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Energy exchanges between coherent modes
in the near wake of a wind turbine model
at different tip speed ratios
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In this work we investigate the spatio-temporal nature of various coherent modes present in
a wind turbine wake using a combination of new particle image velocimetry experiments
and data from Biswas & Buxton (J. Fluid Mech., vol. 979, 2024, A34). A multiscale
triple decomposition of the acquired velocity field is sought to extract the coherent modes
and, thereafter, the energy exchanges to and from them are studied using the multiscale
triple decomposed coherent kinetic energy budgets developed by Baj & Buxton (Phys.
Rev. Fluids, vol. 2, 2017, 114607). Different frequencies forming the tip vortex system
(such as the blade passing frequency, turbine’s rotational frequency and their harmonics)
are found to be energised by different sources such as production from the mean flow
or nonlinear triadic interaction or both, similar to the primary, secondary or the mixed
modes discussed in Biswas et al. (J. Fluid Mech., vol. 941, 2022, A36). The tip vortex
system forms a complex network of nonlinear triadic energy transfers, the nature and
the magnitudes of which depend on the tip speed ratio (λ). Contrastingly, the modes
associated with the sheddings from the nacelle or tower and wake meandering are found
to be primarily energised by the mean flow. We show that the tip vortex system exchanges
energy with the mean flow primarily through the turbine’s rotational frequency. In fact, the
system transfers energy back to the mean flow through the turbine’s rotational frequency
at some distance downstream marking the onset location of wake recovery (xwr). Here xwr
is shown to reduce with λ due to stronger interaction and earlier merging of the tip vortices
at a higher λ.
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1. Introduction

Wind turbine wakes are inherently multiscale in nature as the flow is simultaneously forced
at different time (frequency) and length (wavenumber) scales through the tip vortices,
sheddings from the nacelle and the tower and large-scale motions such as wake meandering
(Abraham, Dasari & Hong 2019; Porté-Agel, Bastankhah & Shamsoddin 2020; Biswas &
Buxton 2024). All these structures play different roles in the spatio-temporal evolution of
the combined wind turbine wake. There is a consensus that the tip vortices act as a shield
in the near field, inhibiting mixing with the background fluid (Medici 2005; Lignarolo
et al. 2015; Biswas & Buxton 2024). Active and passive methods have hence been
utilised to introduce asymmetry into the helical vortex system to expedite its breakdown
process (Quaranta, Bolnot & Leweke 2015; Brown et al. 2022; Abraham & Leweke 2023;
Ramos-García et al. 2023), which is a necessary step to initiate the process of wake
recovery.

Although the dynamics of the tip vortices have been the focus of many studies, the
importance of the nacelle and the tower in the evolution of the wake has only been realised
rather recently (Howard et al. 2015; Foti et al. 2016; Pierella & Sætran 2017; De Cillis et al.
2021). The tower has been shown to act as an important source of asymmetry in the wake
by disturbing the tip vortices and hence promoting mixing behind the tower (Pierella &
Sætran 2017; Biswas & Buxton 2024). The hub vortex or the shedding behind the nacelle
has been linked to the development of wake meandering in the far field, which is associated
with large-scale tranverse displacements of the wake centre (Howard et al. 2015; Foti et al.
2016). Foti et al. (2016) showed that the hub vortex formed downstream of the nacelle
grows in the radial direction as it moves downstream and interacts with the outer wake,
thereby potentially augmenting the wake meandering.

The dynamics of these length/time scales can be better understood by distinguishing the
coherent modes associated with each of them. This can be achieved through a multiscale
triple decomposition of the velocity field u(x, t) (where x and t denote space and time,
respectively) in the following form:

u(x, t) = ū(x) +
∑

l

ũl(x, t) + u′′(x, t). (1.1)

Here ū(x) is the mean component, u′′(x, t) is the stochastic component and
∑

l ũl(x, t)
represents the sum of velocity fields corresponding to individual coherent structures in
the flow. This differs from the triple decomposition proposed by Hussain & Reynolds
(1970), where the flow field was decomposed into mean, a single periodic (i.e. only
one characteristic frequency) and fluctuating components, and hence, the simultaneous
existence of multiple coherent motions was not addressed.

In previous works, a data-driven approach to extracting the coherent modes in (1.1) has
been taken, typically using a modal decomposition technique (Taira et al. 2017). Among
them, one of the most commonly used method is proper orthogonal decomposition (POD),
where the flow field is decomposed into a series of orthogonal modes that are ranked
according to their energy content (Lumley 1967; Sirovich 1987). Despite some limitations,
POD has been widely used to identify coherent structures and for reconstruction and
modelling of a large variety of flows (Taira et al. 2017). Another commonly used
method is dynamic mode decomposition (DMD), first proposed by Schmid (2010), which
assumes that the time evolution of the flow can be governed by a time invariant, best-fit
linear operator A and the eigendecomposition of the operator gives the so-called DMD
modes. Several variants of the original DMD algorithm have since been proposed with
added advantages (Schmid 2022). One amongst them is optimal mode decomposition
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Energy exchanges in rotor wakes

(OMD) proposed by Wynn et al. (2013). The original DMD algorithm obtained the time
dynamics by projecting the flow data onto a POD subspace. Contrastingly, Wynn et al.
(2013) took a more generalised approach solving a two-way optimisation problem for
the flow’s dynamics and a low-order subspace of A. More details about different modal
decomposition techniques can be found in the reviews by Taira et al. (2017, 2020) and
Schmid (2022).

Different modal decomposition techniques such as POD and DMD have been applied
to wind turbine wakes to understand the development and evolution of coherent structures
and to develop reduced-order models (Sarmast et al. 2014; Debnath et al. 2017; De Cillis
et al. 2021). Sarmast et al. (2014) applied DMD to a large-eddy simulation (LES) data
set of a wind turbine wake and found that the dominant modes in the initial phase of
tip vortex evolution agreed well with the predictions of linear stability analysis. Debnath
et al. (2017) performed POD and DMD on a LES data set of a wind turbine wake with
and without a nacelle and tower. For both cases, the dominant mode they reported had
a frequency 3 times the rotor’s evolution frequency, i.e. 3fr (where we denote fr as the
turbine’s rotational frequency). Clearly this mode was associated with the tip vortices of
the three-bladed turbine. A similar work by De Cillis et al. (2021) performed POD on a
LES data set of the wake of a wind turbine with/without a nacelle and a tower. In the
presence of the nacelle and tower, the POD modes in the near field (x < 3.5D) highlighted
the tip vortices (with characteristic frequency 3fr), its first super-harmonic (characteristic
frequency 6fr) and modes associated with vortex shedding from the tower (characteristic
frequency fT ). Kinjangi & Foti (2023) applied DMD to a LES data set of a wind turbine
wake that involved a nacelle but no tower. They found modes associated with the turbine’s
rotational frequency ( fr), blade passing frequency (3fr) or the tip vortices, their harmonics
and the nacelle’s shedding frequency. These results are in line with the recent experiments
by Biswas & Buxton (2024) that reported a total of six frequencies related to the tip
vortices, fr − 6fr using Fourier analysis. It was shown that structures with characteristic
frequencies such as fr and 2fr arise in different stages of the merging process of the tip
vortices that strongly depends on the tip speed ratio λ (λ = ΩR/U∞, where Ω is the
turbine’s rotational speed, R is the turbine’s radius and U∞ is the free-stream velocity).

A manifestation of the quadratic nonlinearity of the Navier–Stokes equations is the
formation of resonant triads (Schmidt 2020). A triad is said to be formed when three
frequencies (or wavenumbers) present in the flow sum to zero, i.e. f1 ± f2 ± f3 = 0. Triadic
interactions have been found to play an important role in laminar to turbulence transition
(Craik 1971; Rigas, Sipp & Colonius 2021), in extreme events such as the formation
of rogue waves (Drivas & Wunsch 2016) or intermittent bursts of energy dissipation
(Farazmand & Sapsis 2017) or formation of new coherent structures in self-excited
turbulent flows (Baj & Buxton 2017; Biswas, Cicolin & Buxton 2022). The bispectrum
(a higher-order counterpart of the power spectra) has been used to identify such triads in
a variety of flows (Corke, Shakib & Nagib 1991; Schmidt 2020; Kinjangi & Foti 2023,
2024). In fact, Schmidt (2020) introduced a bispectral mode decomposition technique
to distinguish modes associated with triadic interactions. Baj & Buxton (2017) showed
that such triads exist in the wake of a two-dimensional array of prisms of different sizes,
generating new frequencies that correspond to the sum/difference of the fundamental
shedding frequencies of the various prisms. Using a triple decomposed coherent kinetic
energy (CKE) budget equation, they showed that the shedding modes of the prisms were
energised primarily by the mean flow, so henceforth termed them as the ‘primary modes’,
while the new frequencies were solely energised by the nonlinear triadic interaction
term of the CKE budget equation, hence, they identified them as ‘secondary modes’.
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Biswas et al. (2022) applied similar analysis to a different two-dimensional flow
configuration consisting of a cylinder and a control rod and obtained similar energy
pathways between the primary and secondary modes. They also reported the existence
of ‘mixed modes’ that draw a similar amount of energy from the mean flow and from
other coherent modes through triadic interactions.

Frequencies forming a triad have been known to exist in wind turbine wakes (particularly
in the form of frequencies related to the tip vortices) without an explicit focus on triadic
interactions (Felli, Camussi & Di Felice 2011). Therefore, the role of the triadic energy
transfers in the tip vortex merging process and the overall wake evolution is yet to be
quantified. Kinjangi & Foti (2023) recently performed an interesting study on a LES data
set of a wind turbine wake using a scale-specific CKE equation similar to that derived
by Baj & Buxton (2017). The authors identified the dominant resonant triads in the wake
and quantified the scale-specific kinetic energy of different modes interacting triadically.
However, the direction of energy exchanges to and from the modes, as well as the role of
the energy exchanges on the evolution of the wake were not thoroughly discussed. The aim
of the present work is therefore to extend the works of Baj & Buxton (2017), Biswas et al.
(2022) on multiscale two-dimensional cylinder arrays to a more complicated rotor wake to
form a connection between modal energy exchanges and the overall wake evolution. We
ask the following questions: (a) Do we still observe similar ‘primary’, ‘secondary’ and
‘mixed’ modes in a more complex, three-dimensional multiscale flow such as the wake
of a wind turbine? (b) What is the role of nonlinear triadic interaction in the tip vortex
merging process and how does it depend on the tip speed ratio? (c) How can we connect
the modal energy exchange processes to wake recovery? To answer these, a large number
of time-resolved particle image velocimetry (PIV) experiments are performed on a wind
turbine model incorporating a nacelle and a tower at various tip speed ratios. We use OMD
to identify and extract the coherent structures in the flow field. Next, we use the multiscale
triple decomposed CKE budget equations derived by Baj & Buxton (2017) to identify the
primary energy sources of the various coherent modes. We also quantify the nonlinear
triadic energy fluxes between different modes forming a triad. Finally, we connect the
insights gained from the coherent energy budget analysis to the overall wake evolution and
wake recovery.

2. Experimental method

A large number of PIV experiments were performed on a small-scale wind turbine model
in the hydrodynamics flume in the Department of Aeronautics at Imperial College London.
The flume had a cross-sectional area of 60 × 60 cm2 at the operating water depth. The
turbine diameter (D) was 0.2 m and the model was the same as that detailed in Biswas
& Buxton (2024). The model had a nacelle and tower associated with it such that it
resembled a utility-scale turbine. The free-stream velocity (U∞) was kept constant at
0.2 m s−1 and the turbine was driven by a stepper motor to operate it at different tip
speed ratios. The free-stream turbulence intensity (Ti) was approximately 1 % for all the
experiments. The Reynolds number based on the free-stream velocity and the turbine
diameter (ReD) was ≈40 000 and that based on the root chord (Rec) was ≈9000 for λ = 6.
For the larger turbines (especially offshore ones) however, both ReD and Rec are several
orders of magnitude higher than that in the current experiments (Miller et al. 2019). The
scaling effects of the Reynolds number in the spatio-temporal properties of the wake are
still not well understood. Nevertheless, a faster near-wake expansion and wake recovery
has been reported owing to the stronger tip vortices and earlier merging at a higher Re
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Figure 1. Fields of view associated with different PIV experiments. The filled contours show the vorticity
field obtained from experiment 1A for λ = 6.

Exp U∞ (m s−1) λ FOV Plane δx (mm) faq (Hz) T (s)

1A 0.2 5, 6 0.5D < x < 5D, z = 0 2.35 100 54.75
−0.35D < y < 0.75D

1B 0.2 5.3, 5.5, 6.6, 6.9 0.2D < x < 3.17D, z = 0 2.07 100 54.55
0 < y < 0.93D

2A 0.2 6 0.29D < x < 1.95D, y = 0 1.84 100 54.55
−0.73D < z < 0.69D

2B 0.2 6 0.29D < x < 1.95D, y = −0.35D 1.84 100 54.55
−0.73D < z < 0.69D

Table 1. Parameters associated with different experiments.

(McTavish, Feszty & Nitzsche 2013; Bourhis, Pereira & Ravelet 2023). Considering the
inherent Reynolds number difference, the turbine blades were made of flat plate airfoils
that have been shown to perform better at low Reynolds numbers (Sunada, Sakaguchi &
Kawachi 1997). Further details about the wind turbine model’s design can be found in
Biswas & Buxton (2024).

A total of six tip speed ratios are discussed in this work with the main focus on λ = 6
and λ = 5. The power (Cp) and thrust coefficients (CT ) for the two tip speed ratios were
comparable (Cp ≈ 0.44 and 0.46 and CT ≈ 0.54 and 0.55 for λ = 5 and 6, respectively)
as estimated using the blade element momentum method (Biswas & Buxton 2024). Planar
PIV experiments were performed on different orthogonal planes. The location and the
size of the fields of view associated with different experiments are shown in figure 1.
Experiment 1 considered the xy plane, where x is the streamwise direction and y is the
transverse direction (along the tower’s axis). Three phantom v641 cameras were used
simultaneously in experiment 1A giving a field of view (FOV) with a large streamwise
extent, up to x ≈ 5D. Similarly, experiment 1B used two cameras and had a smaller FOV
stretching up to x ≈ 3D. Experiment 2 focused on the xz plane, i.e. the plane normal to
the tower’s axis, at different y offsets. For experiment 2A, the laser sheet was aligned with
the nacelle’s centreline (the solid green line in figure 1), while in experiment 2B the sheet
was placed 0.35D below the nacelle’s centreline (the dashed green line in figure 1) to
capture the tower’s wake. Further details about all the experiments are tabulated in table 1.
For all the experiments, images were acquired at an acquisition frequency of 100 Hz in
cinematographic mode (i.e. the time between any two successive images was 0.01 s.) for a
total time T ≈ 54.5 s (≈85 rotor revolutions for λ = 5).
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3. Coherent modes in the wake

The vorticity field in figure 1 shows a large variety of length scales (and associated time
scales/frequencies) contained in the rotor wake. The time evolution of these length scales
for different λ can be observed in the supplementary videos of Biswas & Buxton (2024).
The important scales include the rotor’s rotational frequency ( fr), blade passing frequency
or the frequency associated with the passage of the tip vortices that is numerically equal
to 3 times the rotational frequency for a three-bladed rotor (3fr). We can also observe
the harmonics of fr and 3fr that although not as energetic as the former, can have an
important role in the energy exchange processes as will be discussed. Additionally, there
are frequencies associated with vortices shed from the nacelle and the tower that interact
with the frequencies related to the tip vortices in a complex fashion (De Cillis et al. 2021;
Biswas & Buxton 2024). Finally, further downstream, where the near wake transitions
to the far wake, the wake meandering frequency can be expected to become important
(Okulov et al. 2014; Howard et al. 2015). The relative importance of these frequencies and
their dependence on λ were discussed in detail in Biswas & Buxton (2024).

The coherent modes associated with each of these frequencies can be extracted through
a multiscale triple decomposition of the velocity field as described by (1.1). The modes
corresponding to individual coherent structures in the flow, ũl(x, t), can be obtained using
modal decomposition techniques such as POD, DMD, OMD, etc. For the current study,
we use OMD that is a more generalised version of DMD (Wynn et al. 2013). The OMD
modes are complex and appear in conjugate pairs (let us denote them as φ and φ∗). The
associated complex time varying coefficients (a and a∗) are obtained by projecting the
OMD modes back onto the snapshots. Finally, the physical velocity field associated with
a mode, i.e. ũl(x, t), is obtained through a linear combination of the OMD mode and
its coefficient as ũl(x, t) = a × φ + a∗ × φ∗. A detailed description of the OMD-based
multiscale triple decomposition technique can be found in our previous studies (Baj, Bruce
& Buxton 2015; Baj & Buxton 2017; Biswas et al. 2022).

Optimal mode decomposition is first performed on the large FOV obtained from
experiment 1A. Example OMD spectra are shown in figure 2(a,b) for λ = 6 and λ = 5,
respectively. The rank of the OMD matrices (r) was set to 175. A sensitivity study was
performed before selecting this r and the results were found to be largely invariant to the
selection of r. This is discussed in detail in Appendix A. In figure 2 the x axis shows
the Strouhal number (StD = f D/U∞) associated with the modes, while the y axis shows
the growth rates of the modes. The less damped modes have a growth rate closer to
zero and are likely to represent a physically meaningful coherent motion in the flow.
A total of 12 modes were selected for both λs based on the observed growth rates from
the OMD spectra and knowledge of important frequencies present in the wake based
on our prior study (Biswas & Buxton 2024). Further details about the mode selection
process can be found in Appendix B. The selected modes are highlighted with red +
signs in figure 2. Among them the modes on the top-right branch of the spectra (StD > 1)
correspond to the tip vortices and their harmonics. Mode 7 has a frequency equal to
the turbines rotation, henceforth denoted as fr. Similarly, the other two modes (modes
8 and 9) represent frequencies 2fr and 3fr (blade passing frequency), respectively. Biswas
& Buxton (2024) showed the presence of higher harmonics of the tip vortices in the flow
having frequency up to 6fr. However, all the higher harmonics (4fr − 6fr) could not be
captured for a particular λ as these are much weaker modes and most of their energy can
be expected to be concentrated near the rotor (Biswas & Buxton 2024). For λ = 6, only
4fr (mode 10) was captured, while for λ = 5, 6fr (mode 12) could be captured for r = 175.
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Figure 2. The OMD spectra obtained for (a) λ = 6 and (b) λ = 5 from experiment 1A. The modes shown by
a red + sign are selected for a lower-order representation of the flow. The high-frequency modes with StD > 1
are related to the tip vortices. The low-frequency modes (StD < 1) are associated with wake meandering, and
the sheddings from the nacelle and the tower.

For λ = 6, OMD was performed with a higher r = 250 (see Appendix A) but the
frequencies 5fr and 6fr were still absent. Any larger rank would overly populate the spectra
especially in the low-frequency (StD < 1) region making it harder to identify the physically
meaningful modes. Therefore, r was fixed to 175. To obtain the full set of tip vortex related
modes ( fr − 6fr) in the full domain (x up to 5D), the remaining modes were obtained using
phase averaging following Biswas et al. (2022), Baj et al. (2015). For the low-frequency
modes, six modes were retained with StD < 1 that were found to be physically meaningful.
The modes in the range 1 � StD � 3 were found to be much weaker in nature and they
did not show any significant energy exchanges. Accordingly, these modes were excluded.
A more detailed discussion on this can be found in Appendix B.

3.1. Tip vortices
Let us now look at the spatial nature of the modes associated with the tip vortices obtained
from experiment 1A. The transverse velocity components of the modes associated with the
frequencies fr − 6fr are shown in figure 3(a–f ) for λ = 6 and in figure 3(g–l) for λ = 5.
The ‘+’ sign shows the location where the time-averaged kinetic energy of the modes is
maximum. Figure 3(c,i) shows the modes associated with the tip vortices (3fr) and the
modes are qualitatively similar for both λs. The modes can be expected to be the most
energetic near the rotor plane and, hence, are found to monotonically decay within the field
of investigation. The modes associated with the frequency fr are shown in figure 3(a,g)
for the two λs that represent large-scale structures associated with the merging of the tip
vortices (Felli et al. 2011; Biswas & Buxton 2024). Note that the spatial organisation of
the mode is significantly different for different λ unlike the tip vortices. For λ = 6, the
mode is stronger and its energy content peaks nearer to the turbine, which reaffirms a
stronger and earlier interaction between the tip vortices for a higher λ (Felli et al. 2011;
Sherry et al. 2013; Biswas & Buxton 2024). Furthermore, for λ = 5, there is a region near
the root of the blades where fr is energetic, which is believed to have resulted from an
earlier interaction of the unstable root vortices. The variation of the angle of attack along
the blades for different λ was estimated using the blade element momentum method. The
local angle of attack near the root for λ = 5 was estimated to be ≈8◦, significantly higher
than that for λ = 6 (≈5◦) that is in line with the observation of stronger root vortices for
the lower λ.
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ṽ l/U
∞
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Figure 3. Transverse velocity component of the OMD modes associated with fr − 6fr for λ = 6 (a–f ) and
λ = 5 (g–l). The + sign shows the location where the kinetic energy associated with the individual modes is
maximum.

A similar dependence on λ is observed for 2fr, i.e. the mode peaks at an earlier
streamwise location for λ = 6 (note the ‘+’ sign), and there is a region near the
root where the mode is energetic for λ = 5. Note that 2fr forms a triad with fr and
3fr, suggesting possible triadic energy exchanges between these three modes. Another
interesting observation is that the kinetic energy of 2fr peaks at a streamwise location that
is between that of fr and 3fr. This is reminiscent of the secondary modes observed in our
previous studies for different flow configurations (Baj & Buxton 2017; Biswas et al. 2022).
These secondary modes arose from the nonlinear triadic interaction between two primary
modes of different characteristic frequencies. The downstream streamwise location at
which a secondary mode was the most energetic laid between the corresponding locations
of the interacting high- and low-frequency primary modes. Whilst the secondary modes
were produced due to triadic interactions, the primary modes were primarily energised by
the mean flow. The nature and the origin of the modes we discuss here will be understood
in more detail in § 4 where we will assess the kinetic energy budget associated with each
individual mode, but we shall see that similar energy pathways and spatial arrangements
exist as in our previous work.

The modes associated with 4fr − 6fr are comparatively weaker and the energy of
the modes peaks between the corresponding locations of a number of other modes.

996 A8-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

58
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.581


Energy exchanges in rotor wakes

For instance, for λ = 6, 5fr peaks between the corresponding locations for 2fr and 3fr
and also between that of fr and 4fr, both pairs summing to 5fr. Accordingly, a number of
modes might contribute to the formation of these high-frequency modes. For λ = 5 on the
other hand, the peak of 5fr lies only between that of 2fr and 3fr, showing an interesting
dependence with the tip speed ratio.

3.2. Low-frequency modes
Apart from the high-frequency modes related to the tip vortices, there are a number
of low-frequency modes observed in the OMD spectra (modes 1–6) in figure 2. For
λ = 6, modes 1 and 2 have StD around 0.22 and 0.31, respectively, which matches well
with the range of Strouhal numbers associated with large-scale oscillations due to wake
meandering reported in past studies (Chamorro et al. 2013; Okulov et al. 2014). Indeed the
corresponding transverse velocity fields for modes 1 and 2 presented in figure 4(a,b) show
large-scale structures similar to wake meandering. For λ = 5 in figure 2(b), a number of
modes are observed in the accepted Strouhal number range for wake meandering. They
are shown in figure 4(g–i) and they again show large-scale coherence. Note that for both
the tip speed ratios, the wake meandering mode starts from close to the nacelle and grows
radially in the streamwise direction. The wavelength of the mode is shorter near the nacelle
and stretches to around 1.5D − 2D further downstream, which matches well with previous
experimental and numerical studies (Howard et al. 2015; Foti et al. 2016).

A number of modes are also observed in the OMD spectra at 0.4 � StD � 0.5 and
0.7 � StD � 0.9. The former when non-dimensionalised by the nacelle’s diameter instead
of turbine diameter yields a Strouhal number around 0.066–0.083 that is similar to the
nacelle’s vortex shedding frequency reported in previous studies (Howard et al. 2015;
Abraham et al. 2019). These modes are numbered as modes 3–4 for λ = 6 (figure 2a)
and as modes 4–5 for λ = 5 (figure 2b). These modes are however weaker compared
with the wake meandering mode and are not spatially as coherent. A potential reason
that the nacelle’s shedding was not captured well could be due to the fact that the FOV in
experiment 1A did not start from immediately downstream of the nacelle’s rear face.

Similarly, the modes in the Strouhal number range 0.7–0.9 are most likely related to
the shedding from the tower, although the corresponding Strouhal numbers based on the
tower’s diameter, around 0.074–0.095, are much lower than the expected value of ≈0.2 for
vortex shedding behind a two-dimensional circular cylinder at a similar Reynolds number
≈4000 based on the tower’s diameter (Williamson 1996). Such a reduction in the tower’s
vortex shedding frequency has been observed earlier (De Cillis et al. 2021; Biswas &
Buxton 2024). Biswas & Buxton (2024) argued that a number of factors can play a role
such as the reduction of the free-stream velocity as the flow passes through the rotor,
shear induced on the incoming flow, the unsteadiness in the flow due to the passage of
tip and trailing sheet vortices and other three-dimensional effects. As a result, the vortex
pattern is significantly distorted from the regular vortex street pattern one might expect.
The modes that are expected to be associated with the tower’s vortex shedding are shown
in figure 4(e, f ) for λ = 6 and in figure 4(l) for λ = 5. The modes are much weaker and
are not as coherent as the other modes we discussed. This is firstly because of the altered
vortex shedding pattern. Secondly, we are only observing the velocity fluctuation parallel
to the tower’s axis that only arises from the three dimensionality in the vortex shedding
pattern and, hence, is not the dominant velocity component associated with the mode.

Unlike experiment 1A, the FOV of experiment 1B included the rear face of the nacelle
(see figure 1). Optimal mode decomposition was performed for all the λs obtained
from experiment 1B keeping the rank r fixed to 175. The OMD spectra were similar to
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Figure 4. Transverse velocity component of the low-frequency modes (labelled as 1–6 in figure 2) for λ = 6
(a–f ) and λ = 5 (g–l).
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ṽ l/U
∞

0.8
0.6
0.4
0.2

0

0.04
0.02
0
–0.02
–0.04

(b)

y/D
0.8
0.6
0.4
0.2

0

(a)

x/D
0.5 1.0 1.5 2.0 2.5 3.0

x/D
0.5 1.0 1.5 2.0 2.5 3.0

Figure 5. Transverse velocity components of the OMD modes associated with frequencies (a) fn and (b) fwm
for λ = 5.5 obtained from experiment 1B.

those obtained from experiment 1A, consisting of the modes related to the tip vortices
and an assortment of low-frequency modes (StD < 1). However, the nacelle’s shedding
mode obtained from experiment 1B was much more coherent than that observed from
experiment 1A, as the FOV for the former included part of the nacelle. As an example,
the nacelle’s shedding mode for λ = 5.5 obtained from experiment 1B is shown in
figure 5(a), which shows energetic structures near the nacelle that decay downstream. For
a comparison, the wake meandering mode obtained for the same λ is shown in figure 5(b),
which shows structures of a larger spatial extent that grow downstream and the mode is
similar to those observed for experiment 1A.
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Figure 6. Transverse velocity components of the OMD modes associated with frequencies (a) fr, (b) 2fr,
(c) 3fr, (d) fn obtained in the xz ( y = 0) plane. Subfigure (e) shows the tower’s vortex shedding mode at
an offset plane y = −0.35D. The modes are shown for λ = 6 only.

The OMD modes were also obtained from experiment 2, which considered planes
perpendicular to the tower’s axis. A selected number of modes are shown in figure 6 for
λ = 6. Figure 6(a–c) shows the modes fr − 3fr in the y = 0 plane that are similar to those
observed in figure 3(a–c). In the same plane, figure 6(d) shows the nacelle’s shedding
mode with a Strouhal number of around 0.069 based on the nacelle’s diameter. The tower’s
shedding mode was not captured in the y = 0 plane. However, it was captured in the offset
plane (y = −0.35D) and is shown in figure 6(e). The mode had a Strouhal number of
around 0.08 based on the tower’s diameter. Note that the mode is much more organised
spatially and is more energetic than that observed in the xy plane. Interestingly, no modes
could be captured from experiment 2 that resembled the wake meandering modes observed
in figure 4. This is probably because the streamwise extent (up to x/D ≈ 1.85D) of the
FOV was not large enough to capture the structures associated with wake meandering that
can have wavelengths as large as 1.5D − 2D (Howard et al. 2015). Additionally, the wake
meandering mode can be expected to be more energetic beyond x/D ≈ 2 (see figure 5b),
making it highly unlikely to be captured in the short FOV.

4. Energy exchanges

The energy exchanges to and from the coherent modes can be explored using the multiscale
triple decomposed CKE budget equations developed by Baj & Buxton (2017). The CKE
budget (k̃l) equation can be represented in symbolic form as

∂ k̃l

∂t
= −C̃l + P̃l − P̂l + (T̃+

l − T̃−
l ) − ε̃l + D̃l. (4.1)

In (4.1) the source terms on the right-hand side consist of convection (C̃l), production from
the mean flow (P̃l), production of stochastic turbulent kinetic energy directly from coherent
mode l (P̂l), triadic energy production (T̃+

l − T̃−
l ), direct dissipation from coherent mode

l (ε̃l) and diffusion (D̃l). The full composition of each of these terms is available in Baj &
Buxton (2017). Baj & Buxton (2017) showed that the triadic energy production term can
become significant only when there exists three frequencies that linearly combine to zero
or, in other words, there is a triad in the form

fl ± fm ± fn = 0. (4.2)

Baj & Buxton (2017), Biswas et al. (2022) reported the existence of such triads in two
different flow configurations involving two-dimensional cylinders of unequal diameters.
Note that, for the present case involving a wind turbine wake, the frequencies fr − 6fr form
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Figure 7. Energy budget terms of (4.1) summed over the domain of investigation for different modes for
(a) λ = 6 and (b) λ = 5.

a large number of triads, implying the triadic energy exchange term can play a significant
role. We first assess the kinetic energy budgets of the modes obtained from experiment 1A
for the tip speed ratios 6 and 5. As we only have planar data, we have to ignore the terms
containing out-of-plane velocity and velocity gradients in the energy budget equation. We
also have to ignore the contribution to the diffusion term from the pressure. However,
as we will show, this simplification does not alter the conclusions of the energy budget
analysis. For both λ = 6 and λ = 5, the 12 modes shown in figures 3 and 4 are selected
and the stochastic component of the flow is obtained by subtracting these modes from the
mean-subtracted velocity field. It is worthwhile mentioning that this process leaves the
spectrum of the stochastic turbulence continuous (Baj et al. 2015; Baj & Buxton 2017).

For an overall understanding, we first integrate the terms from the CKE budget over the
entire domain of investigation for all the modes. The results are shown in figure 7(a,b) for
λ = 6 and λ = 5. For the low-frequency modes (StD < 1), including the wake meandering
and nacelle or tower’s vortex shedding, the primary energy source is the P̃l term or energy
production from the mean flow, similar to the primary modes discussed in Baj & Buxton
(2017), Biswas et al. (2022). Among these primary modes, the wake meandering mode
draws the highest amount of energy from the mean flow for both λs. The wake meandering
mode for λ = 6 is more strongly energised than for λ = 5. A similar dependence of the
strength of the wake meandering mode on λ was reported in Biswas & Buxton (2024).
They established a link between λ and the effective porosity of the turbine. As λ increased,
the effective porosity reduced, resulting in a decrement in the wake meandering frequency
and an increment in the strength of the mode. Note from figure 2 that, for the low-frequency
modes, multiple triads are possible for which the frequencies sum to ≈0. For instance, for
λ = 6, f1 + f1 − f4 ≈ 0, where f1 is the mode numbered as 1 or the wake meandering mode
( fwm) and, similarly, f4 is the fourth mode in the spectrum that is believed to be related to
the nacelle’s shedding ( fn). Another possible triad is f3 + f4 − f6 ≈ 0, where f3 and f4 are
related to fn and f6 is likely related to the shedding from the tower ( fT ). However, the
triadic energy production term was not found to be the dominant term for any of these
low-frequency modes as can be seen from figure 7. The modes associated with fn are
found to be slightly energised by the T̃+

l − T̃−
l term, while the wake meandering mode

loses some energy due to nonlinear interactions. All the low-frequency modes lose energy
primarily through dissipation and production of incoherent (stochastic) turbulence. Hence,
we can say that nonlinear triadic interactions are possible among these modes, however,
they are not the driving feature of their dynamics.

The tip vortices on the other hand are energised by a variety of energy sources. For both
λs, fr is primarily energised by the mean flow, thus behaving similarly to a primary mode;
3fr only shows a positive convection (−C̃l) term. This is expected as the tip vortices are
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formed at the passage of the blades and then advected into the PIV domain where they
decay monotonically. We can expect a contribution from pressure diffusion to energise
the mode, however, this cannot be captured with the current experiments. The nature of
2fr changes with λ. For λ = 6, it is solely energised by the nonlinear triadic interaction
term, hence, it acts like a secondary mode, similar to those observed in two-dimensional
multiscale wakes (Baj & Buxton 2017; Biswas et al. 2022). For λ = 5, it is energised
primarily by the mean flow production term, while there is also some contribution from
the nonlinear triadic interaction term. Therefore, 2fr acts like a ‘mixed mode’ for λ = 5,
first reported by Biswas et al. (2022). The modes 4fr − 6fr are weaker compared with
fr − 3fr. Specifically, 5fr and 6fr for λ = 6 and 4fr and 5fr for λ = 5 exhibited only very
weak energy exchanges making it hard to see them in figure 7. Therefore, a ‘+’ or ‘−’ sign
is added to represent gain or loss of energy for these modes. A ‘∼’ sign is shown when
the contribution from a term is found to be negligible (| ∫x

∫
y ED/U3∞| < 0.01). Note that,

for both λs, 6fr behaves similarly to 3fr. For λ = 6, 4fr and 5fr behave similarly to fr and
2fr, i.e. like a primary and secondary mode, respectively. For λ = 5 on the other hand, 4fr
behaves like 2fr (mixed mode) and 5fr behaves like fr (primary mode).

For a deeper understanding of the energy budget terms, we take a spanwise (along the
y direction) integral of the budget terms and look at their streamwise variation. This is
first shown for the modes fr − 3fr for the two λs in figure 8. The corresponding plots
for 4fr − 6fr are not shown as their budgets were similar to one of the first three modes
( fr − 3fr) as discussed earlier. Note that we consider the budgets in a time-averaged sense
so dk/dt is essentially zero; therefore, the combined effect of the various terms of the
CKE budget equation is reflected in the convection term (−C̃l): if the energy content of
the mode is increasing with downstream distance (it is being net energised) then this term
will be negative whilst it will be positive when the mode is spatially decaying.

For fr (figure 8a,d), the primary source is the P̃l term, shown with a black line. Note
that, for λ = 6, the P̃l term changes sign at x/D ≈ 1.65. This location is close to where
fr was found to be the most energetic (see figure 3a). Beyond this point the mode decays
monotonically as indicated by the convection (−C̃l) term being positive. For brevity, let us
denote the location where P̃l changes sign as xwr. Note that xwr is particularly important in
terms of wake recovery, as beyond this point the mode transfers energy back to the mean
flow. For λ = 5 (figure 8d), xwr ≈ 3.2 that implies that wake recovery starts much later.
Note that, for λ = 5, there is a drop in the P̃l term of fr at x/D ≈ 1. This is because of
the presence of the merged root vortices (with frequency fr) that decay in this region and
noting that the P̃l term is essentially the sum of contributions from both the root and tip
regions.

For λ = 6, 2fr is primarily energised by the triadic interaction term that drops off to zero
at x/D ≈ 1.6; this is again close to the point where 2fr is most energetic in figure 3(b).
From figure 3 we can see that, for λ = 5, 2fr is much weaker than for λ = 6. This is
corroborated by the fact that the magnitude of the energy budget terms of 2fr in figure 8
is smaller for λ = 5, compared with λ = 6. Additionally, for the lower λ, the triadic
interaction term is much weaker due to increased separation between the tip vortices.
Therefore, unlike λ = 6, for λ = 5, 2fr is energised mainly by the mean flow. For 3fr,
the convection term is positive throughout as it decays monotonically in the domain. The
trends are qualitatively similar for both the λs. Note also that the residuals of the budget
equation are highest for 3fr, especially closer to the rotor. This is probably because there
is a significant role of the pressure diffusion term in this region that has been neglected in
the analysis.
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(b) 2fr and (c) 3fr for λ = 6. Subfigures (d–f ) show the same for λ = 5.
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Figure 9. Streamwise evolution of the energy budget terms of (4.1) averaged along the z direction for (a) fr,
(b) 2fr and (c) 3fr for λ = 6.

The same analysis is performed with the data from experiment 2A (see table 1 for
details) that considered the orthogonal xz plane for λ = 6. The budget terms are summed
in the z direction and are shown in figure 9 for the modes fr − 3fr. Note that the trends of
the budget terms are quite similar to those observed in the xy plane earlier (in figure 8). The
dominant source terms of the modes are the same. Moreover, the P̃l term for fr changes
sign at the same location as before, at x/D ≈ 1.65. Similarly, the triadic interaction term
for 2fr changes sign at x/D ≈ 1.6, consistent with the observation in the xy plane. This
similarity of the budget terms in the two orthogonal planes shows that the budget terms
are close to axisymmetric in nature and offers reassurance as to the repeatability of our
results.
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Figure 10. Streamwise evolution of the spanwise-averaged (along y) energy budget terms of (4.1) for (a) fwm
in the xy plane. Streamwise evolution of the energy budget terms averaged along the z direction for (b) fn in the
y = 0 plane, (c) fT in the y = −0.35D plane.

Figure 10 shows the evolution of the CKE budget terms for selected low-frequency
modes in different PIV planes for λ = 6. Figure 10(a) shows the terms for the dominant
wake meandering mode obtained from experiment 1A (the mode shown in figure 4a).
Figure 10(b,c) shows the same for the nacelle’s and the tower’s shedding mode obtained
from experiments 2A and 2B, respectively. The terms appear to be noisier compared with
the tip vortex system; however, the P̃l term is unambiguously the dominant source term for
these modes. For the wake meandering mode, P̃l slowly grows with streamwise distance,
which is consistent with the observed far-wake dominance of wake meandering (Biswas
& Buxton 2024). The sheddings from the nacelle and the tower on the other hand quickly
drop to zero, showing their relatively transient spatial nature.

4.1. Triadic interactions
Let us now cast a closer look at the triadic energy exchange term. So far we only know that
for λ = 6, 2fr is energised primarily by the triadic energy exchange term. But, 2fr forms a
number of triads and the triadic energy gain of 2fr is a sum of contributions from all the
triads that 2fr can form with the other frequencies. At this point we can ask are there any
particular triads that are more important or are there any frequencies that transfer more
energy to 2fr? Answering these questions can help significantly simplify what would be
a rather complicated network of energy transfers in the tip vortex system. The terms T̃+

l
and T̃−

l in (4.1) indicate the net nonlinear energy gain and loss, respectively, from the lth
coherent mode and are defined as follows:

T̃+
l = −1

2

∑

fs,ft

ũ fl
i ũ ft

j
∂ ũ fs

i
∂xj

, T̃−
l = −1

2

∑

fs,ft

ũ fs
i ũ ft

j
∂ ũ fl

i
∂xj

. (4.3a,b)

Note that the terms consist of three frequencies and are non-negligible only when the
frequencies form a triad (Baj & Buxton 2017). Essentially we take contributions from all
possible triads by summing over the two frequencies ( fs and ft). Instead, we can fix one
of these two frequencies (let us say fs) and can take a summation over the other frequency
( ft). This would give us the net triadic energy exchange between fl and fs. We do this for
all the frequencies related to the tip vortices ( fr − 6fr) and show the results in figure 11
for the two λs. The arrows show the direction of energy transfer. For instance, the first row
shows the net amount of energy fr is giving away to the other frequencies. In other words,
the first column shows the amount of energy received by fr from all other frequencies. As
observed earlier, the magnitude of the traidic energy transfers are much stronger for λ = 6,
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Figure 11. Triadic energy exchanges for (a) λ = 6 and (b) λ = 5 from experiment 1A.

compared with λ = 5. Moreover, for λ = 6, most of the energy transfer is limited between
fr − 4fr, while the contributions from 5fr and 6fr are significantly weaker in comparison.
Looking at the second column in figure 11(a) we can say that the main source for 2fr’s
triadic energy gain is 3fr. Thereafter, 2fr transfers some amount of energy to fr, hence
forming a net inverse energy cascade. Note that this sequence of energy transfer is similar
to that predicted by Felli et al. (2011) (see figure 41b of Felli et al. 2011) for a three-bladed
turbine. However, the fact that the higher harmonics can also have an important role in the
energy exchange process was not highlighted in their work. Note from figure 11(a) that fr
transfers a significant amount of energy to 4fr and 4fr transfers almost the same amount of
energy to 3fr. Therefore, although 4fr does not gain energy through triadic interactions, it
forms a bypass route of energy transfer allowing fr to transfer some energy back to 3fr.

For λ = 5, figure 11(b) shows that not only are the magnitudes of the energy transfers
weaker but the energy transfer pathways are also different. This includes the fact that
the net nonlinear energy gain for 2fr is now quite small, as was previously shown in
figure 7(b). Unlike for λ = 6, 2fr and 4fr are both energised mainly by fr, as far as triadic
interaction is concerned. To further understand the dependence of these energy transfers
on λ, the analysis is repeated for other λs in experiment 1B. These are shown in figure 12
in combination with the results for λ = 6 and λ = 5 (from experiment 1A) for a better
comparison. Note that the extents of the FOV are different for experiment 1B. Therefore,
in order to be consistent across different FOV sizes, the triadic energy exchanges are
integrated between 0.5 < x/D < 3D and 0 < y/D < 0.75D. Note that as we increase λ
from 5 to 6, there is a clear transition in the energy exchange pathway. For λ = 5.5, the
pattern looks exactly similar to that for λ = 6. For λ = 5.3, the pattern appears to be at an
intermediate state between that for λ = 5 and λ = 5.5. From λ = 5.5, the energy exchange
pattern remains qualitatively similar as we increase λ and the magnitude of the energy
transfers increases showing a stronger nonlinear interaction between the modes at higher λ.

From figure 11(a) we can see that, for λ = 6, 2fr gets most of its energy from 3fr.
However, 2fr and 3fr can form two triads together, one with fr and another with 5fr,
hence, it is not clearly known which triad is more important. We thus further split the
inter-frequency energy transfers shown in figure 11 into contributions from different
triads. For brevity, we present the results only for λ = 6 as it showed stronger nonlinear
interactions. In figure 13 we show the streamwise evolution of the spanwise-averaged
inter-frequency energy transfers that correspond to different triads. Note that there are a
total of nine triads involving the frequencies fr − 6fr. These are shown in boxes of different
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Figure 12. Net traidic transfers for (a) λ = 5, (b) λ = 5.3, (c) λ = 5.5, (d) λ = 6, (e) λ = 6.6, ( f ) λ = 6.9.

colours and line types in figure 13 for an easier interpretation. The first six triads involve
three different frequencies and are shown in boxes with a solid line, let us call them triad
type I. The last three triads have a repeated frequency and are shown in boxes with a
dash-dotted line to distinguish them. These triads are termed triad type II. We first show
the energy transfers to fr from the other frequencies in different triads in figure 13(a). Note
that fr forms four triads of type I and one triad of type II. For each triad of type I, it is
possible to have two energy transfers to fr from the other two frequencies involved in the
triad. For triads of type II, there will be only one transfer. Accordingly, we have a total
of nine transfers to fr as indicated in figure 13(a). The transfers corresponding to the first
triad (shown in the blue solid box) are shown with blue lines. The transfer from the lower
of the two frequencies of the triad (i.e. 2fr) is shown in a solid blue line and that from
the higher frequency (3fr) is shown in a dashed blue line. The transfer from the seventh
triad (shown in a black dash-dotted box) is shown in a black dash-dotted line. This same
convention is used throughout to avoid confusion. Note that, for fr, only three triads 1,
2 and 7 are important. For 2fr, only triads 1 and 7 are found to be important and both
positively energise 2fr. The main source of energy for 2fr is however 3fr from triad 1 as
discussed earlier. For 3fr, only triads 1 and 2 are important. As a whole, 3fr loses energy,
most of which goes to energise 2fr. For 4fr, only the second triad is important. The energy
transfers involving 5fr and 6fr are an order of magnitude smaller and can be ignored.

5. Summary of the energy exchanges for the tip vortices

The analysis of § 4 allows us to drastically simplify the network of nonlinear energy
exchanges by using a fewer number of triads. To be specific, for λ = 6, we can only retain
triads 1, 2 and 7 (shown in figure 13) and discard the rest. This approximated network of
energy transfers is schematically shown in figure 14(a) and it summarises the key energy
exchanges in the tip vortex system discussed above. The energy exchanges in triads 1 and
2 are shown in blue and red solid lines, respectively, while the black dash-dotted line
represents the energy transfer in triad 7, similar to the convention used in figure 13. The
values show the net triadic energy transfers. Note that triads 1 and 2 show a cyclic nature
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Figure 13. Energy transfers from different frequencies in different triads to (a) fr, (b) 2fr, (c) 3fr, (d) 4fr,
(e) 5fr and ( f ) 6fr. The possible traids are shown on the right.

of energy transfers and form a net inverse energy cascade (i.e. energy transfer from high
to low frequency), while triad 7 shows a forward cascade. For a comparison, the positive
contributions from the mean flow production term (P̃l) in (4.1) are also shown by solid
black lines. The numbers show the magnitudes of the energy transfers and the same is also
highlighted by the thicknesses of the arrows.

To summarise the energy transfer process involving the tip vortices, we can say from
triad 1 that energy primarily flows from 3fr towards fr via the secondary mode 2fr, which
is a nice representation of the tip vortex merging process (Felli et al. 2011). However,
we interestingly find that the net triadic energy gain of fr is nearly zero. This is because
fr transfers most of its triadic energy gain to 4fr. Therefore, fr is primarily sustained by
energy supply from the mean flow leading us to term it as a primary mode. Similarly,
4fr also behaves like a primary mode, transferring the energy it gains from fr to 3fr. This
energy feedback slows down the energy drainage of 3fr. We therefore argue that the energy
transfers from 3fr to 2fr in triad 1 and from 4fr to 3fr in triad 2 can be linked to the stability
and sustainment of the tip vortices. We compare these two energy transfers for the four
λs (5.5, 6, 6.6, 6.9) that showed similar triadic energy exchange patterns (figure 12) in
figure 14(b). Note that both the energy transfers increase with λ. However, the difference
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Figure 14. Triadic energy transfer pathways among the modes fr − 4fr for (a) λ = 6 and (c) λ = 5. The line
types and the colour of the arrows showing inter-frequency energy transfers are consistent with those used
to represent triads in figure 13. The solid black arrow shows the positive contribution from the P̃l term in
(4.1). The thickness of the arrows varies according to the magnitude of the energy transfers as indicated. Panel
(b) shows the magnitudes of the energy transfers from 3fr to 2fr in triad 1 and from 4fr to 3fr in triad 2 for
different λs.

of the two energy transfers also increases with λ, indicating a faster decay of the tip vortices
at a higher λ.

A similar schematic of energy transfers among the modes fr − 4fr for λ = 5 is shown
in figure 14(c). Note that, for λ = 5, a simplification of the energy transfer network is not
readily possible as all the modes exhibit energy transfers of similar magnitudes to/from
them (see figure 11b). Therefore, the purpose of figure 14(c) is solely to compare triads 1,
2 and 7 between λ = 5 and λ = 6. First of all, the energy transfers are much weaker for
λ = 5. Secondly, although triad 2 is still cyclic in nature, triad 1 has become non-cyclic.
The primary change has occurred around 2fr that is no longer strongly energised by 3fr.
Triads 1 and 7 contribute to some nonlinear energy gain of 2fr but it gets most of its energy
from the mean flow.

These energy exchanges can elucidate the nature of the tip vortex merging process.
Recently, Biswas & Buxton (2024) reported two different merging processes for two
different λs using the same wind turbine model. For the lower λ (λ = 4.5), the merging
of the tip vortices resembled a two-step process where first 2fr was formed and fr became
energetic further downstream, as also reported by Felli et al. (2011) and Sherry et al.
(2013). Contrastingly, for the higher λ (λ = 6), three tip vortices appeared to combine
almost directly in what they referred to as a one-step process (see also supplementary
video 2 of Biswas & Buxton 2024). For the same λ, we however do not see a direct energy
transfer from 3fr to fr in figure 14(a), as one might expect from a one-step process. The
energy transfer still happens in two steps, first from 3fr to 2fr and then from 2fr to fr
as predicted by Felli et al. (2011). However, due to the fact that fr and 2fr attain their
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maximum energy at almost the same streamwise location (see figure 3a,b), we can say
that these two steps take place almost concurrently, making it look like a one-step process.
For λ = 5, there is a larger streamwise separation between the points where fr and 2fr attain
their maximum energy, visually indicating a two-step merging process. The increased
separation between the helices at the lower λ, however, results in a much weaker nonlinear
interaction. Furthermore, the injection of energy from the mean flow to 2fr results in a
reorganisation of the energy transfer pattern in triad 1, i.e. from a cyclic to a non-cyclic
one.

It is worthwhile mentioning that the energy budget terms for the tip vortices may be
a function of the chord-based Reynolds number (Rec). At a lower Rec, the larger viscous
effects result in a higher drag and limits the maximum lift coefficient (Lissaman 1983).
Therefore, since utility-scale wind turbines operate at a much higher Rec, the blade sections
experience a higher Cl and lower Cd. Since Cl is directly related to the bound circulation,
we can expect the strength of the tip vortices (shed circulation) to increase with Rec. The
stronger tip vortices result in an interaction that occurs earlier (further upstream) that can in
turn be linked to the observed faster wake expansion and wake recovery at higher Reynolds
numbers (McTavish et al. 2013; Bourhis et al. 2023). Therefore, we believe increasing Rec
would further increase the magnitudes of the nonlinear triadic energy exchanges for the
tip vortices at a given λ. It will be interesting to study and compare the separate effects of
increasing Rec and λ on the triadic interactions and the tip vortex merging process. From
the nature of the Biot–Savart law, which governs the interaction between the tip vortices,
we can vaguely expect the growth of the tip vortex instability to be directly proportional
to the strength of the vortices, and inversely proportional to the square of the separation
(Sørensen et al. 2015). Now, increasing λ results in a reduction of the separation (pitch
of the helices) and can increase the strength of the tip vortices, while increasing Re is
expected to only increase the strength of the tip vortices. Further, the recent study by
Biswas & Buxton (2024) compared the tip vortex merging process at a low and high λ and
reported that the stronger interaction at the higher λ was primarily driven by the reduced
separation. To summarise, we can say that the tip vortex merging process likely depends
on Rec, however, it is more likely a stronger function of λ.

6. The near wake and wake recovery

For a wind turbine, it is important to quantify the extent of the near wake, particularly in
the context of designing wind farm layouts as the near wake contains energetic coherent
structures capable of inducing fatigue damage to the subsequent turbines. The extent of the
near wake depends on several factors such as the nature and intensity of the free-stream
turbulence level, turbine geometry, operating condition and so on and, hence, it is often
vaguely defined between 2–4 rotor diameters downstream of the rotor (Vermeer, Sørensen
& Crespo 2003; Foti et al. 2016). Several attempts have been made to quantify the
near wake, for instance, by observing self-similarity in the time-averaged wake profile
(Sørensen et al. 2015) or by looking at the variation of time-averaged coherent or turbulent
kinetic energy in the wake (De Cillis et al. 2021; Gambuzza & Ganapathisubramani 2023).
In contrast, Biswas & Buxton (2024) endorsed a more dynamic point of view and defined
the extent of the near wake as the location where the strength of wake meandering or
fwm (dominant dynamic feature in the far wake) surpassed that of the tip vortices or
3fr (dominant frequency in the near wake). They also defined a convective length scale,
Lc = πD/λ (which can be physically interpreted as the distance travelled at the free-stream
velocity in the time taken for one complete rotation of the turbine), and reported that the
near wake location was ≈3Lc for a range of λs tested, or in other words, the near wake’s
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Figure 15. Filled contours showing relative kinetic energy of the wake meandering mode with respect to
the mode associated with fr (denoted by k̃fwm − k̃fr ) for (a) λ = 6 and (b) λ = 5. The solid and dashed black
lines correspond to k̃fwm − k̃fr = 0 and k̃fwm − k̃3fr = 0, respectively. The + sign shows the location where the
kinetic energy corresponding to fr is maximum. The dash-dotted vertical line shows the streamwise location
corresponding to 3 convective length scales or 3Lc defined in Biswas & Buxton (2024).

extent scaled with 1/λ. The strength of a frequency at a particular streamwise (x) location
was however defined as the magnitude of the spectral peak at that particular frequency. As
the strengths of the frequencies depended only on x, the spatial distribution of the strength
or energy associated with frequencies was not taken into account in the definition of the
near wake. In this section we explore other ways to quantify the extents of the near/far
wake based on the knowledge gained earlier about the nature of the different modes and
the energy exchanges to/from them.

We first obtain the time-averaged kinetic energy of the modes associated with fwm
(kfwm) and fr (kfr ) and plot the relative kinetic energy kfwm − kfr for λ = 6 and λ = 5 in
figures 15(a) and 15(b), respectively. The solid black line corresponding to kfwm − kfr = 0
nicely distinguishes the regions where fwm or fr is stronger than the other. Similarly,
the dashed black line shows the contour corresponding to kfwm − k3fr = 0 that is always
found to be located within the contour traced by kfwm − kfr = 0 for the λs tested. Similar
contours can be obtained using the harmonics of fr and 3fr, but they are generally weaker
in nature. We therefore propose that kfwm − kfr = 0 can be used to distinguish the inner
wake involving low-frequency dynamics from the outer wake that contains high-frequency
modes related to the tip vortices. The earlier and stronger tip vortex merging process for
λ = 6 results in a quicker disintegration of the tip vortex system. The outer wake thus
vanishes at x/D ≈ 4.7, creating a path for rapid exchange of mass and momentum between
the inner wake and the non-turbulent background fluid in this case, aiding wake recovery.
We therefore argue that the end of the outer wake can be considered as the initiation of the
far wake where wake meandering is the only discernible frequency signature. The extent
of the outer wake and, hence, the far wake depends on λ. For λ = 5, the outer wake extends
beyond x/D = 5; therefore, we can expect the far wake to also scale with 1/λ at least in
the presence of low inflow turbulence, similar to the near wake (Biswas & Buxton 2024).
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Figure 16. (a) Streamwise variation of spanwise-averaged mean flow production term for the tip vortex system
(shown by the solid lines) and fr (shown by the dashed line) for different λs. (b) The variation of the location
where wake recovery initiates or xwr with λ (blue, –•–). The solid black line shows the streamwise location
x/D = 3Lc.

Next we look at the evolution of the mean flow production term (P̃l) of the tip vortex
system. In figure 16(a) we show the streamwise evolution of the spanwise-averaged (along
y) mean flow production term for the tip vortex system (

∑l=6fr
l=fr P̃l) for three different λs

(represented by solid lines). While the dashed lines show the mean flow production term
only for fr (P̃fr ) for the corresponding λs. Note that P̃fr is close to

∑l=6fr
l=fr P̃l for all λs,

which implies that most of the energy exchanges between the mean flow and the tip vortex
system happens through fr. As discussed earlier, disintegration of the tip vortex system
is essential to re-energise the wake. Note that close to the rotor

∑l=6fr
l=fr P̃l > 0, i.e. the

tip vortex system first draws energy from the mean flow as a whole. However, after some
distance downstream it starts to transfer the energy back to the mean flow as indicated by∑l=6fr

l=fr P̃l < 0. The streamwise location where the combined mean flow production term
for the tip vortex system changes sign can be ascribed as the point of initiation of wake
recovery (let us denote it by xwr). Note that, as λ increases, xwr moves closer to the turbine.
Moreover, an estimation of xwr can be obtained just by looking at the production term
of fr that again highlights the importance of fr in the distinction of the near wake from
the far wake. In figure 16(b) we show the variation of xwr obtained from P̃fr with λ. The
extent of the near wake, ≈3Lc, proposed by Biswas & Buxton (2024) is also shown for
a comparison. Here xwr shows a nice trend with λ. More interestingly, for higher λ, xwr
becomes close to 3Lc, further highlighting the efficacy of Lc as a length scale in the near
wake.

To understand why the P̃l term for fr changes sign after some distance downstream,
let us take a closer look at its composition. Baj & Buxton (2017) defined the term as
P̃l = −∑

m ũm
i ũl

j(∂ui/∂xj), where m can be any coherent mode selected in the
reduced-order representation of the flow including the lth mode. Assuming that the velocity

components of the different modes are uncorrelated, i.e. ũl
iũ

m
j ≈ 0 for any l /= m, we

can say that P̃l ≈ −ũl
iũ

l
j(∂ui/∂xj). Next, we can show that the transverse gradient of the

streamwise velocity (∂ ū/∂y) is an order of magnitude stronger than the other gradients,
at least in the tip shear layer region. So we can further approximate the term as P̃l ≈
−ũlṽl(∂ ū/∂y). In figure 17(a) we show the P̃l (without any approximation) field for fr. As
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Figure 17. (a) Mean flow production term (P̃l) of fr for λ = 6, (b) shows the leading term of P̃l. The ‘+’ sign
marks the location of the sign change.

can be expected, P̃l is concentrated only in the tip shear layer region and the ‘+’ sign shows
the location where the term changes sign, i.e. the location of the onset of wake recovery
(xwr). Figure 17(b) shows the P̃l field only with the dominant term (−ũlṽl(∂ ū/∂y)) and it
looks almost exactly similar to figure 17(a), hence justifying the approximation.

Now, ∂ ū/∂y is always positive in the tip shear layer region. The observed change
of sign in P̃l thus requires a change in the nature of correlation (negative to positive)
between the streamwise and transverse velocity components of fr. This is similar to the
observation of Lignarolo et al. (2015) for a two-bladed turbine. They argued that the net
transport of kinetic energy towards the wake centreline (the component contributing to
the wake recovery) due to the periodic motions can be given by the gradients of the
kinetic energy flux −ũlṽlū. They further showed that at a certain distance downstream,
the orientation/inclination of the tip vortex pair undergoing merging with respect to the
streamwise direction changed from negative (<90◦) to positive (>90◦), resulting in a
change in the correlation between the streamwise and transverse velocity component (see
figure 17 of Lignarolo et al. 2015). From figure 1 here and also from supplementary video
2 of Biswas & Buxton (2024), we can see that for λ = 6, the vortex triplet, undergoing
merger, changes its inclination at x/D ≈ 1.5. Consequently, we observe a sign change in
the P̃l term for fr at x/D ≈ 1.5 for λ = 6.

7. Conclusion

The near wake of a wind turbine is abundant with coherent structures. Studying the
interaction between these coherent structures is a key to understanding the spatio-temporal
evolution of the wake and phenomena like wake recovery. We conducted PIV experiments
to identify and extract the coherent structures in the near wake of a rotor model having a
nacelle and a tower, thereby making it representative of a utility-scale wind turbine for two
main tip speed ratios (λ), λ = 6 and λ = 5. The coherent structures were identified using
a multiscale triple decomposition of the velocity field using OMD (Wynn et al. 2013;
Baj et al. 2015). A large number of high-frequency modes were extracted related to the tip
vortices, including modes with a frequency equal to the turbine’s rotational frequency ( fr),
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blade passing frequency (3fr) and their harmonics (2fr and 4fr − 6fr ) as well as a number
of low-frequency modes that included sheddings from the tower ( fT ), the nacelle ( fn) and
wake meandering ( fwm). The spatial nature and strength of the modes depended on λ. For
the higher λ (λ = 6), the modes related to the tip vortices were energetic closer to the rotor,
owing to the early interaction between the tip vortices for a higher λ (Sherry et al. 2013).
For the low-frequency modes, the modes associated with fn and fT were similar for the two
λs. Interestingly however, the wake meandering mode was found to be more energetic for
the higher λ consistent with the observations of Biswas & Buxton (2024).

Further insights are gained about the nature of the different modes by studying the
energy exchanges to and from them by using the multiscale triple decomposed CKE budget
equation derived by Baj & Buxton (2017). The low-frequency modes associated with the
sheddings from the tower and the nacelle as well as the wake meandering mode were found
to be primarily energised by the mean flow, hence acting similarly to a ‘primary mode’, as
termed in previous studies (Baj & Buxton 2017; Biswas et al. 2022). The tip vortex system
on the other hand was found to have a variety of energy sources such as energy production
from the mean flow, nonlinear triadic energy production or both. The mode associated
with fr behaved like a primary mode for both λs, while the nature of 2fr changed with λ.
For λ = 6, 2fr gained most of its energy through the nonlinear triadic energy production
term in the CKE budget equation, hence, it is akin to a ‘secondary mode’ (Baj & Buxton
2017; Biswas et al. 2022). For λ = 5 on the other hand, the mode received most of its
energy through the mean flow production term, while having a non-negligible positive
contribution from the triadic interaction term, therefore acting like a ‘mixed mode’ as
discussed in Biswas et al. (2022). The differences in the energy exchanges observed for
the higher and lower λ were shown to be consistent with the ‘one-step’ and ‘two-step’
merging processes reported earlier by Biswas & Buxton (2024). Some triadic interaction
was observed between the low-frequency modes as well, but its net contribution was small
compared with the energy production from the mean flow.

A complex network of triadic energy exchanges between the modes associated with
fr − 6fr is identified and discussed. For λ = 6, energy was found to flow from 3fr to 2fr and
then from 2fr to fr via the nonlinear triadic interaction term in the triad formed by fr, 2fr
and 3fr, similar to the observation of Felli et al. (2011). In the triad formed by fr, 3fr and
4fr, fr transferred some energy to 4fr. Mode 4fr then transferred almost the same amount
of energy to 3fr, resulting in a much weaker but still dynamically important 4fr mode.
The same pattern of triadic energy exchanges was observed for four different λs (λ = 5.5,
λ = 6, λ = 6.6 and λ = 6.9). The triadic energy exchanges for the lower λs were found to
be much weaker due to the increased separation between the tip vortex filaments.

Finally, attempts are made to identify the boundaries between the inner/outer wake and
near/far wake based on the modes and their energy contents. It is shown that the inner wake
(involving low-frequency dynamics) can be distinguished from the outer wake (involving
high-frequency structures) by comparing the kinetic energy associated with the turbine’s
rotational frequency fr and wake meandering ( fwm). To identify the location of the onset of
wake recovery (defined as xwr), we looked at the combined mean flow production term of
the modes related to the tip vortices ( fr − 6fr). Initially, the tip vortex system was found to
extract energy from the mean flow, but further downstream, the combined production term
became negative, implying a net energy transfer back to the mean flow. More interestingly,
most of the energy exchange between the mean flow and the tip vortex system was found
to happen through the turbine’s rotational frequency. The sign change in the mean flow
production term of fr was shown to be related to a switch in the nature of correlation
between the streamwise and transverse velocity components of the fr mode resulting from
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Figure 18. (a) The OMD spectra for different ranks r. Plots (b,c) shows the streamwise evolution of the
spanwise-averaged P̃l term for fr and fwm, respectively, for different r.

the change of inclination of the tip vortex system undergoing merging, similar to the
observation of Lignarolo et al. (2015) for a two-bladed rotor.
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Appendix A. Convergence of the OMD modes

To estimate the possible effects of the rank r of the OMD matrices (which needs to
be selected a priori), the decomposition is performed with different rs. Optimal mode
decomposition is first applied to the data set from experiment 1A for λ = 6 for different
rs. The resultant spectra are shown in figure 18(a). For r = 125, only the modes from
fr − 3fr are captured. While, for the higher ranks, 4fr is also captured. The dominant wake
meandering frequency around StD ≈ 0.2 was captured for all the rs as well as frequencies
in the range 0.4 � StD � 0.5 and 0.7 � StD � 0.9 that are associated with the vortex
sheddings from the nacelle and the tower, respectively. To evaluate the effect of r on
the energy budget analysis, we look at the primary source term for fr and fwm, i.e. the
coherent energy production term (P̃l) for different rs. The streamwise evolution of the
spanwise-averaged P̃l term for the frequencies are shown in figure 18(b,c) for different rs.
For fr, there was no significant variation in P̃l with changes in r. A similar observation
was noted for all the budget terms for all the tip vortex related modes. The P̃l term for
fwm is found to be more sensitive to the selection of r, especially for r = 125, the term
looks significantly off from the other two curves in figure 18(c). This can be expected as
the energy budget terms were much noisier for the low-frequency modes. Nevertheless,
the energy budget terms do not change significantly when summed over the entire domain,
especially after r = 175. Accordingly, we only present the results for r = 175.
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Appendix B. Selection of OMD modes

The selection of the OMD modes to form a reduced representation of the flow is non-trivial
as there does not exist a strict rule for mode reduction (Beit-Sadi, Krol & Wynn 2021). In
this work we selected the modes based on their growth rates and knowledge of frequencies
present in the flow from our prior work with the same wind turbine model (Biswas &
Buxton 2024). From our prior work, the dominant low-frequency (StD < 1) features were
found to be wake meandering (0.2 � StD � 0.3), and the sheddings from the nacelle
(0.4 � StD � 0.5) and the tower (0.7 � StD � 0.9). The least damped modes in these
frequency ranges were selected (as shown in figure 2) and associated with their respective
physical features. The selection of the tip vortex related modes is more definitive due to
their discrete temporal nature. Nevertheless, we repeated the energy budget analysis for
λ = 6 for experiment 1A, by including four more low-frequency modes that were in the
vicinity of the least damped low-frequency modes. These modes are marked by a ‘blue ◦’
symbol (also numbered 13–16) in figure 19(a) along with the originally selected modes
shown by a ‘red +’ symbol. The integrated energy budget terms of all the modes are
shown in figure 19(b). A comparison with figure 7(a) reveals no discernible difference
in the energy budget terms of the tip vortex related modes ( fr − 6fr). The streamwise
variation of the spanwise-averaged (along y) energy budget terms of the tip vortices also
remain unaltered. Mode 13 has a frequency close to the wake meandering frequency range,
but shows much weaker energy exchanges (especially in terms of mean flow production,
i.e. the P̃l term that is the primary source term) compared with the originally selected wake
meandering modes. Interestingly however, modes 14–16, which are in an intermediate
frequency range between the nacelle’s ( fn) and tower’s shedding frequency ( fT ), show
energy exchanges with magnitudes comparable to the originally selected fn and fT modes
(modes 3–6). Comparing with figure 7(a) we can say that exclusion of modes 13–16
results in a slight increase in the P̃l term of the low-frequency modes, especially for
fn. Furthermore, when the modes are excluded, they are considered to be a part of the
stochastic velocity component (u′′). This results in a slightly stronger stochastic kinetic
energy production term (P̂l) for the originally selected modes, mainly for fwm and fn.
Nevertheless, inclusion or exclusion of modes 13–16 does not alter the main conclusion
about the low-frequency modes, i.e. they are primary modes driven by the mean flow
(through the P̃l term) and they do not exhibit any significant nonlinear triadic interaction
with the other modes. The selection process of the low-frequency modes can be made
more definitive by using methods such as mode clustering (Beit-Sadi et al. 2021), that
seeks to form a sparse representation of the flow by grouping or clustering modes based
on their spatial and spectral similarity. We will assess the efficacy of this method in our
future works.

The OMD spectrum in figure 2 also shows a number of modes with characteristic
frequencies in the range 1 � StD � 3. The modes could be related to nonlinear interactions
between the fr mode and one of the low-frequency modes (the wake meandering mode or
the sheddings from the nacelle or the tower). These modes were, however, not selected
in the reduced-order representation of the flow due to their highly damped nature. To
assess the possible effects of this exclusion in the energy exchange patterns observed,
especially in the nonlinear triadic energy exchanges, we further performed the analysis by
including some of these modes for λ = 6. The OMD spectrum for λ = 6 (with r = 175)
is reproduced in figure 20(a). The originally selected modes are shown by a ‘red +’
and the extra modes selected in the range 1 � StD � 3 are marked by a ‘blue ◦’ sign.
In figure 20(b) we show the streamwise evolution of the spanwise-averaged net triadic
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Figure 19. (a) The OMD spectrum for λ = 6 from experiment 1A. The ‘blue ◦’ symbols show the additional
low-frequency modes (StD < 1) retained. Panel (b) shows the energy budget terms of (4.1) summed over the
domain of investigation for all the modes including the additional low-frequency modes.
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Figure 20. (a) The OMD spectrum for λ = 6 from experiment 1A. The ‘blue ◦’ symbols show the additional
modes retained in the range 1 � StD � 3. Plot (b) shows the streamwise evolution of the spanwise-averaged net
triadic energy production term for fr − 3fr with (circles) and without (solid lines) the inclusion of the additional
modes.

energy production (the T̃+
l − T̃−

l term in (4.1)) for fr, 2fr and 3fr obtained by using
fewer modes (shown by solid lines) and by including the additional modes in the range
1 � StD � 3 (shown by using circles). Inclusion of the additional modes clearly does not
alter the triadic energy exchanges in the tip vortex system, indicating negligible nonlinear
interaction between the tip vortex system and the low-frequency modes, at least within the
FOV considered.
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