AN ALGEBRAIC FILTRATION OF $H_*(MO; \mathbb{Z}_2)$

by STANLEY O. KOCHMAN*

(Received 5th August 1982)

1. Introduction

Let \mathcal{A}_{2*} denote the dual of the mod two Steenrod algebra. In [5] an algebraic filtration $B_*(n)$ of $H_*(BO; \mathbb{Z}_2)$ was constructed such that each $B_*(n)$ is a bipolynomial sub Hopf algebra and sub \mathscr{A}_{2*} -comodule of $H_*(B0;\mathbb{Z}_2)$. In Lemma 3.1 we prove that the Thom isomorphism determines a corresponding filtration of $H_*(MO; \mathbb{Z}_2)$ by polynomial subalgebras and sub \mathcal{A}_{2*} -comodules $M_*(n)$. Let $\mathcal{A}(n)$ denote the subalgebra of \mathcal{A}_2 generated by Sq^{2^k} , $0 \leq k < n$, and let $\mathcal{A}_*(n)$ be its dual, a quotient Hopf algebra of \mathcal{A}_{2*} . In Section 3 we construct a polynomial algebra and $\mathcal{A}_{*}(n)$ -comodule R(n) such that $M_*(n) \simeq \mathscr{A}_{2*} \square_{\mathscr{A}_{\bullet}(n)} R(n)$ as algebras and \mathscr{A}_{2*} -comodules. Here \square denotes the cotensor product defined in [9, §2]. Dually it will follow that $M^*(n)$ has a sub $\mathcal{A}(n)$ -module and subcoalgebra T(n) such that $M^*(n) \simeq \mathscr{A}_2 \otimes_{\mathscr{A}(n)} T(n)$ as coalgebras and \mathscr{A}_2 -modules. We also show that $M_{\star}(n)$ can not be realised as the homology of a spectrum for $n \ge 4$. Of $M_{\star}(0) = H_{\star}(MO; \mathbb{Z}_2),$ $M_{*}(1) = H_{*}(MSO; \mathbb{Z}_{2}), \quad M_{*}(2) = H_{*}(MSpin; \mathbb{Z}_{2})$ $M_{\star}(3) = H_{\star}(MO(8); \mathbb{Z}_2)$. Moreover, it follows from [4; Thm. 2.10, Cor. 2.11] that $M_{\star}(n) = \operatorname{Image}[H_{\star}(MO\langle\phi(n)\rangle; \mathbb{Z}_2) \to H_{\star}(MO; \mathbb{Z}_2)]$ and $M^*(n) \simeq \operatorname{Image}[H^*(MO; \mathbb{Z}_2) \rightarrow$ $H^*(MO\langle\phi(n)\rangle;\mathbb{Z}_2)$]. Here $MO\langle k\rangle$ id the Thom spectrum of $BO\langle k\rangle$, the (k-1)-connected covering of BO, and $\phi(n) = 8s + 2^t$ where n = 4s + t, $0 \le t \le 3$. In Section 4 we sketch the odd primary analogue—a filtration $_{p}M_{*}(n)$ of $H_{*}(MU_{p,0};\mathbb{Z}_{p})$ for p an odd prime. $MU_{p,0}$ is the Thom spectrum of the (2p-3)-connected factor of the Adams splitting [2] of $BU_{(n)}$.

Our structure theorems of Sections 3 and 4 follow from a general algebraic structure theorem which we prove in Section 2. That theorem generalizes the technique of Pengelley [10], [11] where he proved the special cases of our structure theorems for $M_{\star}(n)$, $1 \le n \le 3$.

2. A structure theorem for comodule algebras

The theorem below will be used in Sections 3 and 4 to determine the structure of $M_*(n)$ and $_pM_*(n)$. This theorem generalises the arguments of Pengelley [11] which in turn generalises the argument of Liulevicius [7].

ЕМЅ— В 313

^{*}This research was partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

Theorem 2.1. Let H be a connected Hopf algebra of finite type over a field F. Let M be a connected F-algebra of finite type and a left H-comodule with coaction ψ sich that ψ is an algebra homomorphism. Let H_0 be a commutative normal sub Hopf algebra of H. Assume that $H_0 \subset M$ is a sub-algebra of the centre of M and that M is a free H_0 -module. Assume that $\psi|H_0=\Delta|H_0$ where Δ is the coproduct of H. Then there is an F-algebra and left $H//H_0$ -comodule N whose coaction ψ' is an algebra homomorphism such that $M \simeq H \square_{H//H_0} N$ as algebras and H-comodules. Here $H \square_{H//H_0} N$ has coaction $\Delta \square 1$.

Proof. Let J be the ideal in M generated by the augmentation ideal of H_0 , and let N = M/J as an algebra. Then the H-coaction ψ on M induces a $H//H_0$ -coaction ψ' on N. Clearly ψ' is an algebra homomorphism. Let $\pi: M \to N$ be the canonical map. Consider the following diagram.

Note that ϕ exists because $(\Delta \otimes 1 - 1 \otimes \psi')(1 \otimes \pi)\psi = (1 \otimes 1 \otimes \pi)(\Delta \otimes 1 - 1 \otimes \psi)\psi = 0$. ϕ is a map of algebras and H-comodules because $(1 \otimes \pi)\psi$ is and $H \bigsqcup_{H//H_0} N$ is a subalgebra and sub H-comodule of $H \otimes N$. Let $x \in M$. Write $x = \sum_{i=1}^t x_i h_i$ with $h_i \in H_0, x_i \notin J$ and $\deg x_i \leq \deg x_{i+1}$ for all i. This is possible because H_0 is contained in the centre of M. Assume that x and all the h_i are nonzero and that $\{x_1, \ldots, x_t\}$ is linearly independent. Then $(1 \otimes \pi)\psi(x)$ contains $h_t \otimes x_t$ as a nonzero summand. Thus $(1 \otimes \pi)\psi(x) \neq 0$ and ϕ is one-to-one. By (9), $H \simeq H_0 \otimes H//H_0$ as right $H//H_0$ -comodules.

Thus as F-vector spaces we have

$$H \bigsqcup_{H//H_0} N \simeq (H_0 \otimes H//H_0) \bigsqcup_{H//H_0} N \simeq H_0 \otimes (H//H_0 \bigsqcup_{H//H_0} N) \simeq H_0 \otimes N \simeq M.$$

The last isomorphism holds because M is a free H_0 -module. Thus the range and domain of ϕ have the same dimension in each degree and ϕ is an isomorphism.

3. The structure of $M_{\star}(n)$ and $M^{\star}(n)$

We begin by establishing that the $M_*(n)$ and $M^*(n)$ have the algebraic structure we wish to study.

Lemma 3.1. The $M_*(n)$ are polynomial subalgebras and sub \mathcal{A}_{2*} -comodules of $H_*(MO; \mathbb{Z}_2)$. The $M^*(n)$ are quotient coalgebras and quotient \mathcal{A}_2 -modules of $H^*(MO; \mathbb{Z}_2)$.

Proof. We prove that the $M^*(n)$ are quotient \mathscr{A}_2 -modules of $H^*(MO; \mathbb{Z}_2)$. The remaining assertions will then follow from the properties of the $B_*(n)$, $B^*(n)$, the Thom

isomorphism and duality. Write $B^*(n) = H^*(BO; \mathbb{Z}_2)/I_n$ where I_n is an ideal and \mathscr{A}_2 -submodule of $H^*(BO; \mathbb{Z}_2)$. (See [5, Theorem 2.1].) Let $x \in I_n$, let $\theta \in \mathscr{A}_2$ and let Φ denote the Thom isomorphism. Then $\theta \Phi(x) = \sum_i \Phi[\theta'_i(x)\Phi^{-1}(\theta''_i\Phi(1))]$ where $\Delta(\theta) = \sum_i \theta'_i \otimes \theta''_i$. Hence $\theta \Phi(x) \in \Phi(I_n)$ and thus $\Phi(I_n)$ is an \mathscr{A}_2 -submodule of $H^*(MO; \mathbb{Z}_2)$. Therefore $M^*(n) = H^*(MO; \mathbb{Z}_2)/\Phi(I_n)$ is a quotient \mathscr{A}_2 -module of $H^*(MO; \mathbb{Z}_2)$.

By [12], $H_*(MO; \mathbb{Z}_2)$ contains the dual of the Steenrod algebra $\mathscr{A}_{2*} = \mathbb{Z}_2[\xi_1, \ldots, \xi_n, \ldots]$. It follows from [8] that $[\mathscr{A}_2//\mathscr{A}(n)]^*$ is the sub Hopf algebra $S(n) = \mathbb{Z}_2[\xi_1^{2^n}, \xi_2^{2^{n-1}}, \ldots, \xi_n^2, \xi_{n+1}, \xi_{n+2}, \ldots]$ of \mathscr{A}_{2*} where ξ_k denotes the conjugate of ξ_k . Thus $\mathscr{A}_*(n)$ is the truncated polynomial algebra given as a quotient Hopf algebra of \mathscr{A}_{2*} as having generators ξ_k , $1 \le k \le n$, with ξ_k truncated at height 2^{n-k+1} .

Lemma 3.2 $M_{\star}(n) \supset S(n)$.

Proof. By [3] we can take $\xi_k \in H_*(MO; \mathbb{Z}_2)$ to be $\Phi(\mathscr{D}_{2^k-1})$ where $\mathscr{D}_{2^k-1} \in PH_{2^k-1}(BO; \mathbb{Z}_2)$. By [5, Corollary 2.4] $B_*(k-1)$ has a unique nonzero primitive element in degree 2^k-1 which must be \mathscr{D}_{2^k-1} . If $k \leq n$ then $\mathscr{D}_{2^k-1}^{2^{n-k+1}} \in B_*(n)$ by [5, Theorem 4.2]. Hence $\xi_k \in M_*(n)$ for $k \geq n+1$ and $\xi_k^{2^{n-k+1}} \in M_*(n)$ for $n \geq k \geq 1$. Thus $S(n) \subset M_*(n)$.

We now apply the structure theorem of Section 2 to $M_*(n)$. If $k=2^{k_1}+\ldots+2^{k_t}$ with $0 \le k_1 < \ldots < k_t$ then write L(k)=t and $M(k)=k_1$.

Theorem 3.3 There is a left $\mathcal{A}_{\star}(n)$ -comodule and \mathbb{Z}_2 -algebra

$$R(n) = \mathbb{Z}_2[X_{k,n}|L(k) + M(k) > n, k \neq 2^{L(k)} - 1, \text{ and } k2^{L(k)-n-1} \neq 2^{L(k)} - 1]$$

such that degree $X_{k,n} = k$ and $M_*(n) \simeq \mathcal{A}_{2*} \square_{\mathscr{A}_*(n)} R(n)$ as \mathbb{Z}_2 -algebras and \mathscr{A}_{2*} -comodules.

Proof. We apply Theorem 2.1 with $H = \mathcal{A}_{2}^{*}$, $H_{0} = S(n)$ and $M = M_{*}(n)$. Now the polynomial generators of S(n) are a partial set of polynomial generators for $M_{*}(n)$. Thus $M_{*}(n)$ is a free S(n)-module. The remaining hypotheses of Theorem 2.1 are easily seen to hold. Thus our theorem holds with $R(n) = M_{*}(n)/J(n)$ and J(n) the ideal in $M_{*}(n)$ generated by the augmentation ideal of S(n). By [5, Corollary 2.4] R(n) must be polynomial algebra with generators in the degrees asserted above.

Corollary 3.4 There is a subcoalgebra and sub $\mathcal{A}(n)$ -module T(n) of $M^*(n)$ such that $M^*(n) \simeq \mathcal{A}_2 \otimes_{\mathcal{A}(n)} T(n)$ as coalgebras and \mathcal{A} -modules.

Proof. Set $T(n) = [M_*(n)/J(n)]^*$ in the notation of the proof of Theorem 3.3.

Corollary 3.5. $\mathcal{A}_2//\mathcal{A}(n)$ is a direct summand of $M^*(n)$ simultaneously as a coalgebra and \mathcal{A}_2 -module.

Proof. $T(n) = Z_2 \oplus T(n)^+$ so $M^*(n) \simeq \mathscr{A}_2 \otimes_{\mathscr{A}(n)} T(n) = (\mathscr{A}_2 \otimes_{\mathscr{A}(n)} Z_2) \oplus (\mathscr{A}_2 \otimes_{\mathscr{A}(n)} T(n)^+)$. Now $\mathscr{A}_2 \otimes_{\mathscr{A}(n)} Z_2 = \mathscr{A}_2 // \mathscr{A}(n)$.

We conclude by showing that the $M_*(n)$ can not be realised geometrically for $n \ge 4$.

Theorem 3.6. For $n \ge 4$ there is no spectrum X whose \mathbb{Z}_2 -homology is isomorphic to $M_*(n)$ as \mathcal{A}_{2*} -comodules.

Proof. Assume that such a spectrum X exists Then $\operatorname{Sq}^{2^n}(1) \neq 0$ in $H^{2^n}(X; \mathbb{Z}_2)$ and $H^k(X; \mathbb{Z}_2) = 0$ for $0 < k < 2^n$. By [1], Sq^{2^n} factors using secondary operations for $n \geq 4$, a contradiction.

4. An algebraic filtration of $H_*(MU_{p,0}; \mathbb{Z}_p)$, p ODD

Let p be a fixed odd prime. By Adams [2] $BU_{(p)} = \prod_{i=0}^{p-2} BU_{p,i}$ where $BU_{p,0}$ is (2p-3)-connected and hence $MU_{(p)} = \prod_{i=0}^{p-2} MU_{p,i}$. Of course each $MU_{p,i}$ splits into suspensions of Brown-Peterson spectra. In [5, Section 6] we defined an algebraic filtration of $H_*(BU_{p,0}; \mathbb{Z}_p)$ by bipolynomial sub Hopf algebras and sub \mathscr{A}_{p*} -comodules ${}_{p}B_*(n)$. Arguing as in Lemma 3.1 we see that $H_*(MU_{p,0}; \mathbb{Z}_p)$ is filtered by polynomial subalgebras and sub \mathscr{A}_p^* -comodules ${}_{p}M_*(n)$. The duals ${}_{p}M^*(n)$ are quotient coalgebras and quotient \mathscr{A}_p -modules of $H^*(MU_{p,0}; \mathbb{Z}_p)$.

Let $\mathscr{A}_p(n)$ denote the subalgebra of \mathscr{A}'_p generated by \mathscr{P}^{p^k} , $0 \le k < n$, where $\mathscr{A}'_p = \mathscr{A}_p/(\beta)$ is the Hopf algebra of reduced mod p Steenrod operations. Then $[\mathscr{A}'_p/\mathscr{A}_p(n)]^*$ is the sub Hopf algebra $S_p(n) = Z_p[\xi_1^{p^n}, \xi_2^{p^{n-1}}, \ldots, \xi_n^{p}, \xi_{n+1}, \xi_{n+2}, \ldots]$ of $\mathscr{A}'_{p*} = Z_p[\xi_1, \ldots, \xi_k, \ldots]$. As in Lemma 3.2, $S_p(n) \subset_p M_*(n)$. Write $k(p-1) = k_1 p^{e_1} + \ldots + k_t p^{e_t}$ with $0 \le e_1 < \ldots < e_t$ and $1 \le k_i \le p-1$. Define $L(k) = (k_1 + \ldots + k_t)/(p-1)$ and $M(k) = e_1$. Then Theorem 2.1 applies to $pM_*(n)$ with $H = \mathscr{A}'_{p*}$, $H_0 = S_p(n)$ and $M = pM_*(n)$ to produce the following theorem.

Theorem 4.1. There is a left $\mathscr{A}_{p*}(n)$ -comodule and \mathbb{Z}_p -algebra

$$R_p(n) = \mathbb{Z}_2[Y_{k,n}|L(k) + M(k) > n, \ k(p-1) \neq p^{L(k)} - 1 \text{ and } k(p-1)p^{L(k)-n-1} \neq p^{L(k)} - 1]$$

such that deg $Y_{k,n} = 2k(p-1)$ and ${}_pM_*(n) \simeq \mathscr{A}'_{p*} \square_{\mathscr{A}_{p^*}(n)} R_p(n)$ as \mathbb{Z}_p -algebras and \mathscr{A}_{p*} -comodules.

Corollary 4.2. There is a subcoalgebra and sub $\mathcal{A}_p(n)$ -module $T_p(n)$ of $pM^*(n)$ such that $pM^*(n) \simeq \mathcal{A}'_p \otimes_{\mathcal{A}_p(n)} T_p(n)$ as coalgebras and \mathcal{A}_p -modules.

Corollary 4.3. $\mathcal{A}'_p//\mathcal{A}_p(n)$ is a direct summand of $_pM^*(n)$ simultaneously as a coalgebra and \mathcal{A}_p -module.

Theorem 4.4 For $n \ge 1$ there is no spectrum X whose Z_p -homology is isomorphic to ${}_pM_*(n)$ as \mathscr{A}_{p*} -comodules.

Proof. Assume that such a spectrum X exists. Then $\mathcal{P}^{p^n}(1) \neq 0$ in $H^{2p^n(p-1)}(X; Z_p)$ and $H^k(X; Z_p) = 0$ for $0 < k < 2p^n(p-1)$. By [6], \mathcal{P}^{p^n} factors using secondary operations for $n \geq 2$, a contradiction. Let n = 1. Observe that H^*X is p-torsion-free because $H^{\text{odd}}(X; Z_p) = 0$. Thus Kane's argument with BP operations [4, p. 6] applies to produce a contradiction.

REFERENCES

- 1. J. F. Adams, On the non-existence of elements of Hopf invariant one, Annals of Math. 72 (1960), 20-104.
- 2. J. F. Adams, Lectures on generalised cohomology, Category Theory, Homology Theory and their Applications III, *Battelle Institute Conference, Seattle, Wash., 1968, vol.* 3 (Lecture Notes in Math., no. 99, Springer-Verlag, Berlin, 1969), 1–138.
- 3. E. H. Brown and F. P. Peterson, $H^*(MO)$ as an algebra over the Steenrod algebra, Conference on Homotopy Theory, Northwestern U., Evanston, Ill., 1974 (Serie Notas de Matemática y Simposia, Sociedad Matemática Mexicana, 1975), 11-19.
 - 4. R. M. Kane, Operations in connective K-theory (Memoirs Amer. Math. Soc. no. 254, 1981).
- 5. S. O. Kochman, An algebraic filtration of H_*BO , Proceedings of the Northwestern Homotopy Theory Conference (Contemporary Math. Series of the Amer. Math. Soc. 19, (1983)), 115–144.
- 6. A. LIULEVICIUS, The factorization of cyclic reduced powers by secondary cohomology operations (Memoirs Amer. Math. Soc. No. 42, 1962).
 - 7. A. LIULEVICIUS, A proof of Thom's theorem, Comment. Math. Helv. 37 (1962), 121-131.
- 8. J. W. MILNOR and J. C. MOORE, On the structure of Hopf algebras, Annals of Math. 81 (1965), 211-264.
- 10. D. J. Pengelley, The A-algebra structure of Thom spectra: MSO as an example, Current Trends in Algebraic Topology (Can. Math. Soc. Conference Proceedings 2, Part 1, (1982)), 511-513.
- 11. D. J. Pengelley, $H^*(MO(8); \mathbb{Z}_2)$ is an extended \mathscr{A}_2 -coalgebra, *Proc. Amer. Math. Soc.* 87 (1983), 355–356.
- 12. R. Thom, Quelques propriétés globales des variétés differentiables, Comm. Math. Helv. 28 (1954), 17-86.

DEPARTMENT OF MATHEMATICS THE UNIVERSITY OF WESTERN ONTARIO LONDON, ONTARIO, CANADA N6A 5B7