homomorphism.
Since AP(N) = AP,(N'), we have (A/N)P = {AIN')P. and so the canonical homo-
morphism t](A^(A/N)P) coincides with r\' and also F, = F,- = N'. From this
it follows that

A/N =Def A/N' = AITn s A/K, = A/AAP(N)

= A/AP(N) = (A/N)P.

5.4. Let L be a class of groups and let eA be the unit element of A e L.
Then eA<f> = eB for all (j>(A^>B)e A. If we write P(x) = x — eA, then by 5.3
the P-closed subsets are identical with the P-kernels, that is with the normal
subgroups of A. Accordingly the e-normal subsets are precisely the normal
subgroups of A and (A/N)P is isomorphic to the factor group A/N of A with
respect to the normal subgroup N of A.

5.5. If L is a class of semigroups with unit element eA, where A e L, then
^A4> = eB for all (f)(A-*B) e A. It follows from 5.3 that for P(x) = x-eA the
concepts of P-closed subset, P-kernel and e-normal subset of A coincide. It is
obvious that a subset N £ A is e-normal precisely when N is a normal subgroup
of A in the sense of semigroup theory (that is, for all a, b e A, x e N, we have
axb e No abe N). If N is a normal subgroup of A e L, then the Malcev con-
gruence N' defined in 5.3 is identical with the Lyapin congruence on A: that is,
with the transitive closure of the relation (~), where x~ y o x = y or x, y e aNb
for suitable a, be A.

5.6. Let L be a class of binary algebras (groupoids) with the binary operation
written multiplicatively. We suppose that multiplication in A e L can always
be carried out and that A contains a zero element OA (so that aOA = OAa = OA

for all a e A eL). Then OA<p = OB for all 4>{A^B) e A. For P(x) = x-OA

the P-kernels are precisely the ideals of A. It therefore follows from 5.3 that
the concepts of P-closed subset, P-kernel, O-normal subset (with " O-normal "
in place of " e-normal ") and ideal of A are identical. If N is an ideal of A,
then the corresponding Malcev congruence N' (as the smallest congruence with
Nasa congruence class) is the Rees congruence on A (that is (x, y) e N' o x = y
or x,ye N).

5.7. Let I b e a class of groupoids, which do not necessarily contain zero
elements. Explicit calculation shows that for Q{x) = x the g-closed subsets
are precisely the ideals of A together with the empty set 0 . As 0 is the smallest
2-closed set (it was apparently not considered in (6), p. 134), all g-kernels are
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empty. This counter-example to Theorem 3.4 of (6), p. 132, shows at the same
time that 4.1 a) is certainly not true in general.

In the next section we shall introduce a new concept of kernel; it has the
advantage that in the last example considered the 2-closed subsets and these
alone appear as " kernels ".

6. Local parameters

The parameter P which occurs in our considerations so far satisfies the
condition of uniformity 3.1. We shall now examine a more general case which
can, for example, be realised by no longer using the same positive formula for
all A e L for the definition of P(A"->ZA), but by associating with any algebra
A its own positive formula pA subject to conditions 3.2, 3.3, along with a certain
condition of connectivity with respect to pA, pB, ....

We begin by assuming that a function PAB{B"-+ZB) is associated with any
pair A, BeL for which a surjective homomorphism \j/(A->B) e A exists, in such
a way that

6.1. PAA(PU - , anW = PAB^, . . . . arf)

for all au ..., ane A and all <f>(A->B)e A.

Given a subset N £ Bn, let APAB(N) be the ideal of ZB generated by all
elements of the form PAB(b) with (b) e N. Let CIPAB(N), IPAB(B), the property
of N £ B" being P^B-closed and the lattice 1rpAB{B) be defined as in section 3.
We also assume the following:

6.2. If PAB is defined, the condition of connectivity ir
PBB{B) £ ir

PAB[B)
holds.

The statements 3.4 and 3.5 remain true if P is replaced by PCA (assuming
that PCA is defined for C, A eL). Analogous to 3.6 and 3.7 we have:

6.3. For all N £ A" and all (j>(A^>B) e A,

(APAA(N))^ = APAB{N<j>»).

6.4. If 4> = (j>{A^B)e A, then N^>N(j>~", where N £ B", induces a 5-true
mapping of -rPBB(B) into °rPAA(A).

Given a /^-closed subset N £ A", we call (A/N)P = Def A/APAA(N) the
P-factor algebra of A with respect to N. Given <j)(A->B) e A, IPBB(B)<J>~" is
called the P-kernel of <j>, and <j> is called P-true when its P-kernel is equal to
IPAA{A). The analogue of 4.1 is:

6.5. For any PAA-closed subset N £ A" the following statements are equi-
valent:

a) for all (a) e A", we have

PAA(a)ri* e APA JIPAnt JAr,))<*PAA(a) 6 APAA(N);

b) the P-kernel of the canonical homomorphism t](A->(A/N)P) is equal to N.

https://doi.org/10.1017/S0013091500012141 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500012141


HOMOMORPHISM THEORIES FOR UNIVERSAL ALGEBRAS 29

Proof. From 6.2 and 6.1 it follows that

o PUaW = PA. A&aW) e APA< JI^ JAr,)).
From 6.4 and 6.5 we get

6.6. J/6.5 a) is satisfied for all N e 1rpAA(A), then the P-kernels are identical
with the P-closed subsets of A".

As a generalisation of 4.4 we obtain

6.7. Let <j)(A->B) e A be a homomorphism whose P-kemel N satisfies 6.5 a);
moreover suppose that the condition

«) *,„.(/,„(/?)) = {0}

is satisfied. Then there exists a unique P-true homomorphism <j>((A/N)P->B) such
that nf = <j), where n(A->(A/N)P) is the canonical homomorphism.

6.8. / / 6.5 a) is satisfied for all N in the lattice VPAA{A), the correspondence
rij,->IPBg(B)(j)~n, where <f)(A-*B)e A, determines a monotone mapping of the
lattice of congruences on A into "YPAA{A).

Proof. We consider the correspondence K^-*1PBB{JB)4>~". If ^>i{A-*B^),
(j>2(A^>B2)e A and K<j>l s K^, then r ^ , £ r^2. Thus there exists a homo-
morphism i//(B1^B2) e A such that <j)2 = (t>i>p. By 6.4,

/pfl iBi(fi1)£/pO2B2(52).A-«
and

lpBi4BMT" £ IPB24B2)xl,-><t>r = IPBiB2(B2)<t>2n.
In particular, if K<j>l = K^, then F^, = F^2. In this case, ij/ is an isomorphism.

By 6.4, \j/~" induces a monotone mapping of "f fB B (B2) into 'VPB B ( 5 J and

(IA~1)~" = V induces a monotone mapping of ir
Pn B (Bt) into YPB B (B2);

therefore \]/~" induces an isomorphism of ir
PB B (B2) onto ir

Pg B (Bt), so that

IPB BJiB2)[l/~" is equal to the smallest element IPB (BJ of the lattice -VPB B (5 t )

From this it follows that

which shows that K^-*IPBB{E)^>~" unambiguously defines a mapping; also, by
the inclusion proved previously, this mapping is monotone. Since F ^ - * ^ is
certainly monotone, the same is true of the composition T4>-*Klf)-^IPBB{B)4>~''.

We remark that in this general case (in contrast to 4.5), the c5-trueness of the
mapping given by F ^ - + / P B B ( S ) ^ ) ~ " can only be proved given special prerequisites
(compare, for example, (5), prop. 2.3).

The introduction of local parameters allows us to deal satisfactorily with
the situation in Example 5.7 if Q{x) = x is replaced by

x otherwise,
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where A,BeL and 6{A-*B)e A exists. (This definition is meaningful, since
if OA e A, it follows that oj> = OB e B). Then 6.1 is satisfied. We shall show
that 6.2, 6.5 b) (and hence 6.5 a)), and 6.7 a) are also satisfied.

From 5.6, ^P^B) consists of all ideals of B if OA e B and from 5.7 it
consists of all ideals of B together with the empty set 0 if A does not have a
zero element. Therefore whenever PAB is defined, irpBB{B) £ -VPAB{B).

IfOAeA and N e rPAA(A), then PAA{x) = x- OA,

PA. Ar,(.x) = PAn, M(x) = x-OM,

where r, = t,(A-*(A/N)P), and by 4.1, 6.5 6) is equivalent to

however, by 5.6, this equation is satisfied. Suppose therefore that A has no zero
element, so thatPAA(x) = x. Then irpAA(A) consists of all ideals and the empty
subset 0 of A. Given an ideal N of A, we have

= { £ »iat> w h e r e "i eZ,ate N\

and therefore

(a, b)eTnoa-beKn = AAPAA(N) oa = b or a,beN.

It follows that T, is the Rees congruence on A and

A/N =Def A\Tn s ^/A, = A/AAPAA(N) S A/APAA(N) = At,.

Since TV represents the zero element of v4/N, we have 0 ^ e Ar\ and

^ W * ) = *"O.4, and Jp^^Arj) = {O^,}.

Hence for ae A we have
a e / ^ , . AM^I'1 oa>l = 0AnoaeN.

Thus 6.5 Z>) is satisfied. If N = 0, then AP^(A0 = {0} and
{a,b)eTnoa-beKn = {0},

so that a = b and ^ is an isomorphism. Because 4̂ = At,, At, does not have a
zero element and therefore

PA*. Ar,(x) = x, / ^ ^ An(Atj) = 0
and

Thus 6.5 b) is satisfied in all cases.
Let A, B be a pair of algebras in Z, for which there exists 6(A-+B) e A. If

OA e 4̂, then we also have OBe B and PAB(x) = JPBB(X) = x—OB, so that

V . . ( W 2 9 ) = APBB(IPBB(B)) = {0}.

If ,4 does not have a zero element, then -P^C*) = x. If B does not have a zero
element, then it is also true that PBB(x) = x and that

= APBB(IPBB(B)) = {0}.
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On the other hand, if OB e B, then PBB(x) = x- OB, IPBB(B) = {OB},

) = ZOB and AAPAB({OB}) = {0}.

7. Category-theoretical aspect

It is easily seen that

{A(eL)-*ZA, 4>(A-*B)(e A)->

is a functor for the category L, A into the category L, A of all ringoids with the
surjective homomorphisms as morphisms. Because of this we have a means of
presenting the outlines of the preceding considerations in terms of category
theory. In the present section we shall sketch this in the case of a (global)
parameter P. Certain postulates (F.1-F.8) are made which follow as closely as
possible the earlier situation, although this in itself is not really essential.

Suppose that we are given two categories L, A and L, A; hereL, L denote
the classes of objects and A, A the classes of morphisms. Since we are not at
present interested in an intrinsic theory, but are merely drawing upon the cate-
gories to define certain functors, it does not matter whether they exist in concrete
or abstract form. Let complete lattices iV{A) and 1f{R) be associated with
each object A eL and each Re L and suppose also that monotone mappings
4>w(ir(B)^>ir(A)) and i/v(ir(S)->ir(.R)) are associated with each <j>(A-*B) e A
and each \j/{R^S)e A. We define mappings 4>%{W{A)^>ir(B)) and
^{f{R)^-r{S)) as follows:

N(f>fy = inf {N' e iT(B), N ^ N'4>w}, Kipf = inf {K' e -T(B), K ^ K't/v}

where N e iV{A), Ke i^(R). Then for (f>w, <j>% we have the following proposi-
tion, the proof of which is routine and can be omitted (compare (4)).

7.1. The following conditions are pairwise equivalent to one another:

(a) N ^ N<t>%<j>wfor all N e W{A);

{b) <f>w is 5-true;

(c) N g J V ' ^ o N ^ ^ N' for all N e iP\A\ N'eW(B);

(d) the pair (j>w(iT(By-+W(A)) and
is a Galois connexion, where "W(By denotes the lattice dual to

{e) <j>w<l>w and <pw(j)% are closure operations on iV(A) and W(B)' respec-
tively.

There is, of course, a corresponding proposition involving i/v, i/f*. It is
well known that if <pw (resp. i/v) is 5-true, then ^^.(resp. ij/*) is fully supremum-
true or, more briefly a-true (a-trueness and (5-trueness are dual concepts). We
postulate:

F.I. Let
(w) = {A(e L)
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and

be contravariant functors from L, A and L, A respectively into the category of
all complete lattices, with the <5-true mappings as morphisms.

Then we have the following:

7.2. ( *) = {A(e L)->f<r{A), #= A)-> K}

and (?) = {R(e L)-nT(R), ij/(e A ) ^ * }

are covariant functors of L, A and L, A respectively into the category of all
complete lattices with the a-true mappings as morphisms.

If A eL we define the star A(̂ 4) to be the class of all 4>(A^B) e A where
Be L. Similarly we define the star A(R) for ReL. Regarding L, A we make the
following postulate:

F.2. For each R eL let there be a " canonical " function K(-f(R)-^A(R))
and a " kernel " function k(A(R)->t~(R)) such that the following diagram is
commutative:

A(1Q

"/ V

where i denotes the identity.

For example if "V{R) is the lattice of all factor objects (= quotient objects)
Q of an object R of a bicategoryL, A, then we can choose for QK the projection
n : R-*Q in the sense of (7), (11.1'), P- 499; this is uniquely determined by Q.

Now let

be a given covariant functor of L, A intoL, A. We require:

F.3. For all A, BeL, A1 = B1 implies that A = B. Moreover, for all
A e L a correspondence (°)(A(y41)^A(/<)) exists.

We also postulate:

F.4. There exists a natural transformation

of the functor (%) into the functor (')(*)•

This means that the mappings nA are cr-true and TtA{(f>1)* = <PtvnB f° r all
</>(A->B) e A. We define mappings n'A(ir(A1)-+ifr(A)) in terms of the mappings
nA by putting

Kn'A = sup {N e 1V(A\ K ^ NnA}

Analogous to 6.1 we have the following general result:
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7.3. For a monotone mapping nA(ir(A)^yf(A1)) the following conditions
are equivalent:

a) K 1 Kn'AnAfor all K e -r(Ax);

b) nA is o-true;

c) NnA ^KoN^ Kn'A for all N e HT(A), K e i^(Al);

d) the pair nA{ir{A)-*'T{Aly), n'/fiA1)'-+1T(A))

is a Galois connexion, where y(A1)' is the lattice dual to ^(A1);
e) nAnA and n'AnA are closure operations in iV{A) and ^(A1)' respectively.

From the fact that nA is c-true, it follows that n'A is (5-true. Since nAn'A is a
closure operation on if(A), the closed elements N e if (A) (that is NnAn'A = N)
form a closure system "W^.{A) of if{A) and the correspondence

is an anti-isomorphism of iVK1t.{A) onto the closure system ir
n.J^Aly of all

elements of "V(AX)- closed with respect to n'AnA. We have:

7.4. nA induces an isomorphism of W^^A) onto yn.n{Al).

Since JVrc^JO* = N$%nB for all N e iV{A), we get

7.5. For <p(A^>B)e A, (01)* induces a o-true mapping of -V^.JiA1) into

We make the following requirement regarding the mappings {n'A}A e L:

F.S. {n'A(ir(A1)->'W(A))}AeL is a natural transformation of the contra-
variant functors C)(v) a nd (^)-

This requirement means that the relation

is valid for all <f>(A^>B) e A. From this we get

7.6. / / (p(A^>B)e A, then <j>w induces a 8-true mapping of i(r
nn.{B) into

We further postulate:

F.6. For the identity mapping i{A-+A) 6 A, ilk is the smallest element of

F.7. For all <f>(A-+B)e A, we have <f>lk = i^O^V, where i = i(B->B) is
the identity.

F.8. For all N e iir{A) the following implication holds:

NnAK0lkn'A = NnAn'A=>NnAK0lk = NnA.
E.M.S.—C
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We can now define the 7ra'-factor algebra (A/N)ntl. eL of A e L, where
N e ifna.(A), by the mapping

t,(AMA/NXn.) = NUAK° e A.

Let the 7i7t'-kernel of <f>(A-*B) e A be defined in accordance with

If Inn-(A) denotes the smallest element of the lattice Wnn.(A), then we have:

7.7. kern)t.(£ = Inn,(B)4>wfor all ̂ A-^B) e A.

Proof. If i(A->A) is the identity for A eL, then i1(Ai-+Al) is the identity;
by F.6, i^k is the smallest element of V(Al) and is therefore the largest element
of Y{A^y and the closure system yx.n(A

1)'. From 7.4 it follows that

i'k=InAA)nA and i

Now if (p(A-*B) e A, then F.5 and F.7 give

where i = i(B-+B) is the identity.

7.8. For N e ^"nn-(^4), the following statements are equivalent:

a) NnAK0lk = NnA;
b) term.rtA^(AIN)n.) = iV.

Proof, a) => b). We have

N = NnAn'A = NnAKolkn'A = n
lkn'A = ker^/j.

b) => a). From kerin-»7 = nlkn'A = N we get

NnAKolkn'A = JV = iVrcX.

and therefore, from F.8, NTZAK°
 lk = //TT^.

We make the further observation that in many concrete cases the elements
of the form (j>lk e V(Al) form a complete lattice which is then mapped <5-true
onto the lattice WnK.(A) by ^'/c^ker^.^ = ^kn^.

It can easily be seen that postulates F.1-F.8 are satisfied in the situation
described in sections 2-5 if we choose for L a class of algebras of type Q closed
under homomorphic images, with A as the class of the corresponding surjective
homomorphisms, fori , A the category of all ringoids of type fiu{ + } with the
corresponding surjective homomorphisms as morphisms, for (x) the functor

(= the restriction of <f> to A £ ZA)}, for (w) the functor

for (K) the functor {R{eL)^J{R\ <f>{e A ) - ^ " 1 } , and if for KeJ(R), KK
denotes the canonical homomorphism t](R->R/K) and for <j>(R-+S)eA, (j)k
denotes the ideal {O}0 ~l e J{R). Here ̂ (R) is the lattice of ideals of the ringoid
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R. The mapping nA(0>{AK)-+f(ZA)) is defined by NnA = AP(N). Then
Kn'A = {(a) e A", P(a) e K}, where K e f(ZA). For example, 4.1 and 7.8 then
correspond to one another.

The observations of this section can also be applied more generally to cases
in which L, A and L, A are categories of relational structures with surjective
homomorphisms as morphisms.
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