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Equivariant Formality for Actions of Torus
Groups

Laura Scull

Abstract. This paper contains a comparison of several definitions of equivariant formality for actions

of torus groups. We develop and prove some relations between the definitions. Focusing on the case

of the circle group, we use S1-equivariant minimal models to give a number of examples of S1-spaces

illustrating the properties of the various definitions.

1 Introduction

The idea of a formal space is a space whose rational homotopy type is determined by
its rational cohomology ring, indicating relatively simple geometric properties and

also making calculations much easier. Many classes of interesting spaces turn out to
be formal, including Lie groups, classifying spaces and compact 1-connected Kähler
manifolds; see for example the discussion in [6].

Various authors have extended the concept of formality to the equivariant setting.
One definition was used in the influential paper of Goresky, Kottwitz and MacPher-

son [8] for actions of torus groups. For finite group actions, Triantafillou and Fine
have an alternate approach in [7], and a definition following this spirit was given for
actions of circle groups by the author in [12]. Lillywhite [9] has recently presented
yet another approach for actions of general Lie groups.

This paper looks at actions of torus groups, denoted T. In this context, we com-

pare the various definitions, and show some relations between them. Specializing to
the circle T1, we give a number of examples of T1-spaces which are formal in one
sense or another, illustrating the difference between the definitions. The main tech-
nique for producing examples will be to use the T1-minimal models developed by

the author in [11], and the assorted concepts of formality will also be interpreted via
these models.

Throughout this paper, we will assume that all cohomology has rational coeffi-
cients, and all homotopy groups are rational homotopy groups. The organization of
the paper is as follows. Section 2 contains an outline of the main results of [11], with

the definition of T1-minimal models and their properties; and also discusses the gen-
eralization of these ideas to other Abelian compact Lie groups. Section 3 contains the
assorted definitions of T-equivariant formality: for circle actions, the definition of
the author from [12] using T1-minimal models, and some of its properties, extend-

ing this to actions of higher tori and the other definitions mentioned in the second
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Equivariant Formality for Actions of Torus Groups 1291

paragraph. Some comparison results relating different definitions of T-equivariant
formality are given in Section 4. Section 5 focuses on the case of the circle group, and

contains a number of examples of T1-spaces exhibiting different types of formality
and illustrating the relations between the various types of formality. Finally, Section 6
contains the proofs of a couple of technical results from Section 3.

2 Equivariant Algebraic Models

This section contains a brief summary of the major results of the author [11] on
T1-minimal models, and the results of Mandell and the author in extending these

to Abelian compact Lie groups. These models are used directly in one of the defini-
tions of T-equivariant formality. In addition, the T1-minimal models are used in this
paper to compare the various types of formality and to produce examples.

Throughout this paper, all T-spaces are assumed to be T-CW complexes; note that

this ensures that all orbit spaces and related constructions, such as Borel spaces, are
also CW complexes. In addition, all T-spaces are assumed to have finitely many orbit
types. We also assume that all T-spaces are T-simply connected in the sense that the
fixed point subspaces XH

= {x ∈ X | hx = x for all h ∈ H} are all connected

and simply connected (and also non-empty). Lastly, we assume that the rational
cohomology of each fixed point subspace XH is of finite type. We refer to spaces
satisfying all of these conditions as Q-good, and this will be a standing assumption
in what follows.

In general, the equivariant homotopy type of a G-space X depends not only on the
homotopy type of the space itself but also on the homotopy type of all the fixed point
subspaces XH for closed subgroups H ≤ G. Together with the natural inclusions
and maps induced by the action of G, these form a diagram of spaces. Studying

this diagram is a standard equivariant technique, going back to a theorem by Bredon
[3] which states that a map which induces isomorphisms on all homotopy groups
of the diagram of fixed point subsets is an equivariant homotopy equivalence. The
shape of the diagram is described by the orbit category OG. This category has as

objects the canonical orbits G/H, and morphisms given by the equivariant maps
between them. The fixed point subspaces XH thus form a functor from OG to spaces,
and this functor completely determines the equivariant homotopy type, as shown by
Elmendorf in [5]. When considering discrete algebraic invariants, we look at functors

from the discrete homotopy category hOG instead, which has the same objects G/H

with homotopy classes of maps between them. Note that the objects of OG will be
abbreviated from G/H to H for simplicity of notation.

Observe that if X is a G-space and H is not an isotropy type of X, then the fixed

set XH consists of a union of the fixed sets {XK} contained in it for H ⊃ K. Since the
value of an algebraic functor at a subgroup H reflects H-fixed information, a space X

corresponds to an algebraic functor with the following property: for all closed sub-
groups H which are not isotropy subgroups of X, the value of the functor A(H) is de-

termined by the value at the subgroups K ⊃ H by the equation A(H) = limK⊃H(K).
If the space has finitely many orbit types, the value of A(H) will be determined in
this way for all but a finite number of subgroups; such a functor will be said to have
finitely many orbit types.
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In the case of the circle group G = T1, this indexing category can be described
quite simply. Objects are canonical orbits T1/H for subgroups H = Z/n or H = T1.

Group theory tells us that any equivariant map between orbits T1/H → T1/K is of
the form â : gH → gaK for some a ∈ T1 for which a−1Ha ⊆ K; since T1 is Abelian
this is equivalent to H ⊆ K. Two such maps â and b̂ are the same if and only if
aK = bK, that is, ab−1 ∈ K. Thus the orbit category OT1 has morphisms

Hom (H, K) =

{

T1/K if H ⊆ K

∅ otherwise.

All the equivariant maps from T1/H to T1/K are homotopic, since T1 is connected;
so the homotopy orbit category hOT1 has exactly one morphism from H to K if H ⊆
K and no other morphisms. This gives the shape of the diagram category we use to

study T1-spaces.
For the circle group, the algebraic category used to model the rational homotopy

of T1-spaces is a category of functors from hOT1 to commutative differential graded
algebras (CDGAs). In order to algebraically encode the T1-action, we work with
CDGAs which are modules over H∗(BT1) = Q[c], the polynomial ring with a single
generator of degree 2. Precisely, the category is given by the following.

Definition 2.1 ([11, Defn. 5.18]) A T-system consists of

(1) A covariant functor A from hOT1 to the category of finitely generated CDGAs

under Q[c]such that A has finitely many orbit types, and such that the functor is
an injective object when regarded by neglect of structure as a functor to rational
vector spaces.

(2) A distinguished sub-CDGA AT of A(T) such that the map AT ⊗Q[c]→ A(T)

is a quasi-isomorphism.

A morphism between T-systems A and B is a natural transformation such that

AT lands in BT.

The restriction to the injective objects of the category makes sense geometrically,
and it is needed for the existence of minimal models. To establish the equivariant

analogue of minimality, we use the idea of an “elementary extension” (defined in
[11], Section 11), which builds systems of CDGAs out of diagrams of vector spaces.

Definition 2.2 ([11, Defn. 3.4]) A system of CDGAs M is minimal if M =
⋃

n

M(n)

where M(0) = M(1) = Q and M(n) = M(n− 1)(V n) is an elementary extension of
degree n, for some diagram of vector spaces V n.

These minimal T-systems are particularly easy to understand. Some important
properties of the minimal T-systems are given by the following results.

Proposition 2.3 ([11, Prop. 5.26]) If A is a T-system, then there is a minimal T-

system M with a quasi-isomorphism M→ A.
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Proposition 2.4 ([11, Prop. 5.23]) If f : M → N is a quasi-isomorphism between

two minimal T-systems, then f ≃ g where g is an isomorphism.

Corollary 2.5 ([11, Cor. 5.24]) If M and M ′ are two minimal T-systems and

ρ : M → A and ρ ′ : M ′ → A are quasi-isomorphisms, then there is an isomorphism

f : M ∼= M ′ such that ρ ′ f ≃ ρ.

These results show that the minimal T-systems can serve as preferred representa-
tives for quasi-isomorphism classes, since there is a unique minimal T-system in each

class; this allows us to make the following definition.

Definition 2.6 ([11, Defn. 5.25]) Let A be a T-system. If M is a minimal T-system
and ρ : M → A is a quasi-isomorphism, we say that M is the minimal model of A.
Note that Corollary 2.5 implies that the minimal model is unique.

To get a T-system associated to a T1-space X we use the Borel bundle construction

combined with a suitable version of the functor of de Rham differential forms [11,
Defn. 4.12] denoted here by Ω.

Definition 2.7 ([11, Defn. 6.27]) Let X be a Q-good T1-space, and consider the
Borel construction X ×T1 ET1. Let ET1 (X) be the T-system defined by

ET1 (X)(H) = Ω(XH ×T1 ET
1),

with special sub-CDGA

ET1 = Ω(X T
1

) ⊂ Ω(X T
1

× BT
1) = ET1 (X)(T

1),

where the inclusion Ω(X T
1

) ⊂ Ω(X T
1

× BT1) is induced by the projection p1 : X T
1

×

BT1 → X T
1

.

As defined here, ET1 (X) is a T-system, since it is injective as a functor to vector

spaces. Thus by Proposition 2.3 it has a minimal model MX , which by Corollary 2.5
is unique. We say that this minimal model MX is the equivariant minimal model
of the T1-space X. There is a quasi-isomorphism MX → ET1 (X), and MX encodes
rational homotopy information. The main theorem of [11] is the following.

Theorem 2.8 ([11, Thm. 6.28]) Let X be a Q-good T1-space, and MX be the min-

imal model of ET1 (X). Then the correspondence X → MX induces a bijection be-

tween rational homotopy types of Q-good spaces and isomorphism classes of minimal

T-systems.

Moreover, the minimal model MX computes geometric information in certain spe-

cific ways, as described below [11, Sec. 6, 14–18].

• The cohomology of MX(H) is equal to the rational cohomology of the Borel con-
struction of the fixed set XH , as a module over H∗(BT1) = Q[c]. In particular,
the Borel cohomology of the space X can be recovered by taking the cohomology
of MX(e).
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• MX is generated by free Q[c]-CDGAs from the diagram of vector spaces given by
π∗, the duals of the rational homotopy groups πn(XH).

• The Grivel-Halperin-Thomas theorem [6] implies that the non-equivariant min-
imal model of X ×T1 ET1 is given by N ⊗ Q[c], where N is the Sullivan minimal
model of X. Therefore for any fixed set XH , we can recover the Sullivan model
NXH by taking a minimal model for MX(H)/(c) where (c) is the ideal generated

by c; and the cohomology of MX(H)/(c) is the rational cohomology of XH .

Thus the quasi-isomorphism class of the T-system determines the rational homotopy
type of the T1-space, and the minimal model provides a concrete way of calculating
many rational geometric invariants.

Extending these models to more general Abelian compact Lie groups is done in
[10], unfortunately giving algebraic models which are more complicated and less ex-
plicit. Instead of the orbit category described above, we need to use a larger category
D which reflects pairs of subgroups H[K] for K ⊆ H. The algebraic category used

for the algebraic models are functors from D to CDGA’s with a map from a certain
initial object P. The main result for rational homotopy is the following.

Theorem 2.9 ([10, Thm. A]) Let G be an Abelian compact Lie group. Then there is a

functor A from the equivariant rational homotopy category of G-spaces to the homotopy

category of D−CDGAs under P. On the full subcategory of Q-good spaces, this functor

is full and faithful.

The basic intuition behind the functor A is similar to the case of the circle;

we look at a diagram given by taking the Borel construction of various fixed sets
{XK ×T/H E(T/H)}, and the initial object P is reflecting a diagram of classifying
spaces B(T/H). If we consider these more complicated objects in the case of the cir-
cle T1, we can simplify the diagram back to the orbit category almost to hOT1 and

take P to be the constant functor Q[c] with zero differential. One additional object
is required, which encodes the distinguished sub-CDGA of Definition 2.1, (2). Thus
we recover the category of T-systems discussed above.

3 T-Equivariant Formality

Non-equivariantly, formality is defined using commutative differential graded alge-
bras. A CDGA is formal if it is quasi-isomorphic to its cohomology ring, regarded as
a CDGA with differential d = 0. This means that A is formal if there is a chain of
quasi-isomorphisms A→ A1 ← A2 → · · · → H∗(A). For a minimal CDGA M this

is equivalent to requiring the existence of a single quasi-isomorphism M→ H∗(M).
To define formality for spaces, we can use the minimal model MX of a space X defined
by Sullivan in [4, 13], which is a CDGA: a space X is formal if its minimal model MX

is formal. The CDGA MX encodes all rational homotopy information, including ho-

motopy and homology groups, and for a formal space there is a quasi-isomorphism
MX → H∗(MX) = H∗(X); so MX may be computed as the minimal model for the
rational cohomology ring H∗(X). Therefore we see that the rational homotopy type
of a formal space can be recovered from the cohomology ring.
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We can use the T1-minimal models of Section 2 to mimic the non-equivariant
definition of formality. This is the approach used in [7] for finite group actions.

Recall that in dealing with equivariant minimal models, it is necessary to restrict to
diagrams of CDGAs which are injective. However, the cohomology of an injective
object may not be injective, and thus the diagram given by taking the cohomology of
a T-system may not be a T-system, so it may not be possible to produce a minimal

model as described in Definition 2.6. To remedy this we need the following result
from [12]. Note that taking the cohomology of a T-system does give a functor to
Q[c]-CDGAs, where the differential is taken to be identically zero; all morphisms in
the following theorem are thus in this category.

Theorem 3.1 ([12, Thm. 3.6 and Lemma 3.9]) Let A be a T-system, and H be the

diagram given by taking its cohomology. Then there is a T-system I and an inclusion

φ : H →֒ I which is a quasi-isomorphism, such that (I, φ) satisfies the following: For

any T-system B with a morphism H→ B, there exists a morphism I→ B making the

following diagram commute.

H //

φ

��

B

I

??
~

~
~

~
~

~
~

~

The T-system I of the previous theorem is called the injective envelope of H; it is
unique up to quasi-isomorphism. We use the injective envelope to define a notion of

formality for T-systems, analogous to the definition for CDGAs.

Definition 3.2 Let M be a minimal T-system. Then M is formal if there is a quasi-
isomorphism of T-systems M → IH , where IH is an injective envelope of the coho-
mology H∗(M).

As in the non-equivariant case, we use T1-minimal models to define formality for

T1-spaces.

Definition 3.3 A T1-space X is model formal if its minimal model MX is formal.

Recall that MX is a model for the de Rham differential forms of the Borel construc-
tion ET1 (X), and the cohomology of the minimal model gives the Borel cohomology
of the various fixed sets H∗(MX) = H∗(XH ×T1 ET1). Therefore model formality
is equivalent to requiring that the T-systems ET1 (X) and IX are quasi-isomorphic,

where IX is the injective envelope of H∗(XH ×T1 ET1) = H∗(MX). Because the
T1-minimal model encodes the rational T1-homotopy type, this can be interpreted
as saying that the equivariant rational homotopy type of the space is determined by its
equivariant cohomology, with a suitable interpretation of equivariant cohomology—

in this case, we mean the diagram obtained by taking the Borel cohomology (as Q[c]-
modules) of the fixed point sets.

In extending the definition of model formal to higher tori, we need to adapt to
the fact that there are at present no “minimal models” to work with. However, we
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can use the algebraic category of D−CDGAs under P of Theorem 2.9. An object
A in this category is defined to be formal if there is a chain of quasi-isomorphisms

A → A1 ← A2 → · · · → H∗(A) between the diagram and the diagram obtained
by taking its cohomology. Then we define a torus version of “model formality” as
follows.

Definition 3.4 A space X is model formal if A(X) is formal as a D−CDGA under
P.

Notice that we have avoided the problem of injective envelopes by working in this

larger category. However, it is much harder to detect this condition since actually
writing down one of these more general models is rather difficult, and they contain
less concrete geometric information. Because the models of Theorem 2.9 simplify to
the T-systems of Theorem 2.8, the two definitions are equivalent in the case of the

circle; wherever possible, we work with the minimal models.

This definition satisfies the following properties, analogous to the properties of
non-equivariant formality.

Proposition 3.5 If X,Y are model formal then X ∨ Y is also.

In the case of the circle, we can also prove the following.

Proposition 3.6 Let T = T1. Suppose X,Y are model formal, and one of

H∗(XH ×T1 ET
1) or H∗(Y H ×T1 ET

1)

is a free Q[c]-module for all H ≤ T. Then X × Y is formal.

Note that if we remove the free Q[c]-module condition, this may fail; see Example
5.6. Thus even though we have stayed as close to the original definition as possible,

the properties are different in this more complicated equivariant context.

In the case of the torus, the models are sufficiently complicated that it is quite

difficult to analyze the situation; it is probable that a result similar to Proposition 3.6
holds, but no proof is attempted here.

Proofs of Propositions 3.5 and 3.6 are rather technical, and so are given at the end

of the paper in Section 6.

There are several alternate approaches to defining equivariantly formal T-spaces,
seeking to capture the flavour of the non-equivariant definition while taking into

account the richer structure of the T-action. One might ask about the individual
formality of the fixed point sets. Taking another approach, one can consider the
Borel bundle X×T ET→ BT, classically the tool used to study equivariant structures.
This is the approach taken by Lillywhite in [9] (which also applies to more general

compact Lie groups).

Definition 3.7 A T-space X is bundle formal if Ω(X×T ET) is formal in the category
of augmented CDGAs under H∗(BT).
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Observe that a bundle formal space requires a quasi-isomorphism of H∗(BT)-
CDGAs between the (non-equivariant) minimal model of the Borel construction

MX×TET and the Borel cohomology H∗(X ×T ET). Because of the action of H∗(BT),
this is stronger than simply requiring that the space X ×T ET be non-equivariantly
formal. If a space is bundle formal, this implies that the homotopy type of the Borel
bundle X ×T ET → BT is determined by the cohomology of the bundle. However

the Borel bundle does not determine the T-equivariant homotopy type of the space
X; we need to involve diagrams of fixed points in some way to do so.

The Borel bundle is also used by Goresky-Kottwitz-MacPherson in [8], where they

interpret the collapse of the spectral sequence associated to the Borel construction of
the space as a type of equivariant formality. The collapse of this spectral sequence
and its implications were first discussed by Borel in [1], although it was not called
formality there. In our case this condition is also equivalent to another condition,

classically referred to as X totally non-homologous to zero in X×T ET, which is defined
to mean that that the map i∗ : H∗(X×TET)→ H∗(X) induced by the inclusion of the
fibre is surjective. For this reason we refer to this condition here as TNHZ formality.

Definition 3.8 A T-space X is TNHZ formal if the spectral sequence for the Borel
fibration

H p(BT; Hq(X))⇒ H p+q(X ×T ET)

collapses.

At first glance, this definition seems to have little to do with the usual notion of
formality. But it is shown in [8] that this condition is related to a more usual notion
of formality of a certain equivariant chain complex, working in the derived category
of differential graded H∗(BT)-modules.

For actions of the circle, we can use T1-minimal models concretely to recognize
various formality conditions. As observed at the end of Section 2, if we look at the
minimal model of a space X, then the value of the minimal model at H, MX(H) is

a model (not necessarily minimal) for the Borel space XH ×T1 ET1; and MX(H)/(c)
is a model for the fixed set XH . Thus to see if a given fixed set is non-equivariantly
formal, we can simply determine whether the CDGA MX(H)/(c) is formal.

When considering the other definitions of T1-equivariant formality, we note that
the bundle X ×T1 ET1 → BT1 is described by MX(e), the value of the T1-minimal
model MX at the identity subgroup e, and the Borel cohomology H∗(X ×T1 ET1) is

computed by taking the cohomology of MX(e). Thus a T1-space X is bundle for-
mal if MX(e) is formal as a Q[c]-CDGA, and X is TNHZ formal if the cohomol-
ogy of H∗(MX(e)) is given by H ⊗ Q[c], where H is the cohomology of the CDGA
MX(e)/(c) which models X. We will use these interpretations via the T1-minimal

models when discussing the examples of Section 5.

4 Comparing Definitions

In this section, we examine the relations that exist between the various definitions of
T-equivariant formality given in Section 3. Overall, these concepts are fairly indepen-
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dent, as illustrated by the examples in Section 5. However, we do have the following
implications.

Theorem 4.1 If X is model formal, then each fixed set XH is bundle formal.

Proof We first consider the case of the circle. Observe that a map of T1-systems
A → B can be evaluated at a subgroup H to give a map A(H) → B(H) in the cat-
egory of augmented CDGAs under H∗(BT1) = Q[c], the category used in defining
bundle formal. By the definition of minimal model, there is a quasi-isomorphism

of T-systems MX → ET1 (X); evaluating at H gives a quasi-isomorphism of
Q[c]-CDGAs MX(H) → Ω(XH ×T ET). Now MX(H) is not necessarily minimal
as a Q[c]-CDGA, so let NH be a minimal model for MX(H). Then we have quasi-
isomorphisms NH → MX(H) → ET1 (XH), and so NH is a Q[c]-CDGA minimal

model for XH ×T1 ET1.

Because X is model formal, there is also a quasi-isomorphism MX(H) → I(H),
where I is the injective envelope of H∗(X×T1 ET1). So NH is also a minimal model for

I(H). The construction of the injective envelope comes with a quasi-isomorphism of
T-systems H∗ → I, and consequently a quasi-isomorphism of Q[c]-CDGAs
H∗(XH ×T1 ET1) → I(H), so NH is quasi-isomorphic to H∗(XH ×T1 ET1) as well.
Thus Ω(XH ×T1 ET1) and H∗(XH ×T1 ET1) are quasi-isomorphic as Q[c]-CDGAs

and the space XH is bundle formal.

For the general torus case, the argument is similar, and we do not have the injective
envelopes to worry about. Evaluating a map of D−CDGAs under P at the pair H[e]

gives a map of P(H[e])-CDGA’s; the initial object P is designed so that P(H[e]) is
quasi-isomorphic to the de Rham forms on the classifying space BT, and the value of
the equivariant model A(X) at H[e], A(X)(H[e]), is given by the de Rham forms on
the Borel space XH ×T ET. The chain of quasi-isomorphisms assumed by the model

formality condition therefore will in particular give a chain of quasi-isomorphisms
in the category of H∗(BT)-CDGAs used in the definition of bundle formal.

The converse of this theorem fails; Example 5.3 shows that it is possible to have a
space which is not model formal but whose fixed sets are all bundle formal.

The next results provide links between equivariant and non-equivariant formality.

Theorem 4.2 Suppose X is model formal and each fixed point set XH is TNHZ-formal.

Then each fixed set XH is non-equivariantly formal.

Proof Theorem 4.1 gives that XH is bundle formal for each H. In [9, Corr. 4.5]

it is shown that a space which is bundle formal and TNHZ formal must be non-
equivariantly formal; applying this to each fixed set yields the result.

Proposition 4.3 If X is model formal, then the fixed set X T is non-equivariantly for-

mal.
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Proof Again, we begin with the case of the circle. If X is model formal, then by def-
inition there is a quasi-isomorphism of T-systems MX → I, where I is the injective

envelope of the cohomology H∗(MX). The construction of the injective envelope I

given in [12] consists of enlargements of H∗(MX), and does not change its value at
T1, so in fact I(T1) = H∗(MX(T1)); consequently the map of T-systems restricts to a
quasi-isomorphism of Q[c]-CDGAs M(T1)→ H∗(MX(T1)). The value of the min-

imal model M(T1) is given by N ⊗ Q[c] where N is a minimal model for the space

X T
1

; similarly H∗(MX(T1)) = H∗(X T
1

) ⊗ Q[c] = H∗(N) ⊗ Q[c]. So the quasi-
isomorphism of Q[c]-CDGAs at T1 comes from a quasi-isomorphism of CDGAs

N→ H∗(N) and consequently X T
1

is formal.

A similar argument will give the result for the general torus, by examining the
value of the D−CDGA model at the subgroup pair T[e] to give a model for the space

X T ×T ET = X T × BT.

There are no other direct general relations between the various definitions of

equivariant formality. However, we now look at certain special types of T-actions
where the situation is simpler and more implications can be drawn.

Theorem 4.4 Suppose X has trivial T-action. Then X is TNHZ formal and the fol-

lowing are equivalent:

(1) X is model formal,

(2) X is bundle formal,

(3) X is non-equivariantly formal.

Proof If X has trivial T-action, then the Borel bundle X ×T ET→ BT is the trivial
bundle X × BT. Therefore X is TNHZ formal.

(2)⇒ (1): Each fixed set XH of X is equal to X itself, and so the algebra model
functors ET1 (X), MX , A(X), and H∗(XH ×T ET) are all constant, taking the same
value at each subgroup H or pair H[K], with structure maps given by the identity
map. A constant functor is injective, and so I = H∗(XH ×T ET). Therefore a quasi-

isomorphism of H∗(BT)-CDGAs between Ω(X×T ET) and H∗(X×T ET) as given for
a bundle formal space induces a quasi-isomorphism between the constant T-systems
ET1 (X) and H∗(XH ×T ET), and hence between MX and I (for the circle) or, for the
general torus, between the functors A(X) and H∗(A(X)).

(1)⇒ (3): Since X is TNHZ formal, we can apply Proposition 4.3.

(3)⇒ (2): Since the Borel bundle of X is trivial, the H∗(BT)-CDGA of de Rham

forms Ω(X ×T ET) is quasi-isomorphic to Ω(X) ⊗ H∗(BT), and H∗(X ×T ET) is
quasi-isomorphic to H∗(X) ⊗ H∗(BT). If X is a non-equivariantly formal space,
then Ω(X) is quasi-isomorphic to H∗(X) and so Ω(X ×T ET) is quasi-isomorphic to
H∗(X ×T ET) as a H∗(BT)-CDGA.

Proposition 4.5 Let T = T1. If X has a single isotropy type (apart from the fixed

basepoint) then X is model formal if and only if X is bundle formal.
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Proof If X is model formal, then X is automatically bundle formal by Theorem 4.1,
since X = Xe is one fixed point set of X. Conversely, suppose X is bundle formal.

The T1-minimal model of a space with a single isotropy type is created out of sys-
tems VH generated at the given isotropy subgroup H; to produce MX we create a
minimal Q[c]-CDGA model for XH ×T1 ET1

= X ×T1 ET1, and let MX be an injec-
tive functor generated by this at the isotropy subgroup H. Similarly the cohomology

of the minimal model is generated by its value at the subroup H. So the cohomol-
ogy is already injective and so is equal to its injective envelope; and a Q[c]-CDGA
quasi-isomorphism MX(H)→ H∗(XH×T1 ET1) will extend to a quasi-isomorphism
of T-systems MX → H∗(MX).

For actions of general torus groups, this argument is complicated by the fact that
the indexing category D is larger than the orbit category, and so a given fixed set XH

contributes in several places and in several forms in the more complicated diagram

A(X). Thus the resulting models are not “generated” by a single vector space and a
single indexing object. The models are difficult to analyze even in the particular case
of a single isotropy type.

5 Examples of T
1-Spaces

In this section we examine a number of examples of spaces with circle actions to
illustrate the various definitions of equivariant formality and how they relate to each

other. The tool we use to compute information about these spaces is the T1-minimal
model. Throughout Section 5, therefore, the group T will always be T1.

A class of spaces which are formal in all senses are the T1-equivariant Eilenberg-
MacLane spaces.

Theorem 5.1 If K = K(π, n) is a T1-equivariant Eilenberg-MacLane space, then K is

model formal, and all fixed sets are bundle formal, TNHZ formal and non-equivariantly

formal.

Proof In [12, Thm. 4.3], we saw that the minimal model of a T1-equivariant Eilen-
berg-MacLane space is given by taking an injective resolution of Hn

= π∗

π∗ → V 0 → V 1 → · · · ,

and defining the T-system by

MX = ⊗i Q(V i)⊗Q[c]

with differential induced by the resolution, and distinguished sub-CDGA given by

MT = ⊗iQ(V i(T1)) ⊗ Q . It is shown in [12] that this T-system is formal, and so
X is model formal and consequently all fixed sets are bundle formal by Theorem 4.1.
Examining the cohomology

H∗(MX) = H∗(KH ×T1 ET
1) = Q(π∗)⊗ Q[c]

we see that each fixed set is also TNHZ-formal and hence by Theorem 4.2 is also
non-equivariantly formal.
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A couple of concrete examples of T1-equivariant Eilenberg-MacLane spaces are
examined in detail in [12, Section 4]. One is given by a free (off the fixed base-

point) T1-action on a space which is homotopy equivalent to S3. The other is the
space S∞, given complex coordinates as the units in C∞, with T1-action given by
λ[z0, z1, z2, z3, z4, . . . ] = [z0, z1, λz2, λz3, λz4, . . . ].

The rest of our examples demonstrate the independence of the various definitions,

showing that a wide range of possibilities exist for spaces being formal in some senses
but not others. For simplicity, all of our examples will be T1-spaces with semifree

T1-action, and so XH
= X T

1

for all H 6= e. Consequently all functors will also have

A(H) = A(T1) for all H 6= e, and so to simplify notation the functors will be written
A(e)→ A(T1) and all other subgroups will be suppressed.

Example 5.2 The following example was discussed in [3] as one of the simplest
manifolds with a T1-action which is not TNHZ formal. It is bundle formal but not

formal in any other sense.
Let τ be the tangent bundle of S8, with trivial T1-action, and ǫ the trivial 2-plane

bundle on S8 with non-trivial T1-action. Let η be the pullback bundle of τ ⊕ ǫ over
S3 × S5 along a map of degree 1. We let X be the total space of S(η), the unit sphere

bundle of η. Observe that the fixed set X T
1

is the sphere bundle of the pullback of

τ over S3 × S5; all other fixed sets XH are equal to X T
1

except for X = Xe, which
is homotopic to S3 × S5 × S9 since the bundle τ ⊕ ǫ is trivial. Therefore the only

non-trivial homotopy groups are in dimensions 3, 5, 7 and 9, and the diagrams of

the dual homotopy groups π∗

n = π∗

n (Xe) → π∗

n (X T
1

) are given by the diagrams
π∗

3 = π∗

5 = Q → Q , π∗

7 = 0 → Q and π∗

9 = Q → 0. These generate the minimal

model MX ; note that π∗

7 is not injective, and so an injective resolution will be used.
The T1-minimal model for this space is given by the following functor, where the

subscripts on the generators indicate their degrees.

MX(e) = Q(x3, y5, w7, w ′

8, z9)⊗Q[c], dw = xy − w ′, dz = xyc

��

MX(H) = MX(T1) = Q(x3, y5, w7)⊗Q[c], dw = xy

The generator w ′ in MX(e) comes from the injective resolution of π∗

7 . In X T
1

, the
twisting of the non-trivial sphere bundle is reflected by the differential dw = xy.

The cohomology of H∗(X) is a free CDGA generated by classes [x], [y], [z],

whereas the Borel cohomology H∗(X ×T1 ET1) is calculated by H∗(MX(e)), and is
generated by classes [cn], [xcn], [ycn] and [xycn]; in particular, z is not a cocycle since
dz = xyc. Therefore H∗(X ×T1 ET1) is not given by H∗(X) ⊗ Q[c], and X is not
TNHZ formal.

Note that although the space itself is non-equivariantly formal, the fixed set X T
1

is not; in fact, this space is given in [6] as an example of a non-formal space. Thus
by Theorem 4.4, X cannot be model formal. However, the Borel construction of X

is modeled by MX(e), and this is formal as a Q[c]-CDGA, since there is an obvious
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map of Q[c]-CDGAs MX(e) → H∗(MX(e)) which is a quasi-isomorphism. Thus X

is bundle formal.

Example 5.2 does not provide a counterexample to the converse of Proposition 4.3,

since although X is bundle formal the fixed set X T
1

is not. Instead, it demonstrates
the way that different fixed sets of a space may exhibit very different behaviour. The
promised counterexample is given by the following.

Example 5.3 Let X be the sphere S5, given coordinates (z0, z1, z2) as the unit sphere
in C3. Give X an action of T1 by λ[z0, z1, z2] = [z0, z1, λz2]. Then the fixed set

X T
1 ∼= S3 is given by (z1, z2, 0); and XH

= X T
1

for all H 6= e.

The space X has one non-trivial homotopy group π5, and X T
1

has one non-trivial
homotopy group π3; so the diagrams of the dual homotopy groups of the fixed point

sets π∗

n (Xe) → π∗

n (X T
1

) are given by π∗

3 = 0 → Q and π∗

5 = Q → 0, and X has a
two-stage equivariant Postnikov tower with a non-trivial k-invariant. Note that π∗

3 is
not injective, and so when we form the minimal model we use an injective resolution.

The minimal model of X is given by the following, where the subscripts indicate
degrees of the generators.

MX(e) = Q(x3, x ′

4, y5)⊗Q[c], dx = x ′, dy = x ′c

��

MX(T1) = Q(x3)⊗Q[c], d = 0

The generator x ′ in MX(e) comes from the injective resolution of π∗

3 ; the non-trivial
k-invariant is expressed by dy = x ′c. A calculation shows that the cohomology of

this system H∗(MX)−HX is given by

HX(e) = Q(b5)⊗Q[c]

��

HX(T1) = Q(a3)⊗Q[c]

where the cohomology class a = [x] and b = [y − xc].
Observe that this space is bundle formal, since there is a Q[c]-CDGA map

MX(e)→ HX(e) given by taking y → b and x, x ′ → 0 which is a quasi-isomorphism.

Moreover HX(e) = H∗(X) ⊗ Q[c] and the space is TNHZ formal. The fixed set X T
1

is easily seen to be both bundle and TNHZ formal also.
However, this space fails to be model formal. The cohomology HX is not injective,

and so we form the injective envelope as described in [12]. In this case, the map
HX(e)→ limK⊃e HX(K) is not surjective, and coker{HX(T1)→ limK⊃T1 HX(K)} is
generated by the elements acm. To create the injective envelope we choose a to be a
Q[c]-generator of this cokernel and define the enlargement HX ⊗Q[c] ΛT1 (a) where
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ΛT1 (a)(H) = Q[c] and ΛT1 (a)(T1) is the free acyclic Q[c]-CDGA generated by a

and a ′, with d(a) = a ′. We see that the injective envelope of HX has generators of

the same degrees as the minimal model MX , but with db = 0. There is no quasi-
isomorphic map between these two T-systems: the generator x must be mapped to
(some non-zero multiple of) a, and then to respect the differential x ′ must map to
a ′. But to get a quasi-isomorphism we must also have y − xc map to b, so y maps to

b−ac. It is impossible to get a map which does this and also commutes with structure
maps, since y maps to 0 in MX(T1) whereas b− ac maps to ac in HX(T1). Thus X is
not model formal.

It is interesting to compare this space to the space Y which has the same homotopy
groups of all fixed sets, but with a trivial equivariant k-invariant. The space Y is

therefore a product of equivariant Eilenberg-MacLane spaces. The minimal model
in this case has generators of the same degrees as MX above, but with dy = 0. The
cohomology is the same as the cohomology functor H described above and so the
injective envelope is also the same; therefore the minimal model for Y is isomorphic

to the injective envelope, and Y is model formal.

Example 5.4 Any space with a trivial group action is automatically TNHZ formal
by Theorem 4.4. Therefore if we take a space X which is not formal and consider it as

a T1-space with trivial T1 action we produce an example of a space which is TNHZ
formal but not model formal, bundle formal or non-equivariantly formal (these are
equivalent in this case, by Theorem 4.4). For example, we can take the fixed set of
Example 5.2, with non-equivariant minimal model given by N = Q(x, y, z) with

dx = dy = 0 and dz = xy, deg x = 3, deg y = 5. Considering this as a T1-space
with a trivial T1-action, we see that every fixed point set is the same, and so it has a
constant T1-minimal model given by MX(H) = N⊗Q[c] for every H ≤ T1. We can

see directly that this is not bundle or model formal, since H∗(MX) = H∗(N)⊗Q[c]
and there is no quasi-isomorphism N → H∗(N), and hence no Q[c]-CDGA quasi-
isomorphism MX → H∗(MX).

Example 5.5 We describe a space X which is free off the fixed basepoint, so that
MX(H) = Q[c] for every H 6= e. We build X using a two-stage Postnikov tower with
non-zero homotopy groups π4 and π5, and with a non-trivial equivariant k invariant;
so that the minimal model MX is a free Q[c]-CDGA generated by x of degree 4, y of

degree 5 with d(y) = xc. Then the cohomology of H∗(MX(e)) is generated by classes
[xn] and [cn], where [x][c] = 0.

If we ignore the T1-action, the non-equivariant model for X is given by M(e)/(c)
= Q(x, y) with dx = dy = 0, and we see that the space X is the product of Eilenberg-
MacLane spaces K(Q, 4) × K(Q, 5). Thus the Borel cohomology H∗(M(e)) is not

freely generated by H∗(X) and this space is not TNHZ formal. However, we have an
obvious map MX → H∗(MX) induced by x → [x] which is a quasi-isomorphism.
(Note that in this case H∗(MX) is already injective, and so equal to its injective enve-
lope.) Thus X is model formal and consequently bundle formal.

We can use Example 5.5 to show that the product of two model formal spaces may
not be model formal if the spaces are not TNHZ formal and their Borel cohomologies
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are not Q[c]-free.

Example 5.6 Let X be the space from Example 5.5 and consider Y = X × X. Then

Y is also free off the fixed basepoint, and the T1-minimal model of Y is given by
MY (H) = Q[c] for every H 6= e. The model for Y = Y e is given by MY (e) =

Q(x1, x2, y1, y2)⊗Q[c] with xi of degree 4, yi of degree 5 and d(yi) = xic. A calcula-
tion shows that the cohomology H∗(MY (e)) is generated by classes [xm

1 xn
2], [cn], and

[xm
1 xn+1

2 y1 − xm+1
1 xn

2 y2]. It is the existence of these last-named cohomology classes
which show that this space is not model formal; a map M → H∗(M) must take
y1 → 0 and y2 → 0 and so cannot be a quasi-isomorphism. (Note that once
again the cohomology functor H∗(MX) is injective.) Thus we have a space which

is not T1-equivariantly formal in any sense, even though its underlying space is non-
equivariantly formal since Y , like X, is a product of Eilenberg-MacLane spaces.

Our final example demonstrates that it is possible to have a T1-space which is
model formal, but whose underlying space is not formal as an ordinary non-equivari-

ant space. Hence this space is in some sense the simplest T1-homotopy type which
has the given diagram of Borel cohomologies, the Q[c]-module diagram H∗(XH);
but this equivariant homotopy type is not realized by a formal underlying space.
Thus we see the separation between equivariant and non-equivariant phenomena,

and the fact that spaces which are relatively easy to understand equivariantly may
still be quite complicated.

Example 5.7 Let X be a T1-space which is free off the basepoint, so that as in the
previous two examples MX(H) = Q[c] for H 6= e. We consider the space whose

minimal model at e is given as follows, where again the subscripts indicate the degrees
of the generators: MX(e) = Q(x3, y3, w,4 z5) ⊗ Q[c] with d(x) = d(y) = d(w) = 0
and d(z) = −xy + wc. Observe that the minimal model for the underlying space is
given by N = MX(e)/(c) = Q(x, y, w, z) with d(z) = −xy, and so has cohomology

generated by [1], [x], [y], [xz], [yz], [xyz] as well as any of the above multiplied by
[wn]; we see immediately that the presence of elements [xz] mean that this is not a
formal space, since any map N→ H∗(N) must take z to 0.

Nevertheless this space is model formal, since we find that the cohomology
of H∗(MX(e)) consists of free Q[c]-generators [x], [y], [w], and generators [xwn],
[ywn] and [xywn] which become 0 when multiplied by [c]; note that in this algebra,
we also have the relation [xy] = [wc]. So there is an obvious map of T-systems

MX → H∗(MX) induced by taking x→ [x], y → [y], w→ [w] and z → 0, which is
a quasi-isomorphism.

Note that this space is not TNHZ formal, and in fact the Borel cohomology

H∗(X ×T1 ET1) = H∗(MX(e)) is far from being Q[c]-free. We expect this, since
otherwise we would have a counter-example to Theorem 4.5.

6 Proofs from Section 3

We now give the deferred proofs of Propositions 3.5 and 3.6 about model formality.
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Proof of Proposition 3.5 Once again, we begin with the case T = T1. For simplic-
ity of notation we assume that direct sum and tensor product are always taken over

the base ring Q[c]. Observe that (X ∨Y )×T1 ET1
= X ×T1 ET1 ∨BT1 Y ×T1 ET1 and

(X∨Y )H
= XH∨Y H , so ET1 (X∨Y ) = ET1 (X)⊕ET1 (Y ) and H∗((X∨Y ))×T1 ET1

=

H∗(X ×T1 ET1) ⊕ H∗(Y ×T1 ET1) = H∗(MX) ⊕ H∗(MY ). Now if H∗(MX) →֒ IX

and H∗(MY ) →֒ IY are the quasi-isomorphic inclusions to the injective envelopes,

then the induced map H∗(MX∨Y ) → IX ⊕ IY is also a quasi-isomorphism. Then by
Lemma 3.1 we have a map from the injective envelope IX∨Y of H∗(MX) ⊕ H∗(MY )
to IX⊕ IY , and by the commutativity of the diagram of Lemma 3.1 this map will also
be a quasi-isomorphism. Uniqueness of minimal models ensures that both IX∨Y and

IX ⊕ IY have the same minimal model. Therefore it will suffice to show that there is
a quasi-isomorphism MX∨Y → IX ⊕ IY , and so MX∨Y is a minimal model for both
T-systems.

The quasi-isomorphisms MX → H∗(MX) and MY → H∗(MY ) induce a quasi-

isomorphism MX ⊕MY → IX ⊕ IY . Now MX ⊕MY may not be the minimal model
for X ∨ Y , but the quasi-isomorphisms MX → ET1 (X) and MY → ET1 (Y ) induce a
quasi-isomorphism MX⊕MY → ET1 (X)⊕ET1 (Y ), and so again using the uniqueness
of minimal models, the minimal models of ET1 (X) ⊕ ET1 (Y ) and MX ⊕ MY are

isomorphic. But by definition, MX∨Y is a model for ET1 (X ∨Y ) = ET1 (X)⊕ET1 (Y ).
Therefore we have quasi-isomorphisms MX∨Y →MX⊕MY → IX⊕IY and so X∨Y

is model formal.

The same reasoning (minus the injective envelopes) holds for the general torus

case, since examining the algebraic model of Theorem 2.9 in detail shows that it also
satisfies the basic equality A(X ∨Y ) = A(X)⊕H∗(BT) A(Y ), and the rest follows.

From here on, we restrict to the case T = T1; again, the base ring for direct sums
and tensor products is always Q[c].

Lemma 6.1 The T1-minimal model MX×Y of X×Y is isomorphic to the tensor prod-

uct MX ⊗MY .

To prove this we use the following construction.

Definition 6.2 A commutative square of CDGAs

A //

��

A ′′

��

A ′ // C

is an EM square if the induced map Tor∗A(A ′, A ′′) → H∗C is an isomorphism (see
[2, p. 13]).

EM squares satisfy the following algebraic property, proved in [11]
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Lemma 6.3 If a map between EM squares

A //

��

A ′ ′

��

A ′ // C

−→

B //

��

B ′′

��

B ′ // D

induces isomorphisms H∗(A) ∼= H∗(B), H∗(A ′) ∼= H∗(B ′) and H∗(A ′ ′) ∼= H∗(B ′ ′)
then it also induces an isomorphism H∗(C) ∼= H∗(D).

Proof of 6.1 It is shown in [11] that any T1-equivariant pullback of spaces produces

an EM square of T-systems when the differential form functor ET1 (−) is applied.
Therefore we have an EM square

ET1 (BT1) //

��

ET1 (X)

��

ET1 (Y ) // ET1 (X × Y )

Now any minimal T-system is a free Q[c]-module, and so Tor∗Q[c](MX , MY ) = MX⊗
MY . Therefore

Q[c] //

��

MX

��

MY
// MX ⊗MY

is also an EM square. Then the quasi-isomorphisms MX → ET1 (X), MY → ET1 (Y ),
and Q[c] → ET1 (BT1) ensure that the induced map MX ⊗MY → ET1 (X × Y ) is
also a quasi-isomorphism by Lemma 6.3. Since MX ⊗MY is also minimal, it is the

minimal model of X × Y .

Proof of 3.6 We know that there are quasi-isomorphisms MX → IX and MY → IY ,
where I− is the injective envelope of H∗(−). We wish to show that there is a quasi-
isomorphism MX×Y → IX×Y . We know that MX×Y = MX ⊗MY by Lemma 6.1.
Moreover, since the minimal models M− are free, the Künneth theorem gives an

isomorphism H∗(MX ⊗MY ) ∼= H∗(MX)⊗H∗(MY ).

Again because of freeness of minimal models, Tor∗Q[c](MX , MY ) = MX ⊗MY . By
assumption, one of H∗(XH×T1 ET1) and H∗(Y H×T1 ET1) is a free Q[c]-modules for
all H ≤ T1; assume it is H∗(XH ×T1 ET1) = H∗(MX). Then its injective envelope IX

is also a free Q[c]-module, since it is created by adding free generators to H∗(MX).
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Therefore Tor∗Q[c](IX, IY ) = IX ⊗ IY , and the quasi-isomorphisms MX → IX and
MY → IY induce a map of the EM squares

Q[c] //

��

MX

��

MY
// MX ⊗MY

−→

Q[c] //

��

IX

��

IY
// IX ⊗ IY

and so the map MX ⊗MY → IX ⊗ IY is also a quasi-isomorphism.
The lifting property of injective envelopes of Lemma 3.1 gives a map from the

injective envelope of H∗(MX) ⊗ H∗(MY ), denoted IX×Y , to IX ⊗ IY ; and commu-

tativity ensures that this is also a quasi-isomorphism. Then since MX ⊗MY is the
minimal model for IX⊗IY , it is also the minimal model for IX×Y and so the required
quasi-isomorphism MX ⊗MY → IX×Y exists. Thus X × Y is model formal.
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