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The sedimentation of two spherical solid objects in a viscous fluid has been extensively
investigated and well understood. However, a pair of flat disks (in three dimensions)
settling in the fluid shows more complex hydrodynamic behaviour. The present work
aims to improve the understanding of this phenomenon by performing direct numerical
simulation and physical experiments. The present results show that the sedimentation
processes are significantly influenced by disk shape, characterized by a dimensionless
moment of inertia I*, and Reynolds number Re of the leading disk. For the flatter
disks with smaller I*, steady falling with enduring contact transits to periodic swinging
with intermittent contacts as Re increases. The disks with larger I* tend to fall in a
drafting-kissing-tumbling mode at low Re and to remain separated at high Re. Based on I*
and Re, a phase diagram is created to classify the two-disk falling into ten distinctive
patterns. The planar motion or three-dimensional motion of the disks is determined
primarily by Re. Turbulent disturbance flows at a high Re contribute to the chaotic
three-dimensional rotation of the disks. The chance for the two disks to contact is increased
when I* and Re are reduced.

Key words: particle/fluid flow

1. Introduction

Sedimentation of particles in a fluid is ubiquitous in industrial applications and
environmental processes, such as industrial waste treatment, coal-water slurry transport,
proppant transport in hydraulic cracking, soot particle dispersion, falling of leaves and
settling of sand in a river. Understanding the falling patterns is helpful to predict
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particle trajectories and final locations of the settling particles. Unfortunately, the falling
patterns are rather complex due to fluid–particle and particle–particle interactions. Thus,
extensive studies have been performed to reveal the underlying mechanism of the particle
sedimentation in a fluid.

Fortes, Joseph & Lundgren (1987) observed two spheres settling in a pattern
of drafting-kissing-tumbling (DKT) in their experiments, demonstrating the strong
hydrodynamic interactions between the particles. In the two-dimensional (2-D) numerical
simulations of two circular particles falling in a long narrow channel (Aidun & Ding 2003),
effects of confinement from the channel walls on dynamics of the particles are significant
as the width of channel Lw is only four times the particle diameter dp. The particle motion
is driven by a dimensionless weight of a particle, W∗ = πGa(ρr − 1)/4, in which Ga is the
Galileo number (Ga = d3

pg/ν2
f , g is the gravitational acceleration and νf is the kinematic

viscosity of the fluid) and ρr is the density ratio of particle to fluid. Under the channel
boundary confinement of Lw/dp = 4, the falling styles of the particles are controlled by the
parameter W∗. An increase in W∗ from 100 to 200 leads to an increase in particle terminal
Reynolds number Re from 2 to 5. In this regime, as W∗ increases, the initial periodic state
of the horizontal particle motion transits to another periodic branch. Further increase in W∗
results in a cascade of period-doubling bifurcations to a chaotic state represented by a low
dimensional chaotic attractor (Aidun & Ding 2003). For 200 < W∗ < 400, corresponding
to 6 < Re < 10, the pair of particles fall in the DKT pattern (Feng & Joseph 1995). At
the large driving forces, i.e. 400 < W∗ < 500, the two particles tend to form a horizontal
structure, causing the maximum effective blockage ratio. The falling speeds are reduced
and the particle Reynolds numbers return to the range 5 < Re < 7. Then, the DKT vanishes
and the settling experiences a quasi-periodic transition to the chaotic state by increasing
the driving force (Verjus et al. 2016). To estimate the particle–particle contact duration,
a scaling law was proposed by Li et al. (2020), considering the effects of particle–fluid
density ratio, fluid viscosity, interparticle friction, and adhesive force.

Various factors can affect the sedimentation patterns. After removing the rotational
degrees of freedom of the particles, the lateral migration still occurred but the
divergent particle oscillation disappeared, making the particles fall with a steady oblique
or horizontal structure at smaller terminal Reynolds numbers (Zhang et al. 2018).
Sedimentation of two unequal particles of different sizes and densities was numerically
investigated (Nie & Lin 2020; Nie, Guan & Lin 2021). A pattern of horizontal oscillatory
motion, characterized by a structure with a large and light particle above a small and heavy
one and strong oscillations of both particles in the horizontal direction, was observed for
diameter ratio of 0.3 at intermediate Reynolds numbers, and the magnitude of oscillations
decreased with an increase in the density ratio (Nie et al. 2021). In three-dimensional
(3-D) sedimentation of two spheres of different densities in a square tube, the spheres
oscillated in the central plane of the tube at high Galileo numbers (Ga); while at low Ga,
the spheres moved to one of the diagonal planes of the tube, reaching a steady or periodic
state depending on the density difference between them (Nie & Lin 2020).

The sedimentation of particles in a fluid exhibits a strong dependence on particle shape.
The simulation results by Fornari, Ardekani & Brandt (2018) showed that the mean settling
speed of oblate particles was significantly higher than that of spheres in dilute suspensions
at the solid volume fractions of 0.5–1 %, due to the formation of columnar-like clusters
of the oblate particles. The early experimental observations of a single disk falling in
a quiescent viscous fluid by Willmarth, Hawk & Harvey (1964) and Field et al. (1997)
demonstrated the remarkable effect of particle shape, which was characterized by a
dimensionless moment of inertia (the ratio of the moment of inertia of a thin disk about its
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Three-dimensional sedimentation patterns

diameter Id and a quantity proportional to the moment of inertia of a rigid sphere of fluid
about its diameter):

I∗ = Id

ρf d5
c

= πρslc
64ρf dc

+ πρsl3c
48ρf d3

c
, (1.1)

in which ρs and ρf are the densities of the solid disk and fluid, respectively; and lc and
dc are the thickness and diameter, respectively, of the disk. For the very thin disks, the
thickness lc is much smaller than dc, thus, the second term, i.e. πρsl3c/(48ρf d3

c ), on the
right-hand side of the equal sign in (1.1) was neglected in the previous work (Willmarth
et al. 1964; Field et al. 1997; Zhong, Chen & Lee 2011). The falling pattern was also
dependent on the terminal Reynolds number Re of the disk, which was calculated from
the mean vertical velocity of the disk during the sedimentation (excluding the initial
acceleration stage). Based on I∗ and Re, Field et al. (1997) classified the falling processes
of a single disk into four distinct styles: steady falling, periodic, chaotic and tumbling. A
steady falling pattern occurred at low Re. At high Re, a disk with a smaller dimensionless
moment of inertia I∗ settled periodically; as I∗ increased, the falling pattern transited from
the periodic to the chaotic and then to the tumbling. With more experimental observations,
Zhong et al. (2011) partitioned the periodic falling pattern further into three sub-modes:
planar zigzag, transitional and spiral. It was believed that the transition from the 2-D
zigzag motion to the 3-D spiral motion occurred due to the growth of 3-D disturbances
(Lee et al. 2013). In their numerical simulations, Auguste, Magnaudet & Fabre (2013)
observed two additional 3-D sedimentation patterns in which the disk experienced a slow
horizontal precession superimposed on zigzagging or tumbling motions. For the infinitely
thin disks with very small I∗, Chrust, Bouchet & Dušek (2013) created a comprehensive
phase diagram of transition scenarios of the different settling types, based on the Galileo
number and a dimensional mass. The hydrodynamics and typical nonlinear paths of
various non-spherical bodies freely falling or rising in fluids were systematically reviewed
by Ern et al. (2012).

The interaction of two identical disks falling in tandem in a fluid was experimentally
investigated by Brosse & Ern (2011, 2014). It was observed that the trailing body would
catch up to the leading one for vertical separation distances up to 14 diameters under the
condition of a horizontal separation distance less than 0.5 diameters. The wake of the
leading body had an impact on the fluid drag force exerted on the trailing one, depending
on the distance between them. Thick disks separated laterally after the collision and
eventually fell side by side. At low Re of 115 and 152, thinner disks formed a steady
Y-configuration by contacting each other and fell together in rectilinear paths as the wakes
of the two bodies merged, creating strong interbody attraction. Such steady falling with
a small relative inclination between the two bodies was also obtained in the numerical
simulations of the sedimentation of two oblate ellipsoids (Ardekani et al. 2016). At higher
Re of 255 and 275, the thinner disks exhibited inclined periodic motions with the relative
distance and inclination of the bodies fluctuating in time. The periodic vortex shedding
played a role in the oscillatory motions of the two disks. In addition, the inhomogeneity
of the wake of the leading body destabilized the wake of the trailing one, amplifying the
oscillation of the trailing one. In the experiments of two identical disks falling side by
side in a fluid at rest for Re ranging from 100 to 300 (Ern & Brosse 2014), the two disks
repelled each other at the smaller horizontal separation distances and they appeared to
move independently at the larger horizontal distances. In the case of oscillatory paths,
no synchronization was observed between the paths and between the wakes of the two
disks. A repulsion coefficient, which is proportional to the magnitude of repulsion force,
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was found to decrease with the horizontal separation distance and increase with the
thickness-to-diameter ratio of the disks.

Compared to the sedimentation of a pair of circular particles (2-D) and spheres (3-D),
the hydrodynamic behaviour of a pair of 3-D disks settling in a viscous fluid is much less
understood. In this work, a lattice Boltzmann method (LBM) and a cylindrical particle
discrete element method (DEM) are combined to simulate sedimentations of a pair of
disks in a Newtonian viscous fluid for a comprehensive understanding of such processes.
Corresponding physical experiments are also conducted to verify the simulation results
and to complement the investigations. The disks of various dimensionless moments of
inertia I∗ are used in the simulations and experiments. The falling motions of the disks
are analysed and classified for wide ranges of I∗ (0.006–0.14) and Re (5–1000). Phase
diagrams are eventually drawn to determine falling patterns and contact styles of the two
interactive disks based on I∗ and Re.

2. Methodology

In the coupled LBM-DEM method, the flow field is solved by the LBM, which was
developed by Wang et al. (2016) based on the lattice Boltzmann method coupled with
a proper treatment of the moving fluid–solid interface (Peng et al. 2016). The dynamics
and interactions of the disks are modelled by the cylindrical particle DEM, which was
implemented by Guo et al. (2012b). The momentum exchange method (Wen et al. 2014) is
used to calculate the fluid–disk interaction forces with the disk surfaces treated as no-slip
boundaries by an interpolated bounce-back scheme (Bouzidi, Firdaouss & Lallemand
2001).

2.1. Lattice Boltzmann method
The multi-relaxation time (MRT) LBM (D’Humieres 2002) is used to solve the evolution
of mesoscopic velocity distribution function:

f (x + eαδt, t + δt) = f (x, t) − M−1 · S · [m − m(eq)] + Qδt, (2.1)

where f is the particle distribution function for the discrete velocity eα in the αth direction
at the position x and time t, δt is the lattice time step, M is an orthogonal transformation
matrix that relates the distribution function f and moment space m as m = M · f and
f = M−1 · m, m(eq) represents the equilibrium distribution of the moment space m, and
S is the diagonal relaxation matrix which specifies relaxation rates for non-conservative
moments. Forcing field Q (Guo, Zheng & Shi 2002) applies a body force to the fluid and
the αth component of Q is calculated as

Qα = ωα

[
eα · F

c2
s

+ Fu : (eαeα − c2
s I)

c4
s

]
, (2.2)

in which ωα represents a weight coefficient along the αth direction, F is an external force
vector, u is the macroscopic fluid velocity vector, the sound speed cs is equal to 1/

√
3 in

lattice unit and I is an identity matrix.
Fluid density ρ, pressure p and velocity vector u are the macroscopic variables, which

can be obtained from the mesoscopic distribution function f . For the incompressible flows,
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Figure 1. An illustration of the D3Q19 model.

they have the forms (He & Luo 1997)

ρ = ρ0 + δρ, (2.3)

in which

ρ0 = 1 and δρ =
∑
α

fα, (2.4a,b)

p = δρc2
s , (2.5)

ρ0u =
∑
α

fαeα + δt

2
ρ0F . (2.6)

As shown in figure 1, the 19-velocity model in three dimensions, i.e. the D3Q19 model,
is adopted for the discrete velocities, which are written as

eα =

⎧⎪⎨
⎪⎩

(0, 0, 0) α = 0,

(±1, 0, 0), (0, ±1, 0), (0, 0, ±1) α = 1, 2, . . . , 6,

(±1, ±1, 0), (±1, 0, ±1), (0, ±1, ±1) α = 7, 8, . . . , 18.

(2.7)

Thus, the weight coefficient ωα is determined as

ωα =

⎧⎪⎨
⎪⎩

1/3, e2
α = 0

1/18, e2
α = 1

1/36, e2
α = 2

. (2.8)

The expressions of M , m, m(eq) and S of the D3Q19 model are provided in the work by
Wang et al. (2016).

2.1.1. No-slip boundary condition
The no-slip condition on solid surfaces is crucial for interface-resolved particle-laden flow
simulations. In the present LBM, an interpolated bounce-back scheme of second-order
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accuracy, proposed by Bouzidi et al. (2001), is used to account for the no-slip boundaries.
As shown in figure 2, xw is the location where a boundary link intercepts with the solid
surface, and xf and xb are the locations of two lattice nodes on the opposite sides of
the solid boundary. The solid boundary location is described by q = |xf − xw|/|xf − xb|.
When q ≤ 0.5, the distribution function at xr (located between xf and xff ) is first
interpolated and then streamed exactly to xf after bouncing back from the wall for a
total distance of a lattice grid size δx in a single time step δt, as shown in figure 2(a).
Therefore, the velocity distribution function at the boundary node is updated using a
linear-interpolation scheme:

fα(xf , t + δt) = 2qf ∗
ᾱ (xf , t) + (1 − 2q)f ∗

ᾱ (xff , t) + 2ρ0ωα

eα · uw

c2
s

, (2.9)

or a quadratic-interpolation one:

fα(xf , t + δt) = q(2q + 1)f ∗
ᾱ (xf , t) + (1 + 2q)(1 − 2q)f ∗

ᾱ (xff , t)
−q(1 − 2q)f ∗

ᾱ (xfff , t) + 2ρ0ωα

eα · uw

c2
s

, (2.10)

where fα and f ∗
ᾱ are the bounce-back distribution function and incident distribution

function, respectively, with eα = −eᾱ , and uw is the velocity at the wall location xw.
When q > 0.5, as shown in figure 2(b), the distribution function at xf is first streamed
to xr (located between xf and xw) after bouncing back from the wall, then an interpolation
is performed to obtain fα(xf , t + δt), yielding a linear scheme:

fα(xf , t + δt) = 1
2q

[
f ∗
ᾱ (xf , t) + 2ρ0ωα

eα · uw

c2
s

]
+ (2q − 1)

2q
fα(xff , t + δt), (2.11)

or a quadratic one:

fα(xf , t + δt) = 1
q(2q + 1)

[
f ∗
ᾱ (xf , t) + 2ρ0ωα

eα · uw

c2
s

]
+ 2q − 1

q
fα(xff , t + δt)

−2q − 1
1 + 2q

fα(xfff , t + δt).

(2.12)
If the three fluid nodes xf , xff and xfff are all available, the quadratic-interpolation schemes
((2.10) and (2.12)) are used. If only two fluid nodes xf and xff exist (xfff is absent or
separated from xff by a solid boundary), the linear schemes ((2.9) and (2.11)) should be
invoked.

2.1.2. Force evaluation
Based on the work by Ladd (1994), Wen et al. (2014) proposed a Galilean invariant
momentum exchange method (GIMEM) to calculate hydrodynamic force F H and torque
T H exerted on a solid object in a fluid:

F Hδt =
∑
xf ,α

[ f ∗
ᾱ (xf , t)(eᾱ − uw) − fα(xf , t + δt)(eα − uw)], (2.13)

T Hδt =
∑
xf ,α

(xw − xc) × [ f ∗
ᾱ (xf , t)(eᾱ − uw) − fα(xf , t + δt)(eα − uw)], (2.14)

in which xc is the position of mass centre of the solid object. The summation is performed
over all boundary links α and all boundary nodes xf .
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xfff xfff
xff

δx δxqδx qδx

xr

xr

xff xfxw xwxb xb

xf

q ≤ 0.5(a) (b) q > 0.5

eα

eᾱ

eα

eᾱ

Figure 2. Bounce-back scheme for the no-slip boundary condition near a solid wall.

In the present LBM simulations, the solid disks move within the fixed lattice grids.
Thus, when a grid node is uncovered as the solid moves, proper initial distribution
functions should be assigned to this node to ensure that the flow is properly defined at
the new fluid node. An ‘equilibrium plus non-equilibrium’ refilling scheme originally
proposed by Caiazzo (2008) is used in the present work. In this refilling scheme, the
distribution functions at a newly uncovered node xuc are partitioned into the equilibrium
and non-equilibrium parts:

fα(xuc, t + δt) = f (eq)
α (uw, δρ) + f (neq)

α (xuc + ecδt, t + δt). (2.15)

The equilibrium part f (eq)
α is obtained from the local wall velocity uw and the average

density fluctuation of available neighbouring fluid nodes δρ. The non-equilibrium term
f (neq)
α is determined as the non-equilibrium part from the neighbouring node xuc + ecδt,

in which ec is the lattice direction giving the minimum value of (ec · n)/(|ec||n|) and
n is the outer normal vector on the solid surface from where the new fluid node is
uncovered. According to the comparative studies among different refilling schemes (Peng
et al. 2016), the present ‘equilibrium plus non-equilibrium’ refilling scheme performed
well in computational efficiency and numerical stability.

As two solid cylindrical objects come close to each other with a small gap between
them, the lattice grids are not sufficiently fine to resolve the fluid dynamics within the gap.
Thus, the lubrication force model proposed by Brändle de Motta et al. (2013) is used to
calculate the additional hydrodynamic forces exerted on the cylinders due to the squeezed
thin fluid layer:

Fij
L(ε) = −6πμf R∗vn[λ(ε) − λ(ε0)], (2.16)

in which μf is the fluid viscosity and vn is the normal component of the relative
velocity between the two cylinders at the approaching point. The effective solid size
R∗ = Ri

cR j
c/(Ri

c + R j
c), in which Ri

c and R j
c are the characteristic sizes of the two cylinders

defined as the minimum value between the radius rc and the half-length lc/2 of the
cylinder, i.e. Rc = MIN(rc, lc/2). For the collision between a cylinder and a planar wall,
the effective solid size is equal to the characteristic size of the cylinder R∗ = Ri

c. The
asymptotic functions λ(ε), in which ε = δgap/Rc and δgap is the gap size between two
approaching cylinders, have different forms for the cylinder–cylinder and cylinder–wall
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interactions (Brändle de Motta et al. 2013):

cylinder–cylinder: λ(ε) = 1
2ε

− 9
20

ln ε − 3
56

ε ln ε + 1.346, (2.17a)

cylinder–wall: λ(ε) = 1
ε

− 1
5

ln ε − 1
21

ε ln ε + 0.9713. (2.17b)

As shown in figure 3, three critical scaled gap sizes, ε0, ε1 and ε2, are defined. The
lubrication force is invoked when ε < ε0. The lubrication force Fij

L(ε) is calculated using
(2.16) and ((2.17a) or (2.17b)) when ε1 < ε < ε0, and it is constant and equal to the value
at ε = ε1, i.e. Fij

L(ε) = Fij
L(ε1), when 0 ≤ ε ≤ ε1. Solid–solid contact between the two

cylinders occurs when ε < 0, then the solid–solid contact force Fij
ss should be considered:

Fij
ss = −kn|δgap| − βnvn, (2.18)

kn = −me(π
2 + (ln ed)

2)

(Ncδt)
2 , (2.19)

βn = −2me(ln ed)

(Ncδt)
, (2.20)

where me = mimj/(mi + mj) for the cylinder–cylinder collision and me = mi for the
cylinder–wall collision with the masses of the cylinders mi and mj. The coefficient of
restitution is specified as ed = 0.97, and Ncδt represents the contact duration in which Nc
is set to 8 in the present simulations, as suggested by Brändle de Motta et al. (2013). The
interaction force is calculated as a sum of the solid–solid contact force Fij

ss and lubrication
force Fij

L(ε1) when ε2 ≤ ε < 0, and only the solid–solid contact force exists when ≤ ε2.
In the present simulations, the three critical gap sizes ε0, ε1 and ε2 are specified as
0.125, 0.001 and −0.005, respectively, for the cylinder–cylinder contact, and 0.15, 0.001
and −0.005, respectively, for the cylinder–wall contact. It is noted that the lubrication
force models represented by (2.16) and (2.17a,b), which were originally calibrated for the
sphere–sphere and sphere–wall interactions, are used for the interactions involving the
cylinders in the present work. The effect of this approximate treatment is considered small,
because the magnitudes of the lubrication forces are much smaller than those of resolved
hydrodynamic forces, as illustrated below by the results in § 5.

2.2. DEM for cylindrical particles
The code of the cylindrical particle DEM used in the present study was originally
developed by Guo et al. (2012a,b). The translational and rotational motion of an individual
cylinder i is governed by Newton’s second law of motion:

mi
dvi

dt
= F i

H + F i
L + F i

ss + mig, (2.21)

and

I i · dωi

dt
− (I i · ωi) × ωi = T i

H + T i
L + T i

ss, (2.22)

in which vi and ωi are the translational and angular velocities, respectively, of the cylinder,
and their derivatives with respect to the time t give the corresponding accelerations.
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j

FL
ij 

(ε)

FL
ij 

(ε1)

ε0

ε1

ε2

ε = 0

ε

Fss
i
s
j
 + FL

ij 
(ε1)

Fss
i
s
j

i

Figure 3. Multilayer lubrication force model for two contacting cylindrical objects.

The translational movement of the cylinder of mass mi is driven by a combination of
the hydrodynamic force F i

H , lubrication force F i
L, solid–solid contact force F i

ss and the
gravitational force mig. The rotation of the cylinder is propelled by a sum of torques
T i

H , T i
L and T i

ss, arising from the hydrodynamic force, lubrication force and solid–solid
contact force, respectively. For the three-dimensional non-spherical objects, I i represents
the moment of inertia tensor. The evolution of velocities, positions and orientations of the
objects can be obtained by the time integration of (2.21) and (2.22) using a central finite
difference scheme with a fixed time step.

In the DEM simulations, several typical cylinder–cylinder contact types were recognized
by Kodam et al. (2010), as shown in figure 4. In the present work, the contact detection
algorithms are proposed to determine the gap size δgap, contact normal direction and
contact point position for each contact scenario, following the previous work by Kodam
et al. (2010) and Guo et al. (2012a). Thus, the lubrication force F i

L, solid–solid contact
force F i

ss, and the two torques T i
L and T i

ss due to F i
L and F i

ss can be calculated.

2.3. Validation of the LBM-DEM code
Four sets of simulations are performed and analysed using the developed LBM-DEM
code. First, the sedimentations of a single disk of aspect ratio AR = 0.1 and dimensionless
moment of inertia I∗ = 5.97 × 10−3 at various particle terminal Reynolds numbers Re are
simulated. The AR of a disk is defined as the ratio of the thickness lc to the diameter
dc of the disk, i.e. AR = lc/dc. In the simulations, steady, transitional and periodic
falling patterns are sequentially obtained as Re increases. The simulations are consistent
with the previous experimental observations by Field et al. (1997). Second, the drag
coefficients of the disk (AR = 0.1) falling in a fluid at a range of particle terminal Reynolds
numbers Re from 10 to 400 are obtained from the present simulations. The simulation
results are in good agreement with the predictions by Clift, Grace & Weber (1978),
which were determined by the extensive experimental results. Third, fluid flows around
a cylinder (AR = 5) fixed at a specified position are simulated. As the cylinder Reynolds
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Face–face Face–band Face–edge

Band–band Band–edge Edge–edge

Figure 4. Typical cylinder–cylinder contact types considered in the DEM simulations (Kodam, et al. 2010;
Guo et al. 2012a).

number is specified as Re = 300, the lift and torque coefficients of the cylinder at various
orientational angles (or attack angles) are compared with the previous simulation results by
Zastawny et al. (2012). Also, good agreement is achieved. Fourth, a simulation of two disks
falling in tandem is performed and compared with the existing experimental results by
Brosse & Ern (2011). The details about the LBM-DEM code validation and the definitions
of the Reynolds numbers are provided in Appendix A.

In addition, the contact detection algorithms and contact force models for the
cylinder–cylinder and cylinder–wall interactions were validated in our previous work by
modelling the cylindrical particle packings in a container (Tangri, Guo & Curtis 2017) and
the hopper flows (Tangri, Guo & Curtis 2019).

3. Computational set-up of the sedimentation of two interacting disks

A 3-D rectangular computational domain of dimensions Lx = Lz = 300 (lattice unit or
LU) and Ly = 1200 (LU) is created, as shown in figure 5(a). Two identical disks of
the equivalent volume sphere diameter deq are placed in tandem at the positions of
the coordinates (Lx/2, Ly − d1, Lz/2) and (Lx/2, Ly − d1 − d2, Lz/2), respectively. The
clearance to the top boundary is specified as d1 = 6.27deq. The initial distance between
the centres of the two disks d2 (figure 5a) and the initial inclination angle θ0, which
is the angle between the major axis of a disk and the y axis (figure 5b), are varied to
understand the effects of the initial conditions of the disk release. Four different aspect
ratios (AR = 0.1, 0.4, 0.7 and 1), defined as the ratio of the thickness lc to the diameter dc
of the disk, are used in the present simulations to examine the effect of disk shape on the
falling dynamics. All the disks have the same volume and the equivalent volume sphere
diameter is assigned as deq = 31.88 (LU). The densities of fluid and cylinders are assigned
as ρf = 1 and ρs = 1.2, respectively. The dimensionless moments of inertia I∗, which can
be calculated for the disks using (1.1), are listed in table 1. The ratios of the moment of
inertia of the disk about its axis of symmetry Il and the moment of inertia of the same
disk about its diameter Id are also shown in table 1. A ratio of Il/Id reflects the relative
significance of the inertia rotating about the axis of symmetry to that about a diameter for
a disk.

No-slip wall boundary conditions are specified in the x and z directions. Periodic
boundary conditions are used in the y direction for the modelling of the disks falling
in a very deep tank. The fluid and two disks are initially at rest and sedimentation
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Lz
Lx

Figure 5. (a) Computational domain of two disks falling in a viscous fluid and (b) an illustration of the initial
angle between the major axis of a disk and the vertical direction y.

AR I∗ Il/Id

0.1 5.97 × 10−3 1.97
0.4 2.86 × 10−2 1.65
0.7 6.88 × 10−2 1.20
1 1.37 × 10−1 0.857

Table 1. Moments of inertia of the disks used in the simulations.

starts when constant downward body forces are exerted on the disks. The disks settle at
different terminal velocities by adjusting the fluid viscosity. In the present simulations,
the confinement effects of solid wall boundaries are minimized by using a sufficiently
large domain. The size ratio of Lx/deq and Lz/deq is set to approximately 9.4, resulting
in nearly the same results of settling paths and rotation of the disks as using a wider
domain of the ratio Lx/deq = Lz/deq = 18.8. The effect of height Ly, the distance between
two periodic boundaries, is examined by increasing the ratio Ly/deq from 37.6 to 75.3
for the simulations with I∗ = 5.97 × 10−3 and Re = 600, and nearly the same results are
obtained. Thus, a smaller domain of Lx/deq = Lz/deq = 9.4 and Ly/deq = 37.6 is used
in most of the present simulations for a lower computational cost. The sensitivity to the
grid resolution has been examined by doubling the present grid resolution, and almost the
identical simulation results are obtained.
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No. AR dc/mm lc/mm

1 0.1 ± 0.0015 20 ± 0.12 2 ± 0.02
2 0.1 ± 0.0011 28 ± 0.15 2.8 ± 0.025
3 0.4 ± 0.0022 7 ± 0.02 2.8 ± 0.02
4 0.7 ± 0.0032 10 ± 0.08 7 ± 0.06
5 1 ± 0.013 2.8 ± 0.02 2.8 ± 0.01
6 1 ± 0.008 10 ± 0.09 10 ± 0.07

Table 2. Geometric properties of six types of disks.

Mass concentration of glycerol 0 25 % 50 %

Density of mixture (g cm−3) 1 1.0598 1.1263
Dynamic viscosity of mixture (mPa s) 1.005 2.095 6.05
Kinematic viscosity of mixture (μm s−2) 1.005 1.9768 5.3714

Table 3. Properties of three solutions at the temperature of 20 °C.

4. Experimental set-up of the sedimentation of two interactive disks

Physical experiments of two interacting disks falling in a fluid are conducted to provide
additional results for a better understanding of sedimentation behaviour and to validate
the present simulation results. Six types of disks with different sizes (diameter dc and
thickness lc) and AR, as listed in table 2, are used in the experiments. The disks, made of
acrylic of density ρs = 1.2 g cm−3, are manufactured using a laser cutting machine. To
achieve different settling Reynolds numbers, various solutions of glycerol in water with
different viscosities are employed, as shown in table 3.

The experiments are conducted at the room temperature of 20 °C. At the beginning,
two identical disks are held by a single clamp and are fully immersed in the stationary
liquid inside a tank of 200 × 2000 × 200 mm3. The initial positions and orientations of
the two disks are the same as those specified in the present numerical simulations. The
clamp opens slowly and slightly to release the two disks simultaneously, minimizing flow
perturbations. The two disks then settle in the liquid under the effect of gravitational force.
The falling processes of the disks are recorded by cameras, and the videos are analysed by a
MATLAB® code to determine the positions and settling speeds of the disks. In the present
experiments, at least three runs are conducted for a specified set of control parameters.

5. Results and discussion

To understand the sedimentation process, we analyse the horizontal drifting displacements,
orientation and hydrodynamic forces of the two disks. The orientation of a disk can be
described by a pitch angle θ and a yaw φ. A shown in figure 6(a), the pitch angle θ is the
angle from the vertical y axis to the line l’, which is the projection of the major axis of the
disk (l) onto the y–z plane, and the yaw angle φ is the angle from l′ to l.

The hydrodynamic forces exerted on the disks by the surrounding fluid play a critical
role in the contacts between the disks. For a better understanding of such hydrodynamic
contributions to the disk–disk contacts, the components of the hydrodynamic forces in
the direction of the vector connecting the mass centres of the two disks are examined.
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Figure 6. Illustration of (a) pitch angle θ and yaw angle φ of a disk and (b) hydrodynamic force components
in the direction of the vector connecting the two centres of the disks.

As illustrated in figure 6(b), the hydrodynamic force component F∗i
H can be written as

F∗i
H = F i

H · nji

(ρs − ρf )gVd
(i, j = 1, 2), (5.1)

in which 1 and 2 represent the trailing disk and leading disk, respectively, F i
H is the

hydrodynamic force vector acting on the disk i, which is calculated using (2.13), and nji
is the unit branch vector from the mass centre of the disk j to that of the disk i. The dot
product is normalized by the gravitational force term (ρs − ρf )gVd, in which Vd is the
volume of a disk and g is the gravitational acceleration. Thus, the positive and negative
values of F∗i

H contribute to the separation and approaching, respectively, of the two disks.
In the falling, the disks accelerate from zero velocity to a terminal state, in which the

vertical component of the disk velocity uy fluctuates around a time-average value (see
figure 11). Thus, the Reynolds number is defined as

Re = uldeq

νf
, (5.2)

in which ul is the time-average vertical velocity of the leading disk (in the lower position)
at the terminal state, deq is the equivalent volume sphere diameter and νf is the kinematic
viscosity of the fluid.

The present disk-surface-resolved direct numerical simulation (DNS) and experimental
results show that the dynamics of two closely arranged flat disks in the sedimentation
are remarkably different from that of two spheres, attributed to the effect of the object
shape. Further analyses reveal that the falling patterns are determined by a combination of
disk shape (characterized by a dimensionless moment of inertia I∗) and Re, as a result of
complex multiphase flows involving disk–fluid and disk–disk interactions.

5.1. Effects of initial conditions
The effects of the initial disk inclination angle θ0 and distance between mass centres of
the two disks d2 (see figure 5a) have been examined and the results are shown in figures 7
and 8. The dimensionless horizontal displacement of a disk is expressed as Z∗ = z/deq,
in which z is the z-displacement of the disk. The evolution of Z∗ and the pitch angle θ is
plotted as a function of a dimensionless falling displacement defined as Y∗ = y2/deq, in
which y2 is the y-displacement of the leading disk.

As shown in figure 7(a,b), when the disks fall broadside at zero initial inclination angle
θ0 = 0◦, the instability with the oscillation in the horizontal displacement Z∗ occurs when
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Figure 7. Effects of the initial inclination angle of the disks θ0 on (a–d) horizontal displacements in the z
direction Z∗ and (e–h) pitch angles θ obtained from the DNS simulations. The results of disk 1 and disk 2
are placed in the left-hand and right-hand columns, respectively. The initial distance between the two disks is
d2 = 2.82deq. The control parameters are I∗ = 5.97 × 10−3 and Re = 255.
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Figure 8. Effects of the initial distance d2 on (a,b) horizontal displacements in the z direction Z∗ and
(c,d) pitch angles θ obtained from the simulations. The results of disk 1 and disk 2 are placed in the left-hand
and right-hand columns, respectively. The initial inclination angle of the disks is θ0 = 60◦. The control
parameters are I∗ = 5.97 × 10−3 and Re = 150.

the dimensionless falling displacement Y∗ is greater than 50. At small initial inclination
angles θ0 = 2◦ and 5°, the significant oscillating horizontal movement Z∗ occurs much
earlier after Y∗ = 10, indicating that a small asymmetry at the beginning of disk falling
leads to a quicker development of instability. At larger initial angles θ0 = 30◦, 60° and 80°
(see figure 7c,d), the two disks exhibit significant horizontal oscillations in Z∗ immediately
after they are released. Significant horizontal departure from the original position (Z∗ = 0)

is observed for the paths with very large initial inclination angles θ0 = 60◦ and 80°.
The periodic oscillating behaviour of the angle θ is similar to that of the horizontal
displacement Z∗, as shown in figure 7(e–h). The angle θ eventually fluctuates around
θ = 0◦ regardless of the values of initial inclination angle θ0.

The experiments by Brosse & Ern (2014) showed that at Re = 255, the thin disks of
AR = 0.1 settled in the oscillatory paths with the inclination angles fluctuating periodically
in time. These experimental observations are qualitatively similar to the present simulation
results. In addition, the global linear stability analysis by Tchoufag, Fabre & Magnaudet
(2014) predicted that a disk settled down in a periodic oscillating path with the set of
parameters θ0 = 0◦, Re = 255, AR = 0.1 and I∗ = 5.97 × 10−3, and the present simulation
results are consistent with the prediction.

By maintaining the initial inclination angle θ0 = 60◦ and varying the distance d2, the
effects of the initial separation between the two disks are shown in figure 8. For the
distances d2 between 0.94deq and 3.76deq, all the disks oscillate periodically, and the
horizontal deviation of the path from the initial position (Z∗ = 0) increases slightly as the
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distance d2 increases (figures 8a and 8b). Similar periodic oscillations in the pitch angles
θ are observed for all the distances d2 considered (figures 8c and 8d). Thus, the similar
falling patterns are observed for the cases with the initial distance d2 between 0.94deq and
3.76deq, though the quantitative differences in the disk motion exist.

In the following sections, to study the combined effects of disk aspect ratio and Reynolds
number, the initial conditions of the disks are specified as θ0 = 60◦ and d2 = 2.82deq.

5.2. Steady falling with enduring contact
Sequential snapshots of the two disks of AR = 0.1 and I∗ = 5.97 × 10−3 falling at a
Reynolds number of Re = 100 obtained from the simulations are shown in figure 9. The
two falling disks initially translate horizontally in the positive z direction and rotate about
the negative x axis, due to the initial inclined angle θ0 = 60◦. After reaching the maximum
horizontal displacement in the z direction, the disks return to the central vertical line of the
domain and, meanwhile, they rotate about the positive x axis. The trailing disk falls at a
faster speed and can collide on the back of the leading disk, since the wake flow behind the
leading disk reduces the drag force on the trailing disk. The two disks remain in contact
and eventually fall together in a steady mode.

In the steady falling process, the high- and low-pressure regions are formed in the front
of and behind, respectively, the two contacting disks (figure 10a), and the vortices are
formed from the edges of the disks (figure 10b). The high- and low-pressure regions and
vortices also remain steady, as the two disks fall in the steady mode. The falling patterns
of the two disks obtained from the numerical simulation are similar to those observed
from the physical experiment with the same values of I∗ and Re (figure 10c). It is noted
that the images in figure 10(c) are reproduced from the movie recorded in the physical
experiment (provided in the supplementary material, available at https://doi.org/10.1017/
jfm.2023.186). The present steady falling pattern of the two disks in a Y-configuration
(figure 10) was also observed in the previous experiments of two disks falling in tandem
with the parameters of AR = 0.1 and Re = 80, 115 and 152 (Brosse & Ern 2011).

By converting the lattice units to the international system of units (SI), as described in
Appendix B, the vertical velocities of the two disks, uy, obtained from the LBM-DEM
simulation are compared with those obtained from the real experiment, as shown in
figure 11. In general, the simulation results are in good agreement with the experimental
results. At the early stage, the trailing disk 1 has a higher falling speed than the leading
disk 2. After the trailing disk catches up to the leading one, the two disks fall at similar
speeds. The noisy fluctuations of the experimental data may be attributed to the fact
that the resolution of the disk images is not sufficiently high, causing the errors in the
determination of the centres of the gravity of the disks.

The horizontal displacements of the two disks in the z direction are shown in
figure 12(a), in which Z∗

1 = z1/deq, Z∗
2 = z2/deq, Y∗ = y2/deq, z1 and z2 are the

z-displacements of the trailing disk and leading disk, respectively, and y2 is the
y-displacement of the leading disk. The two disks initially deviate from the vertical central
line (Z∗

1 = Z∗
2 = 0), and then return closer to the central line. The horizontal oscillations

are observed in both simulations and experiments. The two disks have initial angles of
θ1 = θ2 = 60◦ and φ1 = φ2 = 0◦, in which the subscripts 1 and 2 represent the trailing
and leading disks, respectively. As shown in figure 12(b), the angles θ1 and θ2 oscillate
periodically with reduced amplitudes. The angles φ1 and φ2 maintain 0◦ at the early
stage and then fluctuate with a magnitude smaller than 2◦ (figure 12c), indicating that the
rotation of the two disks mainly occurs in the y–z plane. It is noted that the experimental
results in figures 12(a) and 12(b) are from one of three runs under the same conditions.
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Figure 9. Sequential snapshots of the two disks falling in a fluid obtained from the simulations. The control
parameters are I∗ = 5.97 × 10−3 and Re = 100.

The same falling styles are observed from the three runs, although small differences exist
in the displacements of the disks. This also applies in figures 14(a,b) and 18(a).

The evolution of the hydrodynamic force components is plotted in figure 12(d). The
hydrodynamic force component on the leading disk F∗2

H tends to make the two disks
collide, while the hydrodynamic force component on the trailing disk F∗1

H separates them.
However, the average magnitude of F∗2

H is larger than that of F∗1
H , leading to the closing-in

and eventually contact of the two disks. Consistent with the oscillations of the disk motion
(figures 12a and 12b), the hydrodynamic forces also oscillate periodically. The contact
of the two disks is defined as the gap between them is sufficiently small (i.e. ε < ε0 in
figure 3) that the lubrication force FL is invoked. The evolution of the scaled lubrication
force, F∗

L = FL/[(ρs − ρf )gVd] (the solid–solid contact force Fss is included in FL), is
also plotted in figure 12(d), in which a long presence of non-zero values of F∗

L indicates
the enduring contact between the two disks.
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Figure 10. Contours of (a) fluid pressure P and (b) fluid vorticity in the x direction wx at various time instants
t in the sedimentation of two disks obtained from the simulation. (c) Corresponding images at the similar time
instants obtained from the physical experiment. The views are in the y–z plane. The control parameters are
I∗ = 5.97 × 10−3 and Re = 100. The movies of the simulation and physical experiment are provided in the
supplementary material.
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Figure 11. A comparison of the vertical velocities of the disks between the simulation and experiment. The
control parameters are I∗ = 5.97 × 10−3 and Re = 100.
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Figure 12. Evolution of (a) horizontal displacements in the z direction, (b) pitch angle θ , (c) yaw angle φ, and
(d) hydrodynamic force components and lubrication force. The control parameters are I∗ = 5.97 × 10−3 and
Re = 100.
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Figure 13. Contours of (a) fluid pressure P and (b) fluid vorticity in the x direction wx at various time instants
in the sedimentation of two disks obtained from the simulation. (c) Corresponding images at the similar time
instants obtained from the physical experiment. The views are in the y–z plane. The control parameters are
I∗ = 5.97 × 10−3 and Re = 255. The movies of the simulation and physical experiment are provided in the
supplementary material.
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Figure 14. Evolution of (a) horizontal displacements in the z direction, (b) pitch angle θ , (c) yaw angle φ, and
(d) hydrodynamic force components and lubrication force. The control parameters are I∗ = 5.97 × 10−3 and
Re = 255.

5.3. Periodic swinging with intermittent contact
With the same dimensionless moment of inertia I∗ of 5.97 × 10−3, the steady falling
pattern is changed to a double-disk periodic swinging pattern by increasing the Re from
100 to 255. As shown in figure 13(a), the trailing disk can catch up and collide with the
leading disk, as the drag force on the trailing disk is reduced by the wake flow behind the
leading disk. After the first collision, the trailing disk starts to swing periodically above the
leading disk: translational and rotational oscillations occur simultaneously. Similar to the
steady falling (figure 10a), high- and low-pressure regions are generated in the front of and
behind, respectively, the two disks, as shown in figure 13(a). Associated with the periodic
oscillation of the disks, the vortex shedding occurs periodically, as shown in figure 13(b),
which is different from the steady vortices in the steady falling (figure 10b). The physical
experiment of sedimentation is performed with the same parameters of I∗ = 5.97 × 10−3

and Re = 255 as in the simulation. The snapshots of the disks reproduced from the video
taken in the experiment (provided in the supplementary material) are similar to those
obtained from the simulation, as shown in figure 13(c). The periodic oscillations in the
two disks falling were also observed in the previous experiments by Brosse & Ern (2011,
2014) with the parameters of AR = 0.1 and Re = 255 and 275.

In the periodic falling, the translational oscillation in the horizontal z direction and the
rotational oscillation are demonstrated in figures 14(a) and 14(b), respectively. After the
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early stage, the trailing and leading disks oscillate with a phase difference of approximately
a quarter of period, and the trailing disk has larger oscillating amplitudes than the leading
one. Compared to the falling pattern with Re = 100 (figure 12), larger amplitudes of the
oscillations in the horizontal displacement Z∗ and inclination angle θ are obtained for
the periodic swinging pattern with Re = 255. A significant difference between the falling
patterns at Re = 100 and Re = 255 (I∗ = 5.97 × 10−3) is that the two disks form a stable
Y-configuration at Re = 100 (figures 10b and 10c), and the Y-configuration periodically
changes direction at Re = 255 (figures 13b and 13c).

As shown in figure 14(c), the yaw angle φ develops gradually and remains minimal
within 2◦, indicating the dominance of the planar motion of the disks in the y–z plane.
When the two disks come to contact, the hydrodynamic force components on them
exhibit periodic variations (figure 14d), which are associated with periodic oscillations
of the disks. In the periodic oscillation, the disk–disk contact occurs intermittently as the
non-zero lubrication forces F∗

L appear occasionally, as shown in figure 14(d), which is
different from the enduring contact in the steady falling (figure 12d).

5.4. Separation after a single collision
The falling pattern also depends on the shape of the disks. At the Reynolds number of
Re = 320, by increasing the disk aspect ratio AR from 0.1 to 0.4 (I∗ from 5.97 × 10−3

to 2.86 × 10−2), the two disks collide once and thereafter separate, without periodic
oscillation of the horizontal translation. As shown in figure 15(a), the two disks initially
fall along the vertical central line (Z∗ = 0) until they collide at approximately Y∗ = 18.
The trajectories of the two disks deviate from the central line after the collision. At the
early stage, the two disks rotate to have the major axes aligned vertically with θ close
to 0°, as shown in figure 15(b). The collision at Y∗ = 18 causes stronger rotation of the
two particles, which is thereafter reduced as the two disks settle separately. Non-trivial
magnitudes of the yaw angle φ are observed after the collision, as shown in figure 15(c),
illustrating the three-dimensional rotation, rather than the planar motion, of the disks.
As shown in the inset of figure 15(d), non-zero lubrication force F∗

L is obtained at
approximately Y∗ = 18 as the collision occurs. After the collision, the contributions of
the hydrodynamic forces for the disks to contact or separate are significantly reduced,
because the angles between the hydrodynamic force vectors F i

H and the branch vector rji
increase, resulting in the reduced projections of the hydrodynamic forces in the branch
vector direction. This situation is associated with the side-by-side falling of the two disks.
In addition, after the collision, the initially trailing disk (disk 1) surpasses the other one
(disk 2) and becomes the new leading disk. As a result, the hydrodynamic force component
F∗1

H changes its sign from positive to negative and F∗2
H changes its sign from negative to

positive. The drafting, kissing and tumbling (DKT) behaviours, which frequently occur
in the settling of a pair of spheres at high Reynolds numbers, are also observed in this
sedimentation with the two disks of I∗ = 2.86 × 10−2 and Re = 320. The above falling
pattern with AR = 0.4 and Re = 320 is similar to the pattern with AR = 1/3 and Re = 255
and 285 observed in the experiments by Brosse & Ern (2014) and Ern & Brosse (2014), in
which the two thick disks (AR = 1/3) separated after contact and fell side by side.

5.5. Tumbling without disk–disk contact
For the disks of a large dimensionless moment of inertia I∗ = 1.37 × 10−1 (aspect ratio
AR = 1) at a very large Reynolds number Re = 1000, the disks fall in a tumbling pattern
with nearly random orientations and no disk–disk contact occurs, as shown in figure 16.
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Figure 15. Evolution of (a) horizontal displacements in the z direction, (b) pitch angles θ , (c) yaw angles
φ, and (d) hydrodynamic force components and lubrication force obtained from the simulation. The control
parameters are I∗ = 2.86 × 10−2 and Re = 320.

The motions of the disks are not constrained in the y–z plane, and displacements in
the x-direction are also observed. As the disks remain separated, high- and low-pressure
regions, which are created in the front of and behind each individual disk (figure 17a), are
much smaller than those formed near the contacting pair of disks (figures 10a and 13a).
Associated with the complex motion of the disks, the structures of the vortices induced by
the disks are very chaotic, as shown in figure 17(b).

For the settling pattern of segregation without contact, the two disks deviate from the
vertical central line at the very beginning and follow inclined paths thereafter, as shown in
figure 18(a). The pitch angle θ varies in a wide range of −90◦ to 90◦ (figure 18b), due to the
tumbling of the disks. The yaw angles φ oscillate between −20◦ and 20◦ (figure 18c), and
thus the two disks undergo 3-D rotations. Consistent with the observation of no contact, the
lubrication force F∗

L remains zero in the whole settling process, as shown in figure 18(d). In
addition, the magnitudes of the hydrodynamic force components, which contribute to the
contact or separation of the two disks, decrease as the separated disks settle side-by-side.

The evolution of the ratio of the angular velocity component in the axis-of-symmetry
direction, ωl, to the angular-velocity component in a diameter direction, ωd, is plotted
for each disk in figure 19. For the settling in a tumbling mode with I∗ = 1.37 × 10−1

and Re = 1000, as shown in figure 19(a), the angular velocity component ωl is significant
compared to the component ωd, indicating the remarkable disk rotation about the axis
of symmetry. However, in the periodic swinging sedimentation with I∗ = 5.97 × 10−3
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y

(a) (b)

y

x zz x

Figure 16. Sequential snapshots of the falling disks superimposed in the same plot of domain obtained from
the simulation. The two pictures are obtained from different view angles. The control parameters are I∗ =
1.37 × 10−1 and Re = 1000.

and Re = 255, as shown in figure 19(b), the angular velocity component ωl is negligible
compared to the component ωd for most of the settling process. Thus, the rotation about
a diameter is more dominant than the rotation about the axis of symmetry for the disks in
the periodic swinging pattern, and the relative importance of the rotation about the axis
of symmetry compared to that about a diameter increases in the tumbling pattern. The
flatter disks with a smaller I∗ have a larger moment-of-inertia ratio Il/Id, leading to greater
resistance to the rotation about the axis of symmetry. Thus, a larger moment-of-inertia
ratio Il/Id contributes to the more dominant rotation about a diameter than about the axis
of symmetry for the disks in the sedimentation process.

5.6. Phase diagrams of falling patterns
The present results and the previous results (Brosse & Ern 2011, 2014) show that the
falling styles of the two identical disks in a viscous fluid are determined jointly by
the dimensionless moment of inertia of the disks I∗ and the terminal Reynolds number
of the leading disk Re. Thus, based on I∗ and Re, a phase diagram is generated in
figure 20(a) to classify the two-disk sedimentation into ten patterns: (1) steady falling with
enduring disk–disk contact; (2) periodic swinging with intermittent disk–disk contacts;
(3) three-dimensional oscillating with intermittent contacts; (4) separation after a single
collision and steady falling with major axes of the disks aligned vertically; (5) separation
after a single collision and chaotic 3-D oscillating with the major axes aligned almost
vertically; (6) falling without disk–disk contact and three-dimensional oscillating with the
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Figure 17. Contours of (a) fluid pressure P and (b) fluid vorticity in the x direction wx at various time instants
t in the sedimentation of two disks obtained from the simulation. The views are in the y–z plane. The control
parameters are I∗ = 1.37 × 10−1 and Re = 1000. The movies of the simulation and physical experiment are
provided in the supplementary material.

major axes aligned almost vertically; (7) separation after a single collision and steady
falling with major axes aligned horizontally; (8) separation after a single collision and
steady falling with no preferential alignment of the major axes; (9) falling without
disk–disk contact and 3-D oscillating with the major axes aligned almost horizontally;
and (10) tumbling without disk–disk contact. For the flatter disks with a small value of
I∗ = 5.97 × 10−3, steady falling with enduring contact occurs when Re < 100, while 2-D
periodic swinging with intermittent contacts takes place when 100 < Re < 270, and the
2-D periodic swinging transits to a 3-D periodic oscillation when Re > 270. The disks with
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Figure 18. Evolution of (a) horizontal displacements in the z direction, (b) pitch angles θ , (c) yaw angles φ,
and (d) hydrodynamic force components and lubrication force. The control parameters are I∗ = 1.37 × 10−1

and Re = 1000.
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Figure 19. Evolution of ratios of angular velocity components obtained from the simulations for the
control parameters: (a) Il/Id = 0.857, I∗ = 1.37 × 10−1 and Re = 1000; (b) Il/Id = 1.97, I∗ = 5.97 × 10−3

and Re = 255.

larger values of I* settle in a DKT mode when 10 < Re < 100, and the disks fall steadily
after the separation. When Re > 200, the increase in I* leads to single or no collision
and the chaotic 3-D oscillating motions of the disks. A detailed description of the major
features of the two-disk falling patterns is provided in Appendix C.
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Figure 20. Phase diagrams of two-disk falling patterns: (a) planar motion (regime I) versus three-dimensional
motion (regime II) and (b) regimes of various disk–disk contact types: (i) enduring contact; (ii) intermittent
and multiple contacts; (iii) a single contact; and (iv) no contact. Open marks represent the present simulation
results and filled marks are the present experimental results. The black filled marks represent the experimental
data from Brosse & Ern (2011, 2014).

As shown in figure 20(a), the phase diagram is partitioned by a black dash curve into
regimes I and II, which are associated with the planar motion and 3-D motion, respectively,
of the disks. Thus, the planar or 3-D motion is determined primarily by the Re regardless of
the AR or I∗ of the disks, because the stronger turbulent flows enhance the 3-D rotation of
the disks (see §§ 5.4 and 5.5). This conclusion is valid for the symmetric disk-like objects.
However, it was observed that the asymmetric rigid fibres settled in 3-D helical paths at
very low Re (<1) in the previous experiments (Tozzi et al. 2011). As a result, the change in
the object shape from symmetry to asymmetry can have a significant impact on the planar
or 3-D motion of the objects.

By comparing the phase diagram of two-disk falling patterns (figure 20a) with that
of a single disk falling (figure 24 in Appendix A.1), the 3-D falling patterns of the two
disks are related to the 3-D motion of a separated disk in the sedimentation. As shown in
figure 20(a), the 3-D falling of the two disks occurs at approximately Re > 3 × 102. For
a separated disk, as shown in figure 24 in Appendix A.1, when Re > 3 × 102, the thicker
disks of I∗ > 4 × 10−2 settle in a tumbling mode, the moderately thick disks of 10−2 <

I∗ < 4 × 10−2 in a chaotic mode and the thinner disks of I∗ < 10−2 in a periodic mode.
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Figure 21. Evolutions of the distance between the mass centres of two disks, scaled by the equivalent volume
sphere diameter deq, for various falling patterns with (a) planar motion and (b) three-dimensional motion of
the disks. The data are obtained from the simulations.

The tumbling and chaotic modes are essentially characterized as complex 3-D motions.
The periodic oscillations of a separated thinner disk at high Re exhibited a planar Zigzag
pattern (Zhong et al. 2011; Lee et al. 2013) or a 3-D hula-hoop pattern (Auguste et al.
2013). Thus, it is interesting to note that the two thinner disks at a high Re(> 3 × 102), at
which a separated disk falls in a planar zigzag pattern, can settle in 3-D motion due to the
hydrodynamic interaction between them.

According to the types of disk–disk contacts in the sedimentation process, the phase
diagram can be also classified into four distinctive regimes: (i) enduring contact; (ii)
intermittent and multiple contacts; (iii) a single contact; and (iv) no contact, as shown
in figure 20(b). Therefore, the contacts are affected by a combination of I∗ and Re, and
the probability and duration of the disk–disk contact are increased by reducing I∗ and Re.
It is noted that the phase diagrams shown in figure 20 are valid for the disks with the
initial inclination angles θ0 between 30° and 80°, and the disks with zero initial inclination
angles may exhibit different falling behaviour according to the studies on the effects of
initial conditions in § 5.1.

The evolutions of the distance D between the mass centres of two disks, scaled by the
equivalent volume sphere diameter deq, for various falling patterns are shown in figure 21,
in which D∗ = D/deq. The evolutions of the corresponding scaled lubrication forces F∗

L
are plotted in figure 22. For the enduring-contact falling (pattern 1), the scaled distance D∗
maintains as approximately one in the contacting process and F∗

L is present as the contact
persists. For the intermittent and multiple contacts (patterns 2 and 3), D∗ oscillates around
one and F∗

L appears occasionally. For the single-contact fallings (patterns 4, 5, 7 and 8), D∗
initially decreases and then increases. The non-zero value of F∗

L is invoked only when the
two disks move very close to each other (corresponding to the small D∗) and F∗

L disappears
when D∗ increases. The falling style in this single-contact regime is analogous to the DKT
of a pair of spheres settling in a fluid. For the no-contact fallings (patterns 6, 9 and 10), D∗
generally increases from the beginning and F∗

L vanishes in the whole falling process.

6. Conclusions

Solid-surface-resolved DNS of a pair of disks falling in a fluid are performed using a
coupled approach of lattice Boltzmann method (LBM) and cylindrical particle discrete
element method (DEM). The simulation results are generally consistent with the present
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Figure 22. Evolutions of the scaled lubrication force between the two disks F∗
L for various falling patterns with

(a) planar motion and (b) three-dimensional motion of the disks. The data are obtained from the simulations.

and previous experimental observations (Brosse & Ern 2011, 2014). Based on the
simulations, translational and rotational displacements of the disks are presented to
illustrate the sedimentation patterns, the contributions of hydrodynamic forces to collision
or separation of the disks are discussed, and the evolution of the lubrication force is
analysed to understand the disk–disk contact scenarios.

It is observed that the settling behaviour is determined by the combination of a
dimensionless moment of inertia of the disks I* and a disk Reynolds number Re. For the
flatter disks with a small value of I∗ = 5.97 × 10−3, steady falling with enduring contact
occurs when Re < 100, while 2-D periodic swinging with intermittent contacts takes place
when 100 < Re < 270, and the 2-D periodic swinging transits to a 3-D periodic swinging
when Re > 270. The disks with larger values of I* fall in a DKT mode when 10 < Re < 100.
When Re > 200, the increase in I* leads to single or no collision and the chaotic 3-D
oscillating motions of the disks. Based on I* and Re, a planar phase diagram is created to
classify the two-disk falling into ten distinctive patterns. The planar motion or 3-D motion
of disks is determined primarily by Re. It is believed that the strong disturbance flows at
a high Re contribute to the chaotic 3-D rotation of disks. The chance for the two disks to
contact is increased when I* and Re are reduced.

This work presents a primary study on the hydrodynamic interactions of two
non-spherical particles in the sedimentations. Future work may be conducted to understand
the effects of solid wall boundaries on the sedimentation of a pair of non-spherical
particles and the settling behaviours of multiple non-spherical particles.

Supplemental movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.186.
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Appendix A. Validation of the coupled scheme of lattice Boltzmann method (LBM)
and cylindrical particle discrete element method (DEM)

Four sets of simulations have been performed using the coupled LBM-DEM code
developed in this work. The present simulation results are compared with the existing
experimental and numerical results for the code validation.

A.1. Falling modes for a single disk
Using the present LBM-DEM method, sedimentations of a single disk of AR = 0.1 and
I∗ = 5.97 × 10−3 at various particle terminal Reynolds numbers are simulated. A 3-D
rectangular computational domain of dimensions Lx = Lz = 300 (lattice unit or LU)
and Ly = 1200 (LU) is created, as shown in figure 5(a). The disk of an equivalent
volume sphere diameter of deq = 31.88 (LU) is placed at the position of the coordinates
(Lx/2, Ly − d1, Lz/2). The clearance to the top boundary is specified as d1 = 6.27deq.
Here, the Reynold number is defined as

Re = ucdc

νf
, (A1)

in which uc and dc are the terminal vertical velocity and diameter, respectively, of the
disk, and νf is the kinematic viscosity of the fluid. The disk is released with the initial
angle of 60° between the axis of the disk and the vertical direction, and it falls under the
gravitational force. The sequential snapshots of the falling disk at different Re are shown
in figure 23. At a low Reynolds number (Re = 55), the disk eventually achieves a steady
falling mode with the axis of the disk aligned vertically. At a higher Reynolds number
(Re = 120), periodic movement in the horizontal direction and periodic rotation of the
disk are observed. The further increases in Reynolds number (Re = 180 and 350) lead to
an increase in the amplitudes of the periodic motion.

Based on the dimensionless moment of inertia I∗ and particle Reynolds number Re,
Field et al. (1997) classified four distinctive falling modes for a single disk in a viscous
fluid: steady falling, periodic, chaotic and tumbling, as shown in figure 24. The falling
modes obtained from the present simulations are consistent with the classification by Field
et al. (1997) (see figure 24).

Using the experimental set-up described in § 4, the sedimentation of a single acrylic
disk in a solution of glycerol at Re = 180 is conducted with an initial inclination angle of
θ0 = 60◦. The disk has a density of 1.2 g cm−3, a diameter of dc = 20 mm, a thickness
of lc = 2 mm and thus AR = 0.1. A comparison between the simulation and experimental
results is made for the horizontal displacements Z∗ and pitch angles θ in figures 25(a) and
25(b), respectively. The experimental data from three runs under the same conditions are
presented. Similar sinusoidal oscillations are obtained in the simulation and experiments.
The differences between the simulation and experiments in the oscillatory magnitudes and
frequencies are approximately 15 %, which is comparable to the extent of the difference
between two experimental runs. In the experiment, a disk was held and released by a
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Re = 55 Re = 120 Re = 180 Re = 350

Figure 23. Sequential snapshots of the falling disk at different Re.

10–1

10–2
Steady falling

Steady falling

Periodic

Periodic

Transitional

Chaotic

I∗

10–3

101 102 103

Re
104

Figure 24. Phase diagram of the typical modes of a disk falling in a viscous fluid.

clamp, which might affect the initial falling of the disk by interacting with the surrounding
fluid. The clamp did not exist in the numerical simulation. Thus, the initial conditions of
the disk falling were not exactly the same between the experiment and simulation, which
could cause the discrepancy in the comparison.

A.2. Drag coefficient versus particle terminal Reynolds number
Clift et al. (1978) experimentally determined the correlation between drag coefficient CD
of a disk falling in a fluid and particle terminal Reynolds number Re, as shown in figure 26.
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Figure 25. Evolution of (a) horizontal displacements in the z direction Z∗ and (b) pitch angle θ of the settling
disk for the control parameters I∗ = 5.97 × 10−3 and Re = 180.
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Clift et al. (1978)

Present simulation results

Figure 26. Drag coefficient versus Re for a falling disk of AR = 0.1 and I∗ = 5.97 × 10−3 in a fluid.

The drag coefficient is defined as

CD = FD
1
2ρf u2

t
π
4 d2

eq
, (A2)

in which FD is the drag force on the disk (i.e. the hydrodynamic force in the vertical
direction), ut is the terminal falling velocity of the disk and deq is the equivalent volume
sphere diameter of the disk. Two regimes can be distinguished: (i) for Re < 100, the disk
eventually achieves a steady falling mode, and thus the drag coefficient exhibits a quick
decrease with increasing Re; (ii) for Re > 100, secondary motion of the disk (horizontal
movement and rotation) occurs, associated with wake shedding at the edge of the disk,
leading to the drag coefficient insensitive to Re.

Sedimentations of a single disk (AR = 0.1 and I∗ = 5.97 × 10−3) at various Re are
simulated using the present coupled LBM-DEM method, and the computational set-up
is the same to that in Appendix A.1. The drag coefficients obtained from the simulations
are also plotted in figure 25. A comparison shows that the present simulation results are
in very good agreement with the correlation by Clift et al. (1978) in both Re-sensitive and
Re-insensitive regimes.
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x
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Figure 27. (a) A numerical domain of a fluid flowing around a fixed cylinder, and (b) an illustration of attack
angle α: the angle between the major axis of the cylinder and the streamwise direction y in the y–z plane.

A.3. Lift and torque coefficients for a cylindrical particle
Fluid flows around a cylinder fixed at a specified position and orientation are simulated
using the present coupled LBM-DEM approach. As illustrated in figure 27(a), a
rectangular domain of x × y × z dimensions of 200 × 900 × 600 (lattice unit or LU) is
created, and a cylinder, which has a diameter dc = 12 LU, a length lc = 60 LU and thus
an aspect ratio AR = lc/dc = 5, is fixed at the centre of the domain. The effect of the
cylinder orientation is examined by adjusting the attack angle α in the x–y plane, as
shown in figure 27(b). The fluid flows along the y direction from the left-hand side to the
right-hand side. A constant fluid velocity U is specified on the inlet boundary. The outlet
boundary and the boundaries in the y and z directions are the fully developed flows with
zero gradients of fluid velocities and pressures. In the simulations, the cylinder Reynolds
number is specified as Re = Udeq/νf = 300, in which deq is the equivalent volume sphere
diameter of the cylinder.

With an attack angle α, the lift force FL perpendicular to the streamwise y direction can
be calculated. Thus, the lift coefficient CL can be obtained as

CL = FL
1
2ρf U2 π

4 d2
eq

. (A3)

The lift coefficient CL is plotted as a function of the attack angle α in figure 28(a), and
good agreement is obtained between the present simulation results and the previous DNS
results of an ellipsoid with the same aspect ratio of AR = 5 by Zastawny et al. (2012). Also,
the present simulation results follow the prediction by the models proposed by Kharrouba,
Pierson & Magnaudet (2021), which are available for the attack angles α ≤ 30◦. In the
article by Kharrouba et al. (2021), the Reynolds number is defined as Re∗ = Udc/νf and
thus the present Re and the previous Re* follow the correlation:

Re∗ = Re
(

2
3AR

)1/3

. (A4)

The parallel and perpendicular coefficients are defined as

C∗
‖ = F‖

1
2ρf U2lcdc

, (A5)

C∗
⊥ = F⊥

1
2ρf U2lcdc

, (A6)

in which F‖ and F⊥ represent the hydrodynamic force components parallel and
perpendicular, respectively, to the symmetric axis of the cylindrical object. The lift force
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Figure 28. (a) Lift coefficient and (b) torque coefficient of a single cylinder as a function of attack angle α.

can be written as
FL = F⊥ cos α − F‖ sin α. (A7)

From (A3)–(A6), we can obtain

CL = 4
π

(
2
3

)2/3

AR1/3(C∗
⊥ cos α − C∗

‖ sin α). (A8)

The mathematical expressions of C∗
⊥ and C∗

‖ as functions of AR, Re* and α can be found
in the paper by Kharrouba et al. (2021).

Pitching torque (in the z direction) TP exerted on the cylinder can be also obtained from
the simulations, and a torque coefficient CT is defined as

CT = TP
1
2ρf U2 π

8 d3
eq

. (A9)

Figure 28(b) shows the torque coefficient as a function of the attack angle. The present
simulation results are consistent with the previous simulation results (Zastawny et al. 2012)
and the prediction of the torque coefficient model (Kharrouba et al. 2021). In the work by
Pierson et al. (2019), the torque coefficient C∗

T is defined as

C∗
T = TP

1
2ρf U2l2cdc

. (A10)

Thus, the present torque coefficient CT is related to C∗
T as

CT = 16AR
3π

C∗
T . (A11)

The mathematical model of C∗
T as a function of AR, Re* and α is provided in the paper by

Kharrouba et al. (2021).

A.4. Two disks falling in tandem
In a simulation of two identical disks falling in tandem, the disks have an aspect ratio
of AR = 0.1 and a diameter of dc = 9 mm. The densities of fluid and disks are ρf =
1010 kg m−3 and ρs = 1020 kg m−3, respectively. The Reynolds number of the leading
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Figure 29. Time evolution of (a) the normalized horizontal displacement z/dc and (b) the inclination angle
θ at the steady falling state. The time instant t∗ is 40 s for the experiment and t∗ is 21.3 s for the simulation
to ensure that the comparison starts from the same phase position of the periodic oscillations. The controlling
parameters are AR = 0.1 and Re = 115.

disk is Re = uldc/νf = 115. These parameters in the present simulation are the same as
those in an experimental case by Brosse & Ern (2011). In the experiment (Brosse & Ern
2011), the disks were released at separate times through a 20 cm long tube. The velocities
and orientation of the disks and the vertical distance between them were unclear when
they moved out of the tube. Thus, it is impossible to ensure the same initial conditions for
the previous experiment and the present simulation. To produce the similar process of two
disks falling in tandem, in the present simulation, the two disks are released simultaneously
with a small initial inclination angle of θ0 = 5◦ and an initial distance of d2 = 2.282deq
(see figure 5). The trailing disk catches up to the leading one, and the two disks fall
together steadily in a Y-configuration. This falling pattern is similar to the experimental
observation by Brosse & Ern (2011) with same set of parameters (AR = 0.1 and Re = 115).
The quantitative comparison between the experimental and simulation results is made in
figure 29. The similar periodic oscillation patterns of the horizontal displacement z/dc
and inclination angle θ are obtained between the experiment and simulation. However,
larger periods and magnitudes of the oscillations are observed in the simulation than
in the experiment. The discrepancies may be attributed to the differences in the initial
conditions between the experiment and simulation. In addition, a small disturbance in the
fluid can cause a notable change in the dynamics of the disks, causing the differences even
between two independent experimental runs. It is very hard to ensure completely identical
conditions between the experiment and simulation.

Appendix B. Conversion of the lattice units used in the lattice Boltzmann method
(LBM) to the international system of units (SI)

The conversion factor of length is expressed as

CH = D̃
D

, (B1)

in which D̃ and D represent the cylinder diameters in physical unit and lattice unit,
respectively. To ensure the equality of Reynolds numbers between the physical unit system
and lattice unit system, the conversion factor of time is derived as

Ct = C2
H

Cν

, (B2)
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where Cν is the conversion factor of kinematic viscosity and has the form:

Cν = ν̃

ν
, (B3)

and ν̃ and ν are the kinematic viscosities in the physical unit and lattice unit, respectively.
Thus, the conversion factor of velocity is obtained as

Cu = CH

Ct
. (B4)

The velocity ũ and time t̃ in the physical units can be determined using the corresponding
quantities u and t in the lattice units:

ũ = uCu, (B5)

and

t̃ = tCt. (B6)

Appendix C. Features of the two-disk falling patterns

The major features of the ten falling patterns are described in table 4.

Pattern
no. Description Disk dynamics

2-D/3-D
motion

Type of
contacts

Orientation of
disks (direction
of major axis
of the disk)

1 Steady falling with enduring
disk–disk contact

Steady 2-D Enduring Vertical

2 Periodic swinging with
intermittent disk–disk contacts

Periodic
oscillating

Transitional Multiple Oscillating about
vertical axis

3 Three-dimensional oscillating
with intermittent contacts

Periodic
oscillating

3-D Multiple Oscillating about
vertical axis

4 Separation after a single
collision and steady falling
with major axes of the disks
aligned vertically

Steady 2-D Single Vertical

5 Separation after a single
collision and chaotic
three-dimensional oscillating
with the major axes aligned
almost vertically

Chaotic
oscillating

3-D Single Oscillating about
vertical axis

6 Falling without disk–disk
contact and three-dimensional
oscillating with the major axes
aligned almost vertically

Chaotic
oscillating

3-D No contact Oscillating about
vertical axis

7 Separation after a single
collision and steady falling
with major axes aligned
horizontally

Steady 2-D Single Horizontal

Table 4. For caption see next page.
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Pattern
no. Description Disk dynamics

2-D/3-D
motion

Type of
contacts

Orientation of
disks (direction
of major axis
of the disk)

8 Separation after a single
collision and steady falling
with no preferential alignment
of the major axes

Steady 2-D Single Randomly
horizontal or
vertical

9 Falling without disk–disk
contact and three-dimensional
oscillating with the major axes
aligned almost horizontally

Chaotic
oscillating

3-D No contact Oscillating about
horizontal axis

10 Tumbling without disk–disk
contact

Tumbling 3-D No contact Randomly
oscillating and
rotating

Table 4. Features of the two-disk falling patterns.
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