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AN ALGEBRAIC FILTRATION OF H_(MO;z,)
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1. Introduction

Let «/,, denote the dual of the mod two Steenrod algebra. In [S] an algebraic
filtration B,(n) of H,(BO;Z,) was constructed such that each B.(n) is a bipolynomial
sub Hopf algebra and sub </, -comodule of H (BO;Z,). In Lemma 3.1 we prove that
the Thom isomorphism determines a corresponding filtration of H,(MO;Z,) by
polynomial subalgebras and sub &/, ,-comodules M (n). Let «/(n) denote the subalgebra
of o, generated by Sq*', 0<k<n, and let & ,(n) be its dual, a quotient Hopf algebra of
&5, In Section 3 we construct a polynomial algebra and & (n)-comodule R(n) such that
M ()~ 5, 4.ny R(n) as algebras and &/,,-comodules. Here [J denotes the cotensor
product defined in [9, §2]. Dually it will follow that M*(n) has a sub /(n)-module and
subcoalgebra T(n) such that M*(n) >~ o/, ® 4, T(n) as coalgebras and o/,-modules. We
also show that M_(n) can not be realised as the homology of a spectrum for n>4. Of
course M, (0)=H, (MO0;Z,), M, (1)=H(MSO;7Z,), M, (2)=H,(MSpin;Z,) and
M, (3)=H_(MO{8);Z,). Moreover, it follows from [4; Thm. 2.10, Cor. 2.11] that
M, (n)=Image[H (MO{$(n)); Z,)~H (MO;Z,)] and M*(n)~Image[H*(MO;Z,)—
H*(MO{¢(n));Z,)]. Here MO<k) id the Thom spectrum of BO{k), the (k—1)-connected
covering of BO, and ¢(n)=8s+2" where n=4s+t, 0=<t<3. In Section 4 we sketch
the odd primary analogue—a filtration ,M(n) of H (MU, ;Z,) for p an odd prime.
MU, , is the Thom spectrum of the (2p-3)-connected factor of the Adams splitting [2]
of BU,,.

Our structure theorems of Sections 3 and 4 follow from a general algebraic structure
theorem which we prove in Section 2. That theorem generalizes the technique of
Pengelley [10], [11] where he proved the special cases of our structure theorems for
M, (n), 1=n<3.

2. A structure theorem for comodule algebras

The theorem below will be used in Sections 3 and 4 to determine the structure of
M,(n) and ,M(n). This theorem generalises the arguments of Pengelley [11] which in
turn generalises the argument of Liulevicius [7].
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Theorem 2.1. Let H be a connected Hopf algebra of finite type over a field F. Let M
be a connected F-algebra of finite type and a left H-comodule with coaction  sich that Y
is an algebra homomorphism. Let H, be a commutative normal sub Hopf algebra of H.
Assume that Hy= M is a sub-algebra of the centre of M and that M is a free H,-module.
Assume that |//|H0=A|HO where A is the coproduct of H. Then there is an F-algebra and
left H//H,-comodule N whose coaction ' is an algebra homomorphism such that
M ~H[y,u N as algebras and H-comodules. Here H[ 1,y N has coaction A(]1.

Proof. Let J be the ideal in M generated by the augmentation ideal of H,, and let
N=M/J as an algebra. Then the H-coaction i on M induces a H//H ,-coaction {' on N.
Clearly ' is an algebra homomorphism. Let n: M—>N be the canonical map. Consider
the following diagram.

MYHOM IS HQN

v
HOpn N

Note that ¢ exists because (AR 1 —1RY V1@ MY =(1R1R@T)(AR1—-1R@Yy)}=0. ¢ is
a map of algebras and H-comodules because (1® n)y is and H[ gy, N is a subalgebra
and sub H-comodule of HQ N. Let xe M. Write x=)%_, x;h;, with h;e Hy,x; ¢J and
degx; <degx; ., for all i. This is possible because H, is contained in the centre of M.
Assume that x and all the h; are nonzero and that {x,,...,x,} is linearly independent.
Then (1 ® n)Y(x) contains h, ® x, as a nonzero summand. Thus (1 ®7)¥(x)#0 and ¢ is
one-to-one. By (9), H~H,® H//H,, as right H//H,-comodules.
Thus as F-vector spaces we have

HDH//HONz(HO®H//HO)DH//HON§HO®(H//HODH//HON) ~H,QN>M.

The last isomorphism holds because M is a free H,-module. Thus the range and domain
of ¢ have the same dimension in each degree and ¢ is an isomorphism.

3. The structure of M (n) and M*(n)

We begin by establishing that the M _(n) and M*(n) have the algebraic structure we
wish to study.

Lemma 3.1. The M,(n) are polynomial subalgebras and sub sf,,-comodules of
H (MO;Z,). The M*(n) are quotient coalgebras and quotient of,-modules of H¥(MO; Z,).

Proof. We prove that the M*(n) are quotient &/,-modules of H*(MO;Z,). The
remaining assertions will then follow from the properties of the B,(n), B*(n), the Thom
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isomorphism and duality. Write B*(n)=H*(BO;Z,)/I, where I, is an ideal and «/,-
submodule of H¥*(BO;Z,). (See [5, Theorem 2.1].) Let xel,, let e .o/, and let ® denote
the Thom isomorphism. Then 6®(x)=Y, ®[0;(x)®~(8;®(1))] where A(6)=),0;®0;.
Hence 6®(x)e®(I,) and thus ®(I,) is an «/,-submodule of H*(MO;Z,). Therefore
M*(n)=H*(MO; Z,)/®(1,) is a quotient & ,-module of H¥(MO; Z,).

By [12], H/(MO;Z,) contains the dual of the Steenrod algebra 7, =
Z,[&,,...,¢&,...]. It follows from [8] that [of,//o/(n)]* is the sub Hopf algebra S(n)=
Z,[E &, B E 1,8 ] Of o, where & denotes the conjugate of &. Thus
A [(n) is the truncated polynomial algebra given as a quotient Hopf algebra of o/, as
having generators &, 1 £k <n, with ¢, truncated at height 2" 7**1,

Lemma 32 M _(n)>S(n).

Proof. By [3] we can take & eH, (MO;Z;) to be ®(Py_;) where
P_ € PHy_((BO; Z,). By [5, Corollary 2.4] B,(k—1) has a unique nonzero primitive
element in degree 2*—1 which must be 2, _,. If k<n then 2#%_ ' eB,(n) by [5,
Theorem 4.2]. Hence & eM,(n) for k2n+1 and & "'eM(n) for n=k=1. Thus
S(n) = M (n).

We now apply the structure theorem of Section 2 to M (n). If k=2*'+...+2% with
0<k, <...<k, then write L(k)=t and M(k)=k,.

Theorem 3.3 There is a left o (n)-comodule and Z ,-algebra
R(n)=Z,[ X, .|L(k)+ M(K)>n, k#2091, and k2M0~n=t£2E0) 1]
such that degree X, ,=k and M (n)~ /[ 4..mR(n) as Z,-algebras and o, ,-comodules.

Proof. We apply Theorem 2.1 with H=x/%, Hy=S8(n) and M =M _(n). Now the
polynomial generators of S(n) are a partial set of polynomial generators for M _(n). Thus
M (n) is a free S(n)-module. The remaining hypotheses of Theorem 2.1 are easily seen to
hold. Thus our theorem holds with R(n)=M (n)/J(n) and J(n) the ideal in M (n)
generated by the augmentation ideal of S(n). By [5, Corollary 2.4] R(n) must be
polynomial algebra with generators in the degrees asserted above.

Corollary 3.4 There is a subcoalgebra and sub s/(n)-module T(n) of M*(n) such that
M*(n) >, ® 44y T(n) as coalgebras and o/ -modules.

Proof. Set T(n)=[M ,(n)/J(n)]* in the notation of the proof of Theorem 3.3.

Corollary 3.5. &,//(n) is a direct summand of M*(n) simultaneously as a coalgebra
and &£ ,-module.

Proof. T(n)=Z,®T(n)* so M*(n) >l ® o4y T(n) =(&¢2®d(,,)22)@(&¢2®d(,,)T(n)*).

Now A5 ® ymZ,= A /[ (n).
We conclude by showing that the M (n) can not be realised geometrically for n=4.
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Theorem 3.6. For n=4 there is no spectrum X whose Z,-homology is isomorphic to
M (n) as o, -comodules.

Proof. Assume that such a spectrum X exists Then Sq%'(1)#0 in H?'(X;Z,) and
HYX;Z,)=0 for 0<k<2". By [1], Sq*" factors using secondary operations for n=4, a
contradiction.

4. An algebraic filtration of H (MU, ;Z,), p ODD

Let p be a fixed odd prime. By Adams [2] BU,,=T1?_¢ BU, ; where BU, , is (2p-3)-
connected and hence MU, =TIP-3 MU, ;. Of course each MU, splits into
suspensions of Brown-Peterson spectra. In [5, Section 6] we defined an algebraic
filtration of H,(BU, o;Z,) by bipolynomial sub Hopf algebras and sub </, ,-comodules
»By(n). Arguing as in Lemma 3.1 we see that H, (MU, ,;Z,) is filtered by polynomial
subalgebras and sub «/j-comodules ,M,(n). The duals pM'(n) are quotient coalgebras
and quotient .«/,-modules of H*(MU, o;Z,).

Let o/ ,(n) denote the subalgebra of ./, generated by 27", 0<k<n, where oA, =54 ,/(B)
is the Hopf algebra of reduced mod p Steenrod operations. Then [of,//of (n)]* is
the sub Hopf algebra S,(n)=Z,[&", &' ,..., &, &, 1y, &pspon] Of Ly =Z,[E,,...,
$s..). As in Lemma 32, S, (n)c,M,(n). Write k(p—1)=k,p®'+...+kp* with
0<e;<...<e¢ and 1Zk;<p—1. Define L(k)=(k,+...+k,)/(p—1) and M(k)=e,. Then
Theorem 2.1 applies to ,M,(n) with H=./,,, Hy=S8,(n) and M= _,M,(n) to produce
the following theorem.

Theorem 4.1. There is a left o4, ,(n)-comodule and Z ,-algebra
R(M)=Z,[ Y, o|L{K)+M(k)>n, k(p—1)#p"® ~1 and k(p—1)p"® "~ 1 4p"® —1]

such that degY, ,=2k(p—1) and ,M(n) z,pi;*[]dp‘(,,)Rp(n) as Z,-algebras and of,,-
comodules.

Corollary 4.2. There is a subcoalgebra and sub sf,(n)-module T,(n) of ,M*(n) such
that ,M*(n)~ o, ® 4 T (n) as coalgebras and o ,-modules.

Corollary 4.3. .o/,//(n) is a direct summand of ,M*(n) simultaneously as a coalgebra
and s/ ,-module.

Theorem 4.4 For nz1 there is no spectrum X whose Z,-homology is isomorphic to
oM (n) as o, -comodules.

Proof. Assume that such a spectrum X exists. Then 27°(1)#0 in H*?"?~1(X;Z )
and HYX;Z,)=0 for 0<k<2p"(p—1). By [6], #*" factors using secondary operations
for n=2, a contradiction. Let n=1. Observe that H*X is p-torsion-free because
H*YX;Z,)=0. Thus Kane’s argument with BP operations [4, p. 6] applies to
produce a contradiction.
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