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Abstract. We investigated the influence of the variability of the masses of planets and the parent
star on the dynamic evolution of n planetary systems, considering that the masses of bodies
change isotropically with different rates. The methods of canonical perturbation theory, which
developed on the basis of aperiodic motion over a quasi-conical cross section and methods of
computer algebra were used. 4n evolutionary equations were obtained in analogues of Poincare
elements. As an example, the evolutionary equations of the three-planet exosystem K2− 3 were
obtained explicitly, which is a system of 12 linear non-autonomous differential equations. Further,
the evolutionary equations will be investigated numerically.
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1. Introduction

To date, there are more than 5,000 confirmed exoplanets and more than 3,800 planetary
systems in the NASA (2022) database. To research exoplanetary systems in the non-
stationary stage of their evolution is represented important interest.

2. Problem statment

We considered the problem of n+ 1 bodies with variable masses m0 = m0(t) – mass of
the parent star S, mi = mi(t), – the mass of the planet Pi. The laws of mass are known
and given functions of time m0 = m0(t), m1 = m1(t), . . . , mn = mn(t), (n≥ 3). The
masses of spherical symmetric bodies change isotropically with different rates ṁ0/m0 �=
ṁi/mi, ṁi/mi �= ṁj/mj i, j = 1, 2, . . . , n, i �= j.

Differential equations of motion of n bodies with isotropically varying masses in a
relative coordinate system are given in Minglibaev (2012)
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where rij = rji =
√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2 – mutual distances of the center
of spherical bodies, f – gravitational constant, �ri(xi, yi, zi) – the radius-vector of center
of the planet Pi, the sign ”stroke” when summing means that i �= j.

For our purposes, analogues of the second system of canonical Poincare elements are
preferred

Λi, λi, ξi, ηi, pi, qi, (2.2)

which are introduced on the basis of elements of aperiodic motion over a quasi- conical
cross section Minglibaev (2012)
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3. Evolutionary equations of n planets with variable masses

The evolutionary equations of n planets with variable masses in dimensionless variables
(2.2)-(2.5) in the non-resonant case have the form in our work Prokopenya et al. (2022)
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At the same time, the expressions Πis
ii , Πis

is, Πik
kk, Πik

ik in equations (3.1) -(3.4) and
the Laplace coefficients retain their form, but they are already dimensionless quantities.
All notations are given in the article Prokopenya et al. (2022).

4. The evolutionary equations of the three-planet exosystem K2− 3
in explicit form

As an example, the case of n = 3 was considered. The evolutionary equations (3.1)–
(3.4) for the K2 − 3 exosystem are described by a system of 12 linear non-autonomous
differential equations, which are obtained explicitly. The resulting system splits into
two subsystems for eccentric and oblique elements. The resulting equations of secular
perturbations are difficult, so they will be investigated numerically.

5. Conclusion

The evolutionary equations of a multi-planetary problem with isotropically varying
masses at different rates in analogues of osculating Poincare elements were obtained.
These evolutionary equations can be used for any n planetary problem with variable
masses.The evolutionary equations for the K2 − 3 exosystem were written explicitly.
The obtained evolutionary equations will be investigated numerically.
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