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ON THE DOUADY SPACE OF A COMPACT COMPLEX SPACE
IN THE CATEGORY ¢

AKIRA FUJIKI

Introduction

Let X be a complex space. Let D, be the Douady space of compact
complex subspaces of X [6] and py: Zy — D, the corresponding universal
family of subspaces of X. Thus there is a natural embedding Z;, S Dy
X X such that p, is induced by the projection D; X X — D;. Letzy:Z,
— X be induced by the other projection D, X X — X. For any irreducible
component D, of Dy ., we denote by p,:Z,— D, the universal family
restricted to D,, and set n, = 7y, : Z, — X, where Dy, is the underlying
reduced subspace of D,. On the other hand, we have introduced in [9]
a category ¥ of compact complex spaces as follows (cf. also [10]). A
compact complex space X is in % if and only if there exist a compact
Kahler manifold Y and a generically surjective meromorphic map A: Y —
Xoet» Xpea being as above. Then the main purpose of this paper is to prove
the following theorem: Let X be a compact complex space in €. Then
for every irreducible component D, of Dy, .. such that Z, is reduced, D, is
compact and again belongs to ¥. The proof also shows that if X is
Moishezon, then D, also is Moishezon, which is a special case of a theorem
of Artin [1]. Movreover since the Barlet space B(X) of compact cycles of
X [4] is a proper holomorphic image of the union of those irreducible
components of Dy, . for which Z, are reduced and of pure fiber dimension,
the result also implies that every irreducible component of B(X) is again
in € if X is in ¥. Here we note that the same result as above was also
obtained by Campana [5] independently.

The arrangement of this article is as follows. In §1 and § 2 we define
respectively the notion of a Moishezon morphism and of a morphism in
the category #/S, which is a relative version of the category % above,
and summarize some functorial properties of these morphisms. In §3 we
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make some general study on the irreducibility of general fiber of a mor-
phism, in part to be used in §5. Then in § 4 we give the main ingredient
of the proof of our theorem, Proposition 4, which states that if the general
fiber of p,: Z,— D, is reduced and irreducible, then z, defined above is
Moishezon. In fact, combining this with the results in §§1 and 2 we
obtain the theorem immediately in this special case. The reduction of
the general case to this special case will then be given in § 5, thus com-
pleting the proof of the theorem. Actually our theorem is expected to
be true for any irreducible component of Dy, ... Presupposing the future
investigation of this problem along the line of [9] and in view of an ap-
plication [11] also, we have developed our exposition in the relative form
as in [9] so that the above theorem is also true in this generalized form
(see Theorem in §5 for the precise statement). Finally in the Appendix
we give a direct proof of Lemma 2.

Notation. Let f: X— S be a morphism of complex spaces. Then for
any morphism «: T'— S we often write X, = X X T and f,: X, - T for
the natural projection. For instance if U S S is open, f, is the induced
morphism X, = f""(U) — U. In particular if T = {s} is a point of S we
write X, instead of X,. For a complex space X, X,.. denotes the underly-
ing reduced analytic subspace.

§1. Moishezon morphisms

(1.1) We fix notation and terminology for meromorphic maps. Let
f:X— S and g: Y- S be morphisms of reduced complex spaces. Then a
meromorphic S-map «: X — Y from X to Y is a reduced analytic subspace
I' © X XY such that the natural projection p: I" — X is a proper bimero-
morphic morphism in the sense that p is proper and that there is a dense
Zariski open subset U (vesp. V) of I' (resp. X) such that p induces an
isomorphism of U and V. We call « a (proper) bimeromorphic S-map, or
being S-bimeromorphic, if the natural projection ¢: I — Y also is a proper
bimeromorphic morphism. We say that f and g are bimeromorphic if there
is a bimeromorphic S-map of X to Y.

If f is proper in the above definition, ¢(I") is an analytic subspace of
Y and is called the image of X by «. On the other hand, « is called
generically surjective (resp. generically finite) if g(I') contains a dense
Zariski open subset of Y (resp. q is generically finite). When f is proper,
the generic surjectivity is equivalent to saying that Y = q(I").
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Given a meromorphic S-map a: X — Y as above we often identify «
with the induced S-morphism « = g¢p~'|,: V— Y. Then the subspace I
above is recovered from &’ as the closure in X XY of the graph I',, &
VXsY of « and is called the graph of «’. Then an S-morphism is
nothing but the meromorphic S-map « for which we can take V = X,

Tet 1 X— S and g,:Y,— S, 1<i<m, be morphisms of complex
spaces and «;: X— Y, be meromorphic S-maps. Then we can define
naturally a meromorphic S-map [[sa:X—Y, X5+ XsY, called the

product of «; over S; one verifies readily that the closure of the graph
of the S-morphism a] Xs- -+ Xsa, is analytic in X XY, X5+ X5 Y,
where «] for «; has the same meaning as o’ for a as above.

For later reference we recall here the analytic Chow lemma due to
Hironaka [14], [15].

(1.1.1) Let @: X— Y be a meromorphic S-map as above. Then there
exist a complex manifold X*, and a projective bimeromorphic morphism
h: X* — X such that the composition ah: X* — Y is a morphism.

(1.2) Let f: X— S be a proper morphism of complex spaces. We call
f locally projective if for every relatively compact open subset @ of S there
is an invertible sheaf ¥ = #(Q) defined on X such that #|,, is f,-ample
(cf. Notation). (In this case we simply say that % is f,-ample.) Thus if
f is locally projective, then f, is projective for every relatively compact
open subset @ S S.

(1.2.1) A composition of two locally projective morphisms is again
locally projective.

Proof. Let f: X— Y, g:Y— Z be locally projective. Let h = gf: X
— Z. Let @ be any relatively compact open subset of Z. Take another
relatively compact open subset @ of Z with @ = @. Then Q = g(q)
is a relatively compact open subset of Y. Take an invertible sheaf % on
X (resp. # on Y) which is fz-ample (resp. g,-ample). Then it is easy to
see that Z ®,, f*#™ is hy-ample for all sufficiently large m (cf. EGA 1I,
4.6.13 (i1)). Thus A is locally projective.

(1.3) Let f: X— S be a locally projective morphism.
(1.3.1) If X has only a finite number of irreducible components, then
f is S-bimeromorphic to a projective morphism.

Proof. Let @ be any relatively compact open subset of S such that
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X, meets every irreducible component of X. Let .# be an invertible sheaf
on X which is f,-ample. Restricting € and replacing & by its high power
L™ n> 0, we may assume that % is even f,-very ample. Let a: X—
P(f.%#) be the natural meromorphic S-map of X into the projective fiber
space P(f,.¥) over S associated to the coherent analytic sheaf f,% on S
(cf. [3], [13]). By our assumption « is an embedding on X, Since X,
meets every irreducible component of X, this implies that « is bimero-
morphic onto its image. Hence f is bimeromorphic to a projective mor-
phism. Q.E.D.

From the above proof follows also the following:

(1.3.2) Let f: X— S be as in (1.3.1). Then there exist an invertible
sheaf ¥ on X and a dense Zariski open subset W of S such that % is
fw-(very) ample.

(1.4) DerFiNiTION. Let f: X— S be a proper morphism of reduced
complex spaces. We call f Moishezon if f is bimeromorphic to a locally
projective morphism g: Y— S. By (1.8.1) when X has only a finite number
of irreducible components, f is Moishezon if and only if f is bimeromorphic
to a projective morphism.

Remark. In [17] Moishezon introduced the notion of an A-space over
another complex space, and stated some of their fundamental properties.
From his definition it follows readily that for a proper morphism f: X —
S of reduced complex spaces X is an A-space over S if and only if f is
locally Moishezon in the sense that for each point s € S there is a neigh-
borhood s e U such that the induced morphism f,: X, — U is Moishezon
in the sense defined above.

(1.5) Clearly the Moishezon property of a morphism is invariant under
S-bimeromorphic equivalence. We now list some fundamental properties
of Moishezon morphisms.

1) A composition of two Moishezon morphisms are again Moishezon.

2) f: X — Sis Moishezon if and only if for each irreducible component
X, of X the restriction f = fl|s,: X; — S is Moishezon.

3) If f is Moishezon, there are a locally projective morphism g: X*
— S with X* nonsingular and a bimeromorphic S-morphism A: X* — X.

4) Suppose that there exist a locally projective morphism g: Y — S
and a generically finite meromorphic S-map A: X— Y. Then f is Moishezon.

Proof. 1) and 3) follows from (1.1.1) and (1.2.1). Let y:X’ — X be the
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normalization of X. Since g is bimeromorphic, f is Moishezon if and only
if fp is Moishezon. From this 2) follows readily. 4) Changing f under
bimeromorphic equivalence we may assume that A is a morphism. Let
h = h,h, with h;: X — X* and h,: X* — Y be the Stein factorization of A,
where h, is a bimeromorphic, and A, is a finite, S-morphisms. Since a
finite morphism is projective, gh,: X* — S is locally projective by (1.2.1),
and hence 4).

(1.6) Less trivial to prove is the following:

ProposiTION 1. Let f: X — S be a Moishezon morphism, and g: Y —
S a proper morphism, of reduced complex spaces. Suppose that there is a
generically surjective meromorphic S-map h:X—Y. Then g also is
Moishezon.

Proof. By (1.5) 2) we may assume that Y, and then X and S also,
are irreducible. By (1.1.1) and (1.5) 3) we may further assume that f is
locally projective, X is nonsingular and A is a morphism. Then there is
a dense Zariski open subset V, of Y such that V, is nonsingular and
hy,: X, — V, is smooth. Let .Z be an invertible sheaf on X which is fy-
ample for some dense Zariski open subset W of S (1.3.2). Restricting V,
we may assume that V; £ Y,,. Then if n is sufficiently large, say, n > n,
for some n, > 0, there is a dense Zariski open subset V, of Y such that
V.S V, and H'(X,, #7) =0 for all ye V, where &} = £"®,, 0y, Let
&, = h,#*. Then &, is a coherent analytic sheaf on Y which is locally
free of rank, say r,, on V, (cf. [3, p. 122, Cor. 38.9]). Moreover taking n,
larger if necessary we may assume that r, > 0 for n > n,. On the other
hand, by [20] we can find a proper surjective bimeromorphic morphism
0,:Y,— Y such that &, = ¢*&/7,, 7, being the torsion part of ¢*¢&, is
locally free of rank r, on 17” Moreover we can assume that o, gives
an isomorphism of V, = a;'(V,) onto V,. Let g, =o0,8: Y, —~ S and set
M, = \"&,, where /" denotes the r,-th exterior product. Then .Z,
is an invertible sheaf on Y,. Let «,: ?nﬁp(g,l*///n) be the natural
meromorphic S-map from Y, to the projective fiber space P(g,. M, over
S associated to the coherent analytic sheaf 5,,.#, on S (cf. [3, IV, §1]).
Then we show that for a sufficiently large n, ¢, is generically finite; then
by (1.5) d) the proposition would follow.

For this purpose it is enough to show that for some n > n,, for some
ye Y, and for some neighborhood U of s = g8.(y) in S, the following holds
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true; there are sections ¢, ---, ¢, € Z"’(?,hy, A ,) such that the meromorphic
U-map @: Y",U—» U X CP?!' associated to ¢, is holomorphic and locally
biholomorphic at 3, where Y, is over S by g,. (Note that Y, is irreducible.)
First we take n,% and U in such a way that je V., U is a sufficiently
small Stein open neighborhood of s, and that H'(Xj, m}¥") = 0, where
y = 0,(y) and m, is the maximal ideal of @, at y. Clearly this is possible
since .Z is fy-ample and ye V, & Y,. Then in particular the restriction
map B,: ['(Xy, ") — I'(Xy,, £7%,) is surjective, as follows from the long
exact sequence associated to the short one

0—> nlg" —> Pn L —>0

where we have put £ = " Q,, Ox/mi0y. Further since
H'(Xy, m, 2" [my?") = H'(Xy, L7 Qgp my[my) = H(X,, £73) Q¢ my[myy =0,

from the short exact sequence 0— m, &"[mi¥" — L% — £»— 0 we have
the exact sequence

n 5”
0—> I'(X,, %) Qg myfm, —2> ' Xy, L) —2> ['(X,, L) —> 0 .

Fix n and write r = r,. Then take and fix a base (!, - - -, ¥) of I'(X,, £7).
Let (y, - -+, ¥w), m = dim Y, be a local coordinate system around y of Y
and y, the residue classes of y; in Oy/mj0y. Then we take any base
Wy, -+ 05 Va), & =r(m + 1), of I'(X,, £%,) satisfying the following conditions;
0.(0) =% 11 <1, and Yrp; = 1G¥y), 1<k <m, 1 <j<r, where
Yob; = ¥; ® §, e ['(X,, £,) Q¢ my[mi. For each 1 < k £ d take and fix
e I'(Xy,, #™) with B,(y) = ¥,. With respect to the natural identification
I'Xx, ™ = I'(Yy,, &,) < Z’(I?n,l,, £,), we consider 1, naturally as sections
of &, on Y,, Then for any 1 <i, - - <i, <d define Qiyeriy € (Y, M)
by @i, = Yy A -+ A Y,. We claim that these ¢, = ¢,,...;, have the de-
sired properties.

Since the problem is local around y and o, gives a natural iso-
morphism of V, and V,, in what follows we identify V, and V, by o,
and therefore y with y and &,|;, with &,,,. Further we consider .#,|s,
as an invertible sheaf on V, and 4, as sections of &, on Y, N V,. Now
Ay, - -+, W, define a trivialization &, = 0y of &,, and hence also #, = 0,
of #,, in some neighborhood N of y. In particular we may consider each
¥, (resp. ¢y,...;;) as an r-tuple of holomorphic functions (resp. a holomorphic
function) on N. Then we have by construction 4, = (0, ---,0,1,0, ---, 0)
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for 1 < i < r where 1 is on the i-th place and ,.; = (0, ---,0,%,0, - - -, 0)
modulo mj, where y, is on the j-th place. Hence we have ¢,...(y) = ¥,
A AN (0) #0 and Olecefoerorery = Y1 AN\ oo A ‘j’lc AN AN A Ay =
y; modulo »? where # implies the absense of u. The former implies that
@ is holomorphic at y and the latter implies that @ is locally biholomorphic
at y. Hence our claim is verified. Q.E.D.

(1.7) Let f: X— S be a Moishezon morphism. Then:

5) For every reduced analytic subspace X’ < X the induced morphism
f = fly: X’ - S is Moishezon.

6) Let pu: S—>Shbea morphism of reduced complex spaces. Then the
induced map fs, rea: X5, rea = S is Moishezon.

7) Let g:Y— S be another Moishezon morphism. Then f X g:X
X s Y— S also is Moishezon.

Proof. Let g:X*— S and h:X* - X be as in (1.5) 3). Let Z =
h~Y(X’) with reduced structure. Then g|,: Z— S is locally projective and
h|z: Z — X' is surjective. Hence by the above proposition f is Moishezon.
This proves 5). We show 6). Let g and A be as above. Then A induces
a surjective morphism Ag, et X;~", rea —> X5, 0 OVEr S. Since g5, et X% oa—
S is locally projective, 6) also follows from the above proposition. Since
f Xsg is the composition of the natural projection X X3Y— Y and g,
7) follows from (1.5) 1) and 6) above.

§2. Morphisms in %/S

(2.1) DerFinITION. Let g:Y— S be a proper morphism of complex
spaces. Then: 1) ([9, Def. 4.1]) g is called Kdhler if there exist an open
covering {U,} of Y and a C> function p, defined on each U, such that
for each «, p, is strictly plurisubharmonic when restricted to each fiber
of gly,: U,—~ S and that p, — p, is pluriharmonic on each U, N U,. 2) g
is called locally Kdihler if for every relatively compact open subset @ of
S there exist {U,} and {p,} satisfying the condition as above except that
p. is assumed to be strictly plurisubharmonic only when restricted to
each fiber of gly,ng-100: U N 87(Q) — Q.

In the above definition the real closed (1, 1)-form o, = v —13dp,, each
defined on U,, patch together to give a global real closed (1, 1)-form w on
Y, which we call a relative Kahler form for g (resp. for g over Q).

(2.2) In the following all the morphisms considered are proper.
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1) Every (locally) projective morphism is (locally) Kéahler.

2) Let g:Y— S be a (locally) Kahler morphism and «:S— S a
morphism of complex spaces. Then the induced morphism gs: Ys — S is
(locally) Kahler.

3) Let f: X— Y and g: Y— S be locally Kahler morphism of complex
spaces. Then the composition gf: X — S is again locally Kihler. Con-
versely if gf is (locally) Kéhler, then f also is (locally) Kéahler.

4) Let f: X— S and g:Y— S be locally Kiahler morphisms. Then
[Xs8: X XsY— S is locally Kahler.

Proof. See [9. Lemma 4.4] for 1). We show the former half of 3).
Let Q= @ — S and @ = g (Q’) be as in the proof of (1.2.1) (with Z re-
placed by S). Let w, (resp. wz) be a relative Kahler form for g over @’
(resp. f over @). Then for all sufficiently large n > 0, wg + nf*oglen-1e
gives a relative Kahler form for the morphism gf over @ (cf. the proof
of [9, Lemma 4.4]). Hence gf is locally Kahler. Since f Xsg is a com-
posite of the natural projection X XY — Y and g, 4) follows from this
and 2). The other assertions follow immediately from the definition.

(2.3) DerFiniTION. Let S be a reduced complex space. Then we define
the category %/S as follows: An object of /S is a proper morphism
f: X— S of reduced complex spaces for which there exist a proper and
locally Kihler morphism g: Y— S and a generically surjective meromorphic
S-map h: Y — X (Notation: fe ¢/S); and a morphism in %/S is a morphism
u: X, — X, of complex spaces with f,u = f; where f;: X, > Se¥%/S,i=1,2.

Remark. 1) Note the deviation from the notation adopted in [9, p.
51]; there we used the notation %#/S for the category loc-¢/S which is
defined as follows: An object of loc-#/S is a proper morphism f: X — S
of complex spaces for which there exists an open covering {U,} of S such
that f,.:X,, —» U,e%/U, for each «, with morphisms defined as above.
2) When S is a point, we write ¥ instead of ¥/S. In this case the defi-

nition coincides with that given in [9, 4.3] except that we consider only
reduced spaces here.

(2.4) We shall give some functorial properties of morphisms in /S
analogous to Moishezon morphisms.

1) Every Moishezon morphism belongs to %/S.
Let f: X — S and g: Y — S be proper morphisms of reduced complex spaces.
Suppose that ge #/S. Then:
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2) fe®/S if and only if there exist a proper and locally Kéahler
morphism g*: Y* — S with Y* nonsingular, and a surjective S-morphism
h*:Y* — S.

3) For every analytic subspace Y’ of Y the induced morphism g|;.: Y
— S is again in %/S.

4) Suppose that there is a generically surjective meromorphic S-map
h:Y— X. Then fe%/S.

5) Suppose that there is an S-morphism A: X — Y with he¢ /Y. Then
fe?]S.

6) For any reduced complex space S over S the induced morphism
g:Ys o— S is in %/S.

7) Suppose that fe #/S. Then f X3g: X X3 Y— S is again in %/S.

Proof. 1) follows from (2.2) 1) and the definition of a Moishezon
morphism. The proofs of 2), 3) and 4) are the same as those of 1), 2)
and 3) of [9, Lemma 4.6] respectively, using (2.2) instead of [9, Lemma 4.4],
and will be omitted.

5) By assumption and by 2) there exist a locally Kahler morphism
g: Y-S (resp h: X — Y) and a surjective S- (resp X-)morphism «: Y- Y
(resp. p: X — X). Then the natural map 7: X X, Y — S is locally Kahler
by (2.2) 4). Moreover there is a natural surjective S-morphism Xx,Y—
X, which proves 5). Let g: Y—>S and «:Y— Y be as above. Then Yj
— S is locally Kahler by (2.2) 2) and there is a natural surjective S-
morphism Y — Y. This proves 6). 7) then follows from 5) and 6) as in
the proof of (2.2) 4).

§3. Irreducibility of the general fiber of a morphism

(3.1) Let f: X— Y be a finite surjective morphism of reduced complex
spaces. Then we call f a finite (ramified) covering if each irreducible

component of X is mapped surjectively onto some irreducible component
of Y.

LemMA 1. Let B: X — Y be a finite covering of reduced complex spaces
with Y irreducible. Then there are a normal complex space X and a finite
covering r: X — Y such that the induced morphism B (X Xy X)* — X is
bikolomorphic to the natural projection E X X — X, where (X X, X)* is
the normalization of X XYX, and E is a finite set considered as a O0-
dimensional reduced complex space.
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Proof. Replacing X and Y by their normalizations X’ and Y’ respec-
tively, and then considering separately the finite coverings g;: X, — Y’
induced by B between the irreducible components X/ of X’ and Y’, we
infer readily that we may assume that both X and Y are normal and ir-
reducible. Then by the argument in [21, p. 62] we can find a normal
complex space X, a finite group G of biholomorphic automorphisms of X
and a subgroup H of G such that we have the natural isomorphisms
h: X = X/H and g: Y= X/G with 8 = g'zh, where X/H and f(/G are the
quotients of X by H and G respectively endowed with their natural struc-
tures of normal complex spaces, and z: X/H — X/G is the natural projec-
tion. Then identifying = with g by the above isomorphisms, this implies
the lemma as follows. Let 4 be the diagonal of X x X,G}Z' and let G act
on X XX,GX by (x,x,)— (gx,, x,) for each geG. Then X X;,Gf( =
Wees 84 so that (X X g0 X)* = Hzec 84 and each g4 is mapped iso-
morphically onto X by the second projection. Accordingly, we have
(X/H X 26 X)* = [lges G X 1dy)(gd) = ][ ex84 = E X X where #: X— X/H
is the natural projection and E is any complete set of representatives of
G/H in G. Q.E.D.

(8.2) Let f: X— S be a proper surjective morphism of reduced complex
spaces. In what follows the ‘general’ fiber of f is always considered with
respect to the Zariski topology of S. For example ‘the general fiber of f
is reduced and irreducible’ means that X, is reduced and irreducible for
every s ¢ U for some dense Zariski open subset U of S.

ProrositioN 2. Let f: X — S be as above. Then there exist a finite
surjective morphism f: S — S with S reduced, and a reduced analytic sub-
space X of X X S§ such that if f:X' -8 and a: X X are the naturally
induced morphisms, then 1) the irreducible components of X are mutually
disjoint, 2) « is bimeromorphic, and in particular every irreducible component
of X is mapped bimeromorphically onto an irreducible component of X and
3) the general fiber of f is reduced and irreducible. Moreover if f is flat,
then we can take B to be a finite covering.

Proof. Let v: X’ — X be the normalization of X and let fv = fg with
g:X’— 8§ and B:S — S be the Stein factorization of fu: X’ — S. Then we
set X = (v X g)(X") € X XS, and define « and f as above. Then clearly
B is finite surjective and 2) is satisfied. We shall show 1). Suppose that
X nX ; + 0 for some distinct irreducible components X, and X, of X.
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Let #¢ X, N X, be any point and § = g(¥). Then if X/ and X; are the
irreducible components of X’ with (v X g)(X/) = X, and (v X g)X)) = X’I
respectively, then we have X/; #+ 0 and X/; + 0. Since X/ is connected
by the definition of Stein factorization, this implies that there is some
irreducible component X, = X/ of X’ such that X/ N X, = 0. This is a
contradiction since X’ is normal. Hence 1) is proved. Then the re-
ducedness of the general fiber of f follows from [9, Lemma 1.5]. So it
remains to show that the general fiber of f is irreducible. This in turn
follows from that of g, and the latter can be seen as follows. Let r: X*
— X’ be a resolution of X’ and g* = gr: X* — S. Then there is a dense
Zariski open subset V of S such that gf: X} — V is smooth, and hence
irreducible since each fiber of g* is connected as well as that of g, X’
being normal. Hence X, = r(X;*) are also irreducible for all ¢ V. Q.E.D.

Remark. In the above proof, to show the irreducibility of the general
fiber of g, instead of resolution we can also use the fact that if A: X — S
is a proper morphism with X normal, then the set {se S; X, is normal
and [ is flat at each point of X;} is dense and Zariski open in S, which
can be shown as in [9, Lemmas 1.4, 1.5] starting from a result of [2].

(3.3) We shall show that a general fiber of a proper flat morphism
is irreducible if at least one fiber is reduced and irreducible. Though the
result is not absolutely necessary for the proof of Theorem, it provides
us with a useful criterion for the applicability of Proposition 4 in §4.
First we need some lemmas.

LEmMMA 2. Let f: X — Y be a proper morphism of complex spaces and
yeY. Then f is flat at each point of X if and only if for any morphism
h: D — Y with h(0) = y, the induced morphism f,: X, — D is flat at each
point of X,, where D = {te C;|t| < 1} is the unit disc and 0e D is the
origin.

Proof. This is an immediate consequence of the existence of
‘platificateur’ in [16, Th. 1] (cf. also [14, Th. 2.4]). We shall also give a
direct proof of the lemma in the Appendix.

CoroLLARY. Let f: X — Y be a proper surjective morphism of reduced
and irreducible complex spaces. Let ye Y. Suppose that X, is reduced
and irreducible, and that dim X, = dim X — dim Y. Then f is flat at every
point of X,.
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Proof. It suffices to show that for any h: D — Y with h(0) = y, f»: X,
— D is flat along X,, Since X,, = X, is reduced and irreducible, by
Nakayama we may assume that X, is reduced. Let X,;, 1 <i<m, be
the irreducible components of X,. Restricting D smaller we may further
assume that f(X,,) = D or {0} for each i. Since X, , is reduced and ir-
reducible, if f,(X,;) = {0} for some i, we must have X,, = X, ,, and i is
unique, say i = m. Note that since f, is surjective, m > 1. Then for
1 <i<m we have dim X,;, < dim X);, < dim X, ,, and hence dim X, , <
dim X, ,, or dim X, < dim X,, for £ = 0. On the other hand, our dimen-
sional assumption implies that dim X, = dim X, for all " sufficiently near
to y since X is irreducible. This is a contradiction. Hence f(X,;) = D
for all i so that f, is flat along X, ,. Q.E.D.

LEvmmA 3. Let f: X — S be a proper flat morphism of complex spaces.
Suppose that S is reduced and irreducible. Suppose further that for some
0e S, X, is reduced and pure dimensional. Then X also is reduced and
pure dimensional.

Proof. Since X, is reduced, by Nakayama and the flatness of f we
infer readily that X is reduced (cf. the proof of [9, Lemma 1.4]). To show
the pure dimensionality it suffices to show that there is no irreducible
component, say X;, of X such that if ¢, is the dimension of the general
fiber of the induced map X, — S, then g, < ¢, = dim X,. Suppose that
such an X, exists. Let S.f) = {xe X; codh, X;,, < k}. Then S,(f) is an
analytic subset of X by [2]. Hence S, (f) 2 X, X, being reduced, and so
dim S, (f), = q,- Since S,(f), = {xe X,; codh, X, < ¢,}, this implies that
on X, there is a nonzero holomorphic function ¢ with support of dimen-
sion <gq, (cf. [3, p. 76, Cor. 5.2 d) — b)] applied to F# = 0, and d = q,).
This is a contradiction to the reducedness and pure dimensionality together
of X,. Hence X is pure dimensional. Q.E.D.

ProrosiTioN 3. Let f: X — S be a proper flat and surjective morphism
of complex spaces. Suppose that S is reduced and irreducible. Suppose
further that for some o€ S the fiber X, is reduced and irreducible. Then
the general fiber of f is irreducible.

Proof. By Lemma 3 X is reduced and pure dimensional. Apply
Proposition 2 to f and obtain a proper surjective morphism f: X — S and
finite coverings a: X — X and 8: 8 — S with Bf = fa satisfying the properties
stated in the proposition. Let g~'(0) = {4, - -+, 6,}. Then it suffices to
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show that 8 is locally biholomorphic at each 6, and that m = 1. In fact,
then g must be bimeromorphic and hence the irreducibility of the general
fiber of f follows from that of f together with the surjectivity of «. Now
to prove the above assertion first we note that since f is flat, X is pure
dimensional and S is irreducible, every fiber of f is pure dimensional of
dimension ¢ = dim X, and, further, since X, is reduced and irreducible,
every irreducible component of X contains X,. Combining this with 2)
of Proposition 2 and the fact that «lg,: X, — X, 1s an embedding for each
e 8§, we get that « induces the isomorphisms X}k =~ X, for all k. This
then implies that 8 is locally biholomorphic at each 6,, for otherwise Xak
is nonreduced at each of its points since so is S at &, already. By
Corollary above it also follows from Xak = X,, that f is flat in a neighbor-
hood of Xﬁk for each k. Now we need the following result from [9, Cor.
3.3]; let g: Y— Z be a proper flat morphism of reduced complex spaces.
Suppose that every fiber of g has pure dimension ¢ which is independent
of z. For any zeZ let Y,,, i=1,---,n = n(2), be the irreducible com-
ponents of Y, ... and m,; the multiplicities of Y, along Y, ... (cf. [9, 3.1]).
Then for any continuous (g, @)-form y on X the function

3@ = 2ym.| 7

Yo
is a continuous function on Z. Using this we shall now show that m = 1.
Let @ be any Hermitian (1, 1)-form on X (cf. [9, Def. 1.2]) and set % =
oA -+ No (gtimes) and 7 = a*y. Then 2,(s) (resp. 2,(3)) are functions
which are defined on S (resp. S) and continuous in a neighborhood of o
(resp. p7'(0)) by the result quoted above. Let U (resp. U,) be a neighbor-
hood of o (resp. 6;) such that 8 induces isomorphisms §,: U, = U for each
k. For any se U we write §, = 8;'(s). On the other hand, since « is
bimeromorphic, there is a dense Zariski open subset V of U such that
for each se 'V, Xgi, 1 <i<m, are reduced and irreducible and cv(X'g.k) +*
oz(f(gg) if &+ 4. Hence noting that X, = U, X}k we have 2,(s) = 2.1, 2,(8,)
for every se V. Now take a sequence {s”} of points of V converging to
o in U. Then since 2, (resp. 2,) is continuous at o (resp. 4,), we get that
2,(0) = lim, 2,(s”) = lim, >}, 2,(8{°) = 21/, 2,(0,). Since

w0 = r=[ 1=160,

this implies that m = 1, for x > 0. Q.E.D.
X,
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§ 4. Moishezonness of 7, in a special case

(41) Let f: X— S be a proper morphism of complex spaces. Let
Bxss: Dy;s — S be the relative Douady space of X over S parametrizing
analytic subspaces of X contained in the fibers of f (cf. [17], [9]). Let
0xss: Zy;s — Dy,s be the corresponding universal family, so that there is a
natural embedding Z;,; & Dy,s X s X with py,s induced by the natural pro-
jection p,: Dy,s X X— Dy,s. We denote by 7y, the natural morphism
Zy,s— X induced by the projection p,: Dy,s X s X— X. Then n,,, restricted
to each fiber of py/5, is an embedding. Let «:S— S be a morphism of
complex spaces with S reduced and Z < S X ¢ X a subspace. Let 0:Z— S
be the natural projection. If p is flat, then we call p a flat family of sub-
spaces of X over S parametrized by S. In the general case, by Frisch [8]
there is a dense Zariski open subset W of S such that p,: Z, — W is flat.
(In what follows we use this result of Frisch without further reference.)
Then there is a unique S-morphism z: W-» Dy,s such that p,, is isomorphic
to the map induced from p,,s via 7, where W is over S by «|,. We call
such a map ¢ simply the universal S-map associated to py,.

Now we recall the following consequence of Hironaka’s flattening
theorem [14] which is of frequent use in the sequel.

LEmMA 4. The universal S-map t extends to a meromorphic S-map
*:8 — Dy, wea- In particular if « is proper, then the closure of (W) in
Dy /srea 1S an analytic subspace of Dy ;s .« Which is proper over S.

Proof. See [9, Lemma 5.1].

(4.2) In the case of a projective morphism a special way of con-
structing Dy,s is available by Grothendieck [12], [13]; what we need here
from his construction is the following:

LeEmMma 5. Let f: X— S be a projective morphism and Bzt Dys— S
be the relative Douady space of X over S. Let @ be any relatively compact
open subset of S and A any connected component of Bzis(@)wa- Then the
induced morphism h: A — @ is projective.

Proof. Let @ be any relatively compact open subset of S with @ <
Q. Let & be an f,-very ample invertible sheaf on X such that f,.% is
locally free on @. So we have an @’-embedding j: X, — P(f,%), with
L = j*0p(1), P = P(fy#). Then replacing S by @' we may assume that
X = P(&) for some locally free coherent analytic sheaf & on S. Now for
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de Dy,s write Z, = Zy,s,, and consider Z, & X,,, = CP"' by m, where
B = Bxs and r =rank &. For every de Dy,; define a polynomial P, =
P,n) in n by P, = 3.5 (—=1)'HYZ,, 0,,(n)). Then P, is independent of
ac A (cf. [3]) and we set P, = P, for any ac A. Set A = {de Dy/g, rea;
P, = P,};. Then A is a connected component of A'Q. Hence it suffices to
show that AQ is projective over . In fact, the proof of [13, IX, Théoréme
1.1] (and [12, 221, § 3]) shows that for each point se S there exists a
neighborhood se U in S and an integer y, = y,(s) such that for all v > v,
the natural map~ B« 0x() = P1uPFOx(v) = 0x/550225)s Ozys(v) = 7%,50x(v),
is surjective on A, and the corresponding morphism A, — Grass,, (f,0x()),
is a closed embedding over U, where Grass, (f,0x()) is the Grassmann
variety of locally free quotients of f,0,(v) of rank m, where m = m(y) =
rank (oy,540z.s(*) [18]. Hence for all sufficiently large v, A, can be em-
bedded in Grass, (f,0x(v)), over @ and hence is projective over §. Q.E.D.

(4.3) Let f: X— S be a morphism of complex spaces. Let B;/s: Dys
— S, pysst Zy;s— Dy,s and ny,5: Zy,s— X be as in (4.1). For any locally
closed analytic subspace A of Dy ..« we shall denote by p,:Z, —> A the
restriction of py,s to Z, = pzls(4) and =,: Z, — X the S-morphism induced
by my,s, where Z, is over S by By/sp.-

PropositioN 4. Let f: X — S be a proper morphism of complex spaces
and @ a relatively compact open subset of S. Let A be a reduced and ir-
reducible analytic subspace of Bzis(Q) which is proper over @ and for which
the general fiber of p, is reduced and irreducible. Then =, is Moishezon.

Proof. Changing the notation we set S=Q, X=X, and f=f, so
that A is an analytic subspace of Dy,;. (The original X, S and f do not
appear explicitly in the following, so no confusion may arise). We first
note that from our assumption it follows immediately that Z, is reduced
and irreducible. Consider the Z,-embedding j: Z, X ,Z, S Z, Xy (X X X)
defined by j(z, 2,) = (2, n(z,), n,(2,)) where Z, X, Z, (resp. X X3X) 1is
over Z, (resp. X) with respect to the projection to the first factor. Note
that j is in fact obtained by the composition Z, X ,Z, S Z, X ,(A X X)
=7, Xs X =27, Xy (X XgX) where the isomorphisms are all natural ones.
On the other hand, let 4 = 4;,; be the diagonal of X X X and .4 the
sheaf of ideals of 4 in X X X. Let 4, = (4, Oy «sx/#"*") be the n-th
infinitesimal neighborhood of 4 in X XX, and B,:4, — X be induced
by the projection X X 3 X — X to the first factor. Then B, are finite, and
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hence projective, morphisms. Let ¢,: D, —> X with D, = D, be the
relative Douady spaces associated to B,. Then for any connected com-
ponent D, , of D, the induced morphism D, ,— X is projective by
Lemma 5 since f is proper.

Let Yo =(Zy X4Z) N (Zy Xx40) E Zy Xy 4iyy and 7,0 Y,y > Z, be
the natural S-morphisms induced by the projections Z, X y 4,,, — Z,, where
the intersection is taken in Z, X , (X X ¢X) considering Z, X ,Z, as a
subspace of Z, X y (X X¢X) viaj. Then y, are finite surjective morphisms,
the fibers over z¢ Z, being naturally identified with the subspace B, , =
7i(Za,0) (V Xny Of Xiny = (x, Ox[m?*') where a = p,(2), x = m,(2) and m, is
the maximal ideal of @, at x. Now for each n there is a dense Zariski
open subset U, of Z, such that 7, ,.: Y, — U, is flat, so that it may
be considered as a flat family of subspaces of 4,,, over X parametrized by
U,. Let z,: U,— D, be the universal X-map associated to 7, ,, (cf. (4.1)).
Then by Lemma 4 z, extends to a meromorphic X-map ¢¥: Z, — D,,, and
the closure E, of 7,(U,) in D,,, is analytic in D, and is proper over S
as well as Z,.

Now we shall show that (*) ¥ are bimeromorphic X-maps onto its
image for all sufficiently large n. Then since z, is proper and the images
of ¢* are contained in some D, ., Z, being irreducible, this would imply
that =,:Z, — X is Moishezon by (1.7) 5), completing the proof of the
proposition. To show (*) we first observe the following: () If z, 2 e U,
N U, and if m < n, then 7,(2) = 7,(2') implies that z,(2) = 7,(2)). In fact,
for ze U,, r,(2) is the point of D,,, corresponding to the subspace B, , of
X, defined above, and that B, , = B, , clearly implies that B, , = B, ,.
This shows (/). Now since Z, is irreducible, for each n there exist an
integer d, >0 and a dense Zariski open subset V, of U, such that
dim, z;'z,(2) = d, for all ze V,. Then we see that d, < d,, for m < n by
(). Hence there are integers n, > 0 and d = 0 such that d, = d for all
n = ny.

Next we show that d = 0. Let W be a dense Zariski open subset of
A such that Z, , is reduced and irreducible for allae W. Let V=", V..
Then V is everywhere dense in Z,. Suppose now that d > 0. Then there
exist points 2,2 € V (N p;(W), z = 2/, such that 2’ belongs to an irreducible
component C of z;}z,,(2) containing z. (In particular z,(2) = 7,(2’).) Then
since both Z, ,,., and Z, ,,.,, are reduced and irreducible, there is an integer
n, = n, such that B,,, #+ B, ,, or equivalently, r,(2) # r,(2'). Hence
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Tane = Tuylenr,, 18 nontrivial, i.e., the fibers of ¢, have dimension < d =
dim C. Note here that CN U, 2 CN V0. On the other hand, by
(") t3}ct.(2) is one of the irreducible components of z;'r,(2) at z and
hence there is an irreducible component C’ C C of r;!z,(2) containing z,
so that dim,. z;'z,,(2"") < d for some 2" ¢ C’. This implies that d,, < d by
the upper semi-continuity of the function dim,¢;'c, (2), z€ U,,, which is
a contradiction. Hence we get that ¢, is generically finite for n > n,.
Thus for each n = n, there exist an integer %k, >0 and a dense
Zariski open subset @, of E, contained in ¢,(U,) such that <, ,,:7;'(Q,)
— @, is an unramified covering of degree k,. Here one needs to recall
that ¢, extends to a meromorphic X-map from Z, to E, which are both
proper over X. Then again by (”), k, < k, if n>=m so that k, = k for
all n > n, for some 2 >1 and n, > n,, We show that 2= 1. Let Q =
M. 7:'(Q) which is everywhere dense in Z,. For ge @, c;'z.(q), as a set,
is independent of n > n,. Suppose that 2> 1. Then there are points z,
2 e Q N pi'(W), z + 2/, such that ¢,,(2) = 7,,(2’). Then by the same argu-
ment as above we can find n > n, such that ,(2) + r,(2’), implying that
k, < k, since z,2 ¢ Q This contradicts our choice of n,, Hence k=1,
ie., ¥ is X-bimeromorphic onto its image for all n > n, and (*) is
proved. Q.E.D.

Remark. A meromorphic map g: Y— Y’ of reduced complex spaces
is called generically light if there is a dense Zariski open subset U < I’
such that dim, ¢='q(I") = 0 for every y € U where I" is the graph of g and
qg:I' — Y’ is the natural projection (cf. (1.1)). Then the above proof shows
that even in the general case where A may not be proper over S, there
is a generically light meromorphic X-map 2:Z, — B of complex spaces
over X with B projective over X.

§5. Reduction of the general case and proof of Theorem

(5.1) We use the notation of (4.3).

ProrosiTiON 5. Let f: X — S be a morphism of complex spaces. Let
A be an irreducible component of D, s ..a Which is proper over S and for
which Z, is reduced. Then there exist 1) reduced and irreducible analytic
subspaces B;, i = 1,---,n, of Dy,s such that B, is proper over S and the
general fiber of oz, Zy, — B, is reduced and irreducible, 2) a reduced and
irreducible analytic subspace B off} = B, X5 -+ X5 B, and 3) a generically
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surjective meromorphic S-map h: B — A.

Proof. We write Z=2Z2, and p=p, Let 3:Z— A, a:Z—Z and
B: A — A be as in Proposition 2 applied to f= p. In particular ZC A
X 4 Z with § induced by the natural projection A X,Z— A. Further
since p is flat, we may assume that g is a finite covering. Moreover for
each sc A, Z, = Us;cp-19 a(Z) by 2) of the proposition. Then we apply
Lemma 1 to 5 and obtain a normal complex space A’, a finite covering
7: A’ — A and an A’-isomorphism 1: (4 X , A")* = E X A’, where (A& %, AY*
is the normalization of A X , A’ and E is a finite set considered as a zero
dimensional analytic space. Write A* = (A X, A)*. Let p*: Z* — A* be
the pull-back of 7 to A* with respect to the natural projection A* — A.
Identifying E with {1, ---, n}, n = $E, in a certain fixed way and A* with
E X A’ via 2, we write for each i, Z} = p*7'({i} X A’), and pf = p*|;,: Z
— {i} X A’ = A’ and define z¥: Z} — X to be the natural map. We thus
get the following commutative diagram

1l 2 = 2*—>Z

7 o
pale IS
7 4y X
Il (& x (@) = A*—>& BJ::
NN
A'—> A

Let U be any dense Zariski open subset of A’ such that pf,: Z}, — U are
flat for all i. Then by the definition of Z we may consider p}, naturally
as a flat family of subspaces of X over S parametrized by U. Let ¢;: U
— Dy,s be the universal S-map associated to pf, and z = [[;z;: U—
Dys Xg-++ XsDgs (n-times). Let B (resp. B;) be the closure of z(U)
(resp. 7,(U)) in D= Dys Xg+ -+ XsDygys (vesp. Dy,). Then by Lemma 4
(cf. also (1.1)) B and B, are reduced analytic subspaces of D and Dy /s
respectively which are proper over S. They are irreducible since so is
U, and we have Bgé: B, Xs--- Xg¢B, and dim B < dim A. Moreover
since by 3) of Proposition 2 together with the definition of r,, Zy . is
reduced and irreducible for each d e z,(U) (after restricting U if necessary),
the general fiber of pg,: Z;, — B, is reduced and irreducible. (For instance,
since 7,(U) is everywhere dense in B, it follows that Z,, is reduced and
irreducible. Then we can apply Proposition 3.)

Now let pf’: Z{» — B be the pull-back of p;, with respect to the map
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B — B, induced by the natural projection B B,. Take the union Z, =
Wi Z in X XsB(2Z§ = Z;, X5, B). Let : ZB—> B be the natural pro-
jection and take any dense Zariski open subset V of B such that
Yo (V) — Vis flat. Let ¢/: V— Dy,s be the universal S-map associated
with ,. Let rr:ZvB—>X be the natural map induced by the projection
X XyB— X. Then from the construction above we have in X the equality
ﬁ(ZVB,,,) = 7 ,Z, ) for each ber(U) where ue U is any point with z(u)
= b. In fact by 2) of Proposition 2 we have 7 (Z,,w) = Uscs-rw ,%(Z~a)
= Udseosr T5ZE) = U, n¥(Z*,) = 2(Zs,) in X, where # =z, and 7 is
the composite of # and the natural map Z* — Z. This implies that /z|.-..,
= jt|c-1ry, Where j: A — Dy, is the natural inclusion. In particular </(V)
contains 7(z7(V)) and hence a nonempty Zariski open subset of A since
7Y(V) # 0. Thus the closure (V)™ of ¢/(V) in Dy, which is an analytic
subset of Dy, by Lemma 4, contains A so that dim B = dim A. Combin-
ing with the opposite inequality noted above we have dim B = dim A,
and thus 7'(V)~ = A. Hence h = 7’ is a generically surjective meromorphic
S-map from B onto A. Q.E.D.

Remark. In fact the above A is bimeromorphic as one shows readily.

(5.2) TueoreM. Let f: X— S be a proper morphism of reduced complex
spaces, and @ a relatively compact open subset of S. Let p: Dy,s— S be
the relative Douady space of X over S. Suppose that fe €[S (resp. is
Moishezon). Then for any irreducible component A of B '(@).a Such that
Z, is reduced, the induced morphism p|,: A — Q is proper and again belongs
to €[S (resp. is Moishezon).

Proof. We shall write fe #/S if f is Moishezon. First we show that
A is proper over S. Since fe /S (resp. #/S), there is a proper and
locally Kéahler (resp. locally projective) morphism g:Y— S of complex
spaces and a surjective S-morphism h: Y — X (cf. (2.4) 2) and (1.5) 3)).
Let X' =f7@Q),f =[x X' - Q, Y =g (@ and g’ = gly.: Y — Q. Then
g’ is Kéhler (cf. (2.2) 1)). Hence by [9, Theorem 4.3] g’ has property BP,
i.e., every irreducible component of the relative Barlet space B(Y’/Q) (cf.
[9]) is proper over . Then by [9, Prop. 4.8] f/ also has property BP,
which in turn implies that f/ has property DP, i.e., every irreducible
component of Dy.,, is proper over @, by [9, Prop. 3.4], where Dy, is the
union of those irreducible components D, of Dy, a such that Z = Z,
are reduced and pure dimensional. Then by [9, Lemma 3.5] and the remark
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following it (where Z, and D, should read D, and S respectively), this
further implies that the given A is proper over S since Z, is reduced.
Now apply Proposition 5 to our A and obtain BS B, X4+ X4 B,
as in that proposition (with S replaced by ). In particular, B, are
proper over @, the general fiber of p,,: Z,;, — B; is reduced and irreducible,
and there is a generically surjective meromorphic S-map B — A. The
first two facts, together with Proposition 4, shows that #,,:Z; — X’ is
Moishezon, 1 <i < n. Hence f'ps,: Zy, —> Q€ €/Q (resp. #|Q) by (2.4) 5)
(resp. (1.5) 1)). Then by (2.4) 3) 4) and 7) (resp. (1.6) and (1.7) 5) 7)) the
natural map B, — @, and hence B — @ also, belong to %/Q (resp. are
Moishezon). Finally by (2.4) 4) (resp. (1.6)) Bl.: A — Q<€ ¥/Q (resp. A/|Q).
Q.E.D.

Remark. Taking S to be a point and then setting S = @, we obtain
the theorem stated in the introduction.

Appendix

We shall give a direct proof of Lemma 2, in §3.

Let D= {teC;|t| < 1} be the unit disc. For any complex space Y
and ye Y we denote by S(Y,y) the set of morphisms A: D — Y with A(0)
=y. Let f: X— Y be a morphism of complex spaces and ye Y. Then
for any he S(Y,y) we write X, for X X, D and f, (resp. p,) for the natural
projection X, — D (resp. X, — X). Further for any coherent analytic
sheaf # on X we denote by &, the 0y ,-module p;%#. Then Lemma 2 is
a special case of the following:

ProposiTION. Let f: X — Y be a morphism of complex spaces and F
a coherent analytic sheaf on X. Let xe X and y = f(x). Suppose that Y
is reduced. Then the following conditions are equivalent: 1) % is f-flat at
x. 2) For every he S(Y,y), &, is f,-flat at x, = (x, 0).

Proof. 2) is clearly a consequence of 1). So suppose that 2) is true.
We use an analytic analogue of the technique due to Raynaud and Gruson
[19, 2.1]. Let S(¥) be the support of % considered as the analytic sub-
space of X defined by the ideal sheaf of annihilators of &%. Then we
proceed by induction on n = dim, (X, N S(¥)). First replacing X by S(&¥)
if necessary we may assume that X = S(¥), so that n = dim, X,. Then
there is a neighborhood U of x in X and a commutative diagram of com-
plex spaces
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U—~>vYxcCr

N lpl

Y

such that ¢ is finite at x (cf. [7, 3.3]). Then since %, and (c,%).., are
isomorphic as @, ,modules, we can replace f and & by p, and 7,% re-
spectively. Thus we may assume that X = Y X V with Y Stein and V a
polydisc in C" containing the origin 0, x = (y,0e Y X C" and f: X —> Y
is the natural projection.

SuBLEMMA. F is locally free at some point of X,.

Proof. For any ae X we set d(a) = dim¢ F ®,, Ox/m,0x where m, is
the maximal ideal of ¢, at a. Then d(a) is upper semicontinuous with
respect to the Zariski topology. In particular, if we set d, = min {d(a); a
€ X}, then the set U, = {a e A; d(a) = d,} is Zariski open in X and & is
locally free on U,. We may assume that x e U,, the closure of U,. Simi-
larly if we put d,, = min{d(e); ce X,}, then U, = {e¢e X,; d(a) = d,} is
dense and Zariski open in X, = V. We show that d, = d, Take he
S(Y, y) in such a way that p;'(U,) += 0. By our assumption %, is f.-flat
at x, and hence f,-flat in some neighborhood W of x,. Since D is smooth
of dimension 1, this is equivalent to saying that %, (#,) =0 on W.
On the other hand, the latter implies that dim S, (% ,) < n (a special case
of a theorem of Trautmann [3, p. 66]) where S (¥) = {u e X; codh, # < n},
codh denoting the cohomological dimension. Hence for the general point
we X, codh, F, =n + 1, ie., &, is locally free at w. Thus if U, is
the maximal dense Zariski open subset of X, on which %, is locally free,
then U, N X, +# 0. Hence if r is the rank of #, on U,, then taking any
adeU, N pJ;I(Uyo) & Xh,O and w’ e U, N p;(U,) we have dyO = d(p,(a) =
d,(@) = r = d,(w) = d, where d, is defined for &, in the same way as
d(@). Hence U, S U, and & is locally free at each point of U, < X,.

Q.E.D.
By Sublemma there exists a ve V such that % is free of rank, say
r, as an Oy-module at x' = (y,v). We take ¢, ---, e, e ['(X, %) which give

free generators of & at x’. This is possible since X is Stein. Let a: 09"
— & be the map defined by e,, and & (resp. &) the kernel (resp. cokernel)
of «. Since « is isomorphic in a neighborhood of x/, 5 = 2Z =0 at «x'.
In particular they are torsion 0,-modules. Hence as a subsheaf of a free
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sheaf on the reduced space X, #  must vanish identically on X. Thus
we get an exact sequence

(*) 0 ’@T “ gT r@ 0

on X. Now we show that 2) is satisfied also for #. For any hec S(Y,y),
pulling back (¥) to X, we obtain the following exact sequence on X

0—> 0 - F, 5P, —>0.

In fact, by the same reasoning as above, firstly «, is isomorphic at x, =
(¢’,0)e X, and then injective on the whole X, since X, = V X D is re-
duced. Thus to show the flatness of &, it is enough to show that for
every integer k > 1 the natural map af?: Oy, /n* 0y, — F,i*F, induced by
«, 1is injective, where » is the maximal ideal of ¢,, In fact, by the
flatness of %, this implies that Torf (&, Rfa) = 0 for all ideals « of R =
05, Since «, is isomorphic at x;, so are «f® for all > 0. Thus if &,
= Keraf®, o, = 0 at X,. Thus the support of ', is a proper analytic
subset of X, ,. Since ', & Oy, /n*0y,, it follows that ¢, = 0. Hence £,
is f,-flat, and 2) is verified for #.

Now we finish the proof as follows. Recall that £, =0 so that
dim, (X, N S(&#) < n. If n=0, then Z =0 at x so that & is free at «x.
So suppose that n > 0. Then by induction and 2) for &, # is f-flat at x.
Then the flatness of # follows from (). Q.E.D.
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