AN ALGEBRAIC FILTRATION OF $H_{*}\left(M O ; \mathbb{Z}_{2}\right)$

by STANLEY O. KOCHMAN*

(Received 5th August 1982)

1. Introduction

Let $\mathscr{A}_{2 *}$ denote the dual of the mod two Steenrod algebra. In [5] an algebraic filtration $B_{*}(n)$ of $H_{*}\left(B O ; \mathbb{Z}_{2}\right)$ was constructed such that each $B_{*}(n)$ is a bipolynomial sub Hopf algebra and sub $\mathscr{A}_{2 *}$-comodule of $H_{*}\left(B O ; \mathbb{Z}_{2}\right)$. In Lemma 3.1 we prove that the Thom isomorphism determines a corresponding filtration of $H_{*}\left(M O ; \mathbb{Z}_{2}\right)$ by polynomial subalgebras and sub $\mathscr{A}_{2^{*}}$-comodules $M_{*}(n)$. Let $\mathscr{A}(n)$ denote the subalgebra of \mathscr{A}_{2} generated by $\mathrm{Sq}^{2^{k}}, 0 \leqq k<n$, and let $\mathscr{A}_{*}(n)$ be its dual, a quotient Hopf algebra of $\mathscr{A}_{2 *}$. In Section 3 we construct a polynomial algebra and $\mathscr{A}_{*}(n)$-comodule $R(n)$ such that $M_{*}(n) \simeq \mathscr{A}_{2 *} \square_{\mathscr{A} *(n)} R(n)$ as algebras and $\mathscr{A}_{22^{*}}$-comodules. Here \square denotes the cotensor product defined in [9, §2]. Dually it will follow that $M^{*}(n)$ has a sub $\mathscr{A}(n)$-module and subcoalgebra $T(n)$ such that $M^{*}(n) \simeq \mathscr{A}_{2} \otimes_{\mathscr{A}(n)} T(n)$ as coalgebras and \mathscr{A}_{2}-modules. We also show that $M_{*}(n)$ can not be realised as the homology of a spectrum for $n \geqq 4$. Of course $\quad M_{*}(0)=H_{*}\left(M O ; \mathbb{Z}_{2}\right), \quad M_{*}(1)=H_{*}\left(M S O ; \mathbb{Z}_{2}\right), \quad M_{*}(2)=H_{*}\left(M S p i n ; \mathbb{Z}_{2}\right) \quad$ and $M_{*}(3)=H_{*}\left(M O\langle 8\rangle ; \mathbb{Z}_{2}\right)$. Moreover, it follows from [4; Thm. 2.10, Cor. 2.11] that $M_{*}(n)=\operatorname{Image}\left[H_{*}\left(M O\langle\phi(n)\rangle ; \mathbb{Z}_{2}\right) \rightarrow H_{*}\left(M O ; \mathbb{Z}_{2}\right)\right] \quad$ and $\quad M^{*}(n) \simeq \operatorname{Image}\left[H^{*}\left(M O ; \mathbb{Z}_{2}\right) \rightarrow\right.$ $\left.H^{*}\left(M O\langle\phi(n)\rangle ; \mathbb{Z}_{2}\right)\right]$. Here $M O\langle k\rangle$ id the Thom spectrum of $B O\langle k\rangle$, the $(k-1)$-connected covering of $B O$, and $\phi(n)=8 s+2^{t}$ where $n=4 s+t, 0 \leqq t \leqq 3$. In Section 4 we sketch the odd primary analogue-a filtration ${ }_{p} M_{*}(n)$ of $H_{*}\left(M U_{p, 0} ; \mathbb{Z}_{p}\right)$ for p an odd prime. $M U_{p, 0}$ is the Thom spectrum of the ($2 p-3$)-connected factor of the Adams splitting [2] of $\mathrm{BU}_{(p)}$.

Our structure theorems of Sections 3 and 4 follow from a general algebraic structure theorem which we prove in Section 2. That theorem generalizes the technique of Pengelley [10], [11] where he proved the special cases of our structure theorems for $M_{*}(n), 1 \leqq n \leqq 3$.

2. A structure theorem for comodule algebras

The theorem below will be used in Sections 3 and 4 to determine the structure of $M_{*}(n)$ and ${ }_{p} M_{*}(n)$. This theorem generalises the arguments of Pengelley [11] which in turn generalises the argument of Liulevicius [7].

[^0]Theorem 2.1. Let H be a connected Hopf algebra of finite type over a field F. Let M be a connected F-algebra of finite type and a left H-comodule with coaction ψ sich that ψ is an algebra homomorphism. Let H_{0} be a commutative normal sub Hopf algebra of H. Assume that $H_{0} \subset M$ is a sub-algebra of the centre of M and that M is a free H_{0}-module. Assume that $\psi\left|H_{0}=\Delta\right| H_{0}$ where Δ is the coproduct of H. Then there is an F-algebra and left $H / / H_{0}$-comodule N whose coaction ψ^{\prime} is an algebra homomorphism such that $M \simeq H \square_{H / / H_{0}} N$ as algebras and H-comodules. Here $H \square_{H / / H_{0}} N$ has coaction $\Delta \square 1$.

Proof. Let J be the ideal in M generated by the augmentation ideal of H_{0}, and let $N=M / J$ as an algebra. Then the H-coaction ψ on M induces a $H / / H_{0}$-coaction ψ^{\prime} on N. Clearly ψ^{\prime} is an algebra homomorphism. Let $\pi: M \rightarrow N$ be the canonical map. Consider the following diagram.

Note that ϕ exists because $\left(\Delta \otimes 1-1 \otimes \psi^{\prime}\right)(1 \otimes \pi) \psi=(1 \otimes 1 \otimes \pi)(\Delta \otimes 1-1 \otimes \psi) \psi=0 . \phi$ is a map of algebras and H-comodules because $(1 \otimes \pi) \psi$ is and $H \square_{H / / H_{0}} N$ is a subalgebra and sub H-comodule of $H \otimes N$. Let $x \in M$. Write $x=\sum_{i=1}^{t} x_{i} h_{i}$ with $h_{i} \in H_{0}, x_{i} \notin J$ and $\operatorname{deg} x_{i} \leqq \operatorname{deg} x_{i+1}$ for all i. This is possible because H_{0} is contained in the centre of M. Assume that x and all the h_{i} are nonzero and that $\left\{x_{1}, \ldots, x_{t}\right\}$ is linearly independent. Then $(1 \otimes \pi) \psi(x)$ contains $h_{t} \otimes x_{t}$ as a nonzero summand. Thus $(1 \otimes \pi) \psi(x) \neq 0$ and ϕ is one-to-one. By (9), $H \simeq H_{0} \otimes H / / H_{0}$ as right $H / / H_{0}$-comodules.

Thus as F-vector spaces we have

$$
H \square_{\boldsymbol{H} / / \boldsymbol{H}_{0}} N \simeq\left(H_{0} \otimes H / / H_{0}\right) \square_{\boldsymbol{H} / / \boldsymbol{H}_{0}} N \simeq H_{\mathbf{0}} \otimes\left(H / / H_{0} \square_{\boldsymbol{H} / / \boldsymbol{H}_{0}} N\right) \simeq H_{0} \otimes N \simeq M .
$$

The last isomorphism holds because M is a free H_{0}-module. Thus the range and domain of ϕ have the same dimension in each degree and ϕ is an isomorphism.

3. The structure of $M_{*}(n)$ and $M^{*}(n)$

We begin by establishing that the $M_{*}(n)$ and $M^{*}(n)$ have the algebraic structure we wish to study.

Lemma 3.1. The $M_{*}(n)$ are polynomial subalgebras and sub $\mathscr{A}_{2 *}$-comodules of $H_{*}\left(M O ; \mathbb{Z}_{2}\right)$. The $M^{*}(n)$ are quotient coalgebras and quotient \mathscr{A}_{2}-modules of $H^{*}\left(M O ; \mathbb{Z}_{2}\right)$.

Proof. We prove that the $M^{*}(n)$ are quotient \mathscr{A}_{2}-modules of $H^{*}\left(M O ; \mathbb{Z}_{2}\right)$. The remaining assertions will then follow from the properties of the $B_{*}(n), B^{*}(n)$, the Thom
isomorphism and duality. Write $B^{*}(n)=H^{*}\left(B O ; \mathbb{Z}_{2}\right) / I_{n}$ where I_{n} is an ideal and $\mathscr{A}_{2^{-}}$ submodule of $H^{*}\left(B O ; \mathbb{Z}_{2}\right)$. (See [5, Theorem 2.1].) Let $x \in I_{n}$, let $\theta \in \mathscr{A}_{2}$ and let Φ denote the Thom isomorphism. Then $\theta \Phi(x)=\sum_{i} \Phi\left[\theta_{i}^{\prime}(x) \Phi^{-1}\left(\theta_{i}^{\prime \prime} \Phi(1)\right)\right]$ where $\Delta(\theta)=\sum_{i} \theta_{i}^{\prime} \otimes \theta_{i}^{\prime \prime}$. Hence $\theta \Phi(x) \in \Phi\left(I_{n}\right)$ and thus $\Phi\left(I_{n}\right)$ is an \mathscr{A}_{2}-submodule of $H^{*}\left(M O ; \mathbb{Z}_{2}\right)$. Therefore $M^{*}(n)=H^{*}\left(M O ; \mathbb{Z}_{2}\right) / \Phi\left(I_{n}\right)$ is a quotient \mathscr{A}_{2}-module of $H^{*}\left(M O ; \mathbb{Z}_{2}\right)$.

By [12], $H_{*}\left(M O ; \mathbb{Z}_{2}\right)$ contains the dual of the Steenrod algebra $\mathscr{A}_{2 *}=$ $\mathbb{Z}_{2}\left[\xi_{1}, \ldots, \xi_{n}, \ldots\right]$. It follows from [8] that $\left[\mathscr{A}_{2} / / \mathscr{A}(n)\right]^{*}$ is the sub Hopf algebra $S(n)=$ $\mathbb{Z}_{2}\left[\xi_{1}^{2^{n}}, \xi_{2}^{2^{n-1}}, \ldots, \xi_{n}^{2}, \xi_{n+1}, \bar{\xi}_{n+2}, \ldots\right]$ of $\mathscr{A}_{2 *}$ where $\bar{\xi}_{k}$ denotes the conjugate of ξ_{k}. Thus $\mathscr{A}_{*}(n)$ is the truncated polynomial algebra given as a quotient Hopf algebra of $\mathscr{A}_{2 *}$ as having generators $\xi_{k}, 1 \leqq k \leqq n$, with ξ_{k} truncated at height 2^{n-k+1}.

Lemma $3.2 \quad M_{*}(n) \supset S(n)$.
Proof. By [3] we can take $\bar{\xi}_{k} \in H_{*}\left(M O ; \mathbb{Z}_{2}\right)$ to be $\Phi\left(\mathscr{P}_{2^{k}-1}\right)$ where $\mathscr{P}_{2^{k}-1} \in$ PH $_{2^{k}-1}\left(B O ; \mathbb{Z}_{2}\right)$. By [5, Corollary 2.4] $B_{*}(k-1)$ has a unique nonzero primitive element in degree $2^{k}-1$ which must be $\mathscr{P}_{2^{k}-1}$. If $k \leqq n$ then $\mathscr{P}_{2^{k}-1}^{2^{n-k+1}} \in B_{*}(n)$ by [5, Theorem 4.2]. Hence $\bar{\xi}_{k} \in M_{*}(n)$ for $k \geqq n+1$ and $\xi_{k}^{2^{n-k+1}} \in M_{*}(n)$ for $n \geqq k \geqq 1$. Thus $S(n) \subset M_{*}(n)$.

We now apply the structure theorem of Section 2 to $M_{*}(n)$. If $k=2^{k_{1}}+\ldots+2^{k_{t}}$ with $0 \leqq k_{1}<\ldots<k_{t}$ then write $L(k)=t$ and $M(k)=k_{1}$.

Theorem 3.3 There is a left $\mathscr{A}_{*}(n)$-comodule and \mathbb{Z}_{2}-algebra

$$
R(n)=\mathbb{Z}_{2}\left[X_{k, n} \mid L(k)+M(k)>n, k \neq 2^{L(k)}-1, \text { and } k 2^{L(k)-n-1} \neq 2^{L(k)}-1\right]
$$

such that degree $X_{k, n}=k$ and $M_{*}(n) \simeq \mathscr{A}_{2 *} \square_{\mathscr{A} *(n)} R(n)$ as \mathbb{Z}_{2}-algebras and $\mathscr{A}_{2 *}$-comodules.
Proof. We apply Theorem 2.1 with $H=\mathscr{A}_{2}^{*}, H_{0}=S(n)$ and $M=M_{*}(n)$. Now the polynomial generators of $S(n)$ are a partial set of polynomial generators for $M_{*}(n)$. Thus $M_{*}(n)$ is a free $S(n)$-module. The remaining hypotheses of Theorem 2.1 are easily seen to hold. Thus our theorem holds with $R(n)=M_{*}(n) / J(n)$ and $J(n)$ the ideal in $M_{*}(n)$ generated by the augmentation ideal of $S(n)$. By [5, Corollary 2.4] $R(n)$ must be polynomial algebra with generators in the degrees asserted above.

Corollary 3.4 There is a subcoalgebra and sub $\mathscr{A}(n)$-module $T(n)$ of $M^{*}(n)$ such that $M^{*}(n) \simeq \mathscr{A}_{2} \otimes_{\mathscr{A}(n)} T(n)$ as coalgebras and \mathscr{A}-modules.

Proof. Set $T(n)=\left[M_{*}(n) / J(n)\right]^{*}$ in the notation of the proof of Theorem 3.3.
Corollary 3.5. $\mathscr{A}_{2} / / \mathscr{A}(n)$ is a direct summand of $M^{*}(n)$ simultaneously as a coalgebra and \mathscr{A}_{2}-module.

Proof. $\quad T(n)=Z_{2} \oplus T(n)^{+}$so $M^{*}(n) \simeq \mathscr{A}_{2} \otimes_{\mathscr{A}(n)} T(n)=\left(\mathscr{A}_{2} \otimes_{\mathscr{A}(n)} Z_{2}\right) \oplus\left(\mathscr{A}_{2} \otimes_{\mathscr{A}(n)} T(n)^{+}\right)$. Now $\mathscr{A}_{2} \otimes_{\mathscr{A}(n)} Z_{2}=\mathscr{A}_{2} / / \mathscr{A}(n)$.

We conclude by showing that the $M_{*}(n)$ can not be realised geometrically for $n \geqq 4$.

Theorem 3.6. For $n \geqq 4$ there is no spectrum X whose \mathbb{Z}_{2}-homology is isomorphic to $M_{*}(n)$ as $\mathscr{A}_{2 *}$-comodules.

Proof. Assume that such a spectrum X exists Then $\operatorname{Sq}^{2^{n}}(1) \neq 0$ in $H^{2^{n}}\left(X ; Z_{2}\right)$ and $H^{k}\left(X ; Z_{2}\right)=0$ for $0<k<2^{n}$. By [1], Sq ${ }^{2^{n}}$ factors using secondary operations for $n \geqq 4$, a contradiction.

4. An algebraic filtration of $\boldsymbol{H}_{\boldsymbol{*}}\left(M U_{p, 0} ; \mathbb{Z}_{p}\right), \boldsymbol{p}$ ODD

Let p be a fixed odd prime. By Adams [2] $B U_{(p)}=\Pi_{i=0}^{p-2} B U_{p, i}$ where $B U_{p, 0}$ is ($2 p-3$)connected and hence $M U_{(p)}=\Pi_{i=0}^{p-2} M U_{p, i}$. Of course each $M U_{p, i}$ splits into suspensions of Brown-Peterson spectra. In [5, Section 6] we defined an algebraic filtration of $H_{*}\left(B U_{p, 0} ; \mathbb{Z}_{p}\right)$ by bipolynomial sub Hopf algebras and sub $\mathscr{A}_{p *}$-comodules ${ }_{p} B_{*}(n)$. Arguing as in Lemma 3.1 we see that $H_{*}\left(M U_{p, 0} ; \mathbb{Z}_{p}\right)$ is filtered by polynomial subalgebras and sub \mathscr{A}_{p}^{*}-comodules ${ }_{p} M_{*}(n)$. The duals ${ }_{p} M^{*}(n)$ are quotient coalgebras and quotient \mathscr{A}_{p}-modules of $H^{*}\left(M U_{p, 0} ; \mathbb{Z}_{p}\right)$.

Let $\mathscr{A}_{p}(n)$ denote the subalgebra of \mathscr{A}_{p}^{\prime} generated by $\mathscr{P P}^{p^{k}}, 0 \leqq k<n$, where $\mathscr{A}_{p}^{\prime}=\mathscr{A}_{p} /(\beta)$ is the Hopf algebra of reduced $\bmod p_{p}$ Steenrod operations. Then $\left[\mathscr{A}_{p}^{\prime} / / \mathscr{A}_{p}(n)\right]^{*}$ is the sub Hopf algebra $S_{p}(n)=Z_{p}\left[\xi_{1}^{p^{n}}, \bar{\xi}_{2}^{n^{n-1}}, \ldots, \xi_{n}^{p}, \xi_{n+1}, \xi_{n+2}, \ldots\right]$ of $\mathscr{A}_{p *}^{\prime}=Z_{p}\left[\xi_{1}, \ldots\right.$, $\left.\xi_{k}, \ldots\right]$. As in Lemma 3.2, $S_{p}(n) \subset_{p} M_{*}(n)$. Write $k(p-1)=k_{1} p^{e_{1}}+\ldots+k_{t} p^{e_{t}}$ with $0 \leqq e_{1}<\ldots<e_{t}$ and $1 \leqq k_{i} \leqq p-1$. Define $L(k)=\left(k_{1}+\ldots+k_{t}\right) /(p-1)$ and $M(k)=e_{1}$. Then Theorem 2.1 applies to ${ }_{p} M_{*}(n)$ with $H=\mathscr{A}_{p *}^{\prime}, H_{0}=S_{p}(n)$ and $M={ }_{p} M_{*}(n)$ to produce the following theorem.

Theorem 4.1. There is a left $\mathscr{A}_{p *}(n)$-comodule and \mathbb{Z}_{p}-algebra

$$
R_{p}(n)=\mathbb{Z}_{2}\left[Y_{k, n} \mid L(k)+M(k)>n, k(p-1) \neq p^{L(k)}-1 \quad \text { and } \quad k(p-1) p^{L(k)-n-1} \neq p^{L(k)}-1\right]
$$

such that $\operatorname{deg} Y_{k, n}=2 k(p-1)$ and ${ }_{p} M_{*}(n) \simeq \mathscr{A}_{p *}^{\prime} \square_{\mathscr{A}_{p^{*}}(n)} R_{p}(n)$ as \mathbb{Z}_{p}-algebras and $\mathscr{A}_{p *^{-}}$ comodules.

Corollary 4.2. There is a subcoalgebra and sub $\mathscr{A}_{p}(n)$-module $T_{p}(n)$ of ${ }_{p} M^{*}(n)$ such that ${ }_{p} M^{*}(n) \simeq \mathscr{A}_{p}^{\prime} \otimes_{\mathscr{A}_{p}(n)} T_{p}(n)$ as coalgebras and \mathscr{A}_{p}-modules.

Corollary 4.3. $\quad \mathscr{A}_{p}^{\prime} / / \mathscr{A}_{p}(n)$ is a direct summand of ${ }_{p} M^{*}(n)$ simultaneously as a coalgebra and \mathscr{A}_{p}-module.

Theorem 4.4 For $n \geqq 1$ there is no spectrum X whose Z_{p}-homology is isomorphic to ${ }_{p} M_{*}(n)$ as $\mathscr{A}_{p *}$-comodules.

Proof. Assume that such a spectrum X exists. Then $\mathscr{P} p^{n}(1) \neq 0$ in $H^{2 p^{n}(p-1)}\left(X ; Z_{p}\right)$ and $H^{k}\left(X ; Z_{p}\right)=0$ for $0<k<2 p^{n}(p-1)$. By [6], $\mathscr{P}^{p^{n}}$ factors using secondary operations for $n \geqq 2$, a contradiction. Let $n=1$. Observe that $H^{*} X$ is p-torsion-free because $H^{\text {odd }}\left(X ; Z_{p}\right)=0$. Thus Kane's argument with BP operations [4, p. 6] applies to produce a contradiction.

REFERENCES

1. J. F. Adams, On the non-existence of elements of Hopf invariant one, Annals of Math. 72 (1960), 20-104.
2. J. F. Adams, Lectures on generalised cohomology, Category Theory, Homology Theory and their Applications III, Battelle Institute Conference, Seattle, Wash., 1968, vol. 3 (Lecture Notes in Math., no. 99, Springer-Verlag, Berlin, 1969), 1-138.
3. E. H. Brown and F. P. Peterson, $H^{*}(M O)$ as an algebra over the Steenrod algebra, Conference on Homotopy Theory, Northwestern U., Evanston, Ill., 1974 (Serie Notas de Matemática y Simposia, Sociedad Matemática Mexicana, 1975), 11-19.
4. R. M. Kane, Operations in connective K-theory (Memoirs Amer. Math. Soc. no. 254, 1981).
5. S. O. Kochman, An algebraic filtration of $H_{*} \mathrm{BO}$, Proceedings of the Northwestern Homotopy Theory Conference (Contemporary Math. Series of the Amer. Math. Soc. 19, (1983)), 115-144.
6. A. Liulevicius, The factorization of cyclic reduced powers by secondary cohomology operations (Memoirs Amer. Math. Soc. No. 42, 1962).
7. A. Liulevicius, A proof of Thom's theorem, Comment. Math. Helv. 37 (1962), 121-131.
8. J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Annals of Math. $8 \mathbf{1}$ (1965), 211-264.
9. D. J. Pengelley, The \mathscr{A}-algebra structure of Thom spectra: MSO as an example, Current Trends in Algebraic Topology (Can. Math. Soc. Conference Proceedings 2, Part 1, (1982)), 511-513.
10. D. J. Pengelley, $H^{*}\left(M O\langle 8\rangle ; \mathbb{Z}_{2}\right)$ is an extended \mathscr{A}_{2}-coalgebra, Proc. Amer. Math. Soc. 87 (1983), 355-356.
11. R. Tном, Quelques propriétés globales des variétés differentiables, Comm. Math. Helv. 28 (1954), 17-86.

Department of Mathematics

The University of Western Ontario
London, Ontario, Canada N6A 5B7

[^0]: *This research was partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

