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Microinstabilities drive turbulent fluctuations in inhomogeneous, magnetised plasmas.
In the context of magnetic confinement fusion devices, this leads to an enhanced
transport of particles, momentum and energy, thereby degrading confinement. In this
work, we describe an application of the adjoint method to efficiently determine
variations of gyrokinetic linear growth rates on a general set of external parameters
in the local δf -gyrokinetic model. We then offer numerical verification of this
approach. When coupled with gradient-based techniques, this methodology can facilitate
the optimisation process for the microstability of the confined plasmas across a
high-dimensional parameter space. We present a numerical demonstration wherein the
ion-temperature-gradient instability growth rate in a tokamak plasma is minimised with
respect to flux surface shaping parameters. The adjoint method approach demonstrates a
significant computational speed-up compared with a finite-difference gradient calculation.
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1. Introduction

Within the plasma core of magnetic confinement fusion (MCF) devices, gradients
of temperature and density act as sources of free energy that are capable of driving
microscale instabilities, should they exceed critical values (see e.g. Rudakov & Sagdeev
1961; Drake & Lee 1977 or Tang, Connor & Hastie 1980 for ion-temperature-gradient
(ITG), microtearing mode or kinetic ballooning mode descriptions, respectively). Beyond
such critical values the transport fluxes increase rapidly, thus requiring a large additional
power input to maintain the temperature gradient. One mechanism behind these large
fluxes is turbulent mixing, which results in the increased transport of particles, momentum
and energy out of the device. To properly predict plasma profiles, one should thus solve
the transport equations in which nonlinear, turbulent fluxes determine profile evolution.
However, due to this ‘stiffness’ of the transport (Dimits et al. 2000), the critical gradients
obtained from a linear instability analysis are often a first reasonable approximation to
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the experimental outcomes1 (Doyle, Houlberg & Kamada 2007). Hence, it is worthwhile
to determine if externally controlled experimental parameters can be chosen to optimise
linear stability.

The growth rate of linear microinstabilities can be influenced by a large number
of parameters, including plasma density, temperature, flow profiles and the magnetic
geometry. In an idealised situation, one would determine how such growth rates, and
by extension critical gradients, depend on all parameters governing the system, and
then design MCF devices that optimise temperature and/or density gradients. However,
analytical searches are intractable, and, because the number of tuneable parameters in
modern MCF devices is large, full numerical parameter scans are often prohibitively
expensive.

In this paper we address this issue by employing an adjoint approach (cf. Pironneau
1974) to enable efficient calculation of local variations to the linear growth rate with
respect to all parameters of interest within the local, δf -gyrokinetic model. In contrast
to a finite-difference calculation, the adjoint method is essentially independent of the
dimension of the parameter space, and can be used to optimise over a large number
of variables at once without incurring additional computational cost beyond solving the
system equations; the associated cost of the adjoint method is roughly equivalent to solving
the linearised gyrokinetic system of equations twice.

The archetypal microinstability in MCF plasmas is the ITG instability (see e.g. Rudakov
& Sagdeev 1961; Cowley, Kulsrud & Sudan 1991), as it has been identified as the main
source of heat transport in the core of many tokamaks (Mantica et al. 2011). Therefore, for
clarity, we shall present the optimisation process with ITG instabilities in mind. We shall
apply the adjoint method to the linear gyrokinetic equation and demonstrate its utility by
calculating the sensitivity of the growth rate to geometrical parameters in a tokamak, with
the aim of maximising the critical ITG through shaping considerations only. However, the
technique and equations derived below allow for calculations of the gradient of the linear
growth rate with respect to a general set of unspecified parameters, p, and could thus be
applied more broadly, and to other instabilities. In general, the adjoint method we present
here is agnostic to the mechanism behind the instability, and gives the gradient of the
linear growth rate with respect to a set of external parameters independent of the mode
type. Given that the growth rate is a continuous function this approach could thus also be
applied to linear growth rates for which the instability mechanism changes.

This paper is organised as follows: in § 2 we outline the gyrokinetic-Maxwell system,
including the governing equations for the evolution of the plasma distribution function
and electromagnetic fields. In § 3, we present details of the gyrokinetic-adjoint system, and
derive the adjoint equations as applied to a linear, low-flow, electromagnetic δf -gyrokinetic
system with collisions. The aim in mind is to minimise the linear growth rate in a parameter
space defined by a generic set of independent variables, p, that influence the plasma
evolution. We also extract the electrostatic, collisionless limit of the adjoint equations. The
second portion of the paper then focuses on applying the model derived, and discussing
how this method may be used to vary the plasma profile (such as temperature or density
gradients) in directions favourable for fusion whilst retaining microstability. In § 4 we

1An important caveat to mention is that true critical gradient values can be shifted by nonlinear effects. Linear
instabilities grow until nonlinear coupling to ‘zonal’ modes removes energy from the linearly growing modes. This
energy injection into the zonal modes causes them to grow and can suppress turbulence completely in a region beyond
the linear critical gradients (e.g. see Dimits et al. 2000; Rogers, Dorland & Kotschenreuther 2000). We will neglect
this ‘Dimits shift’ of the critical gradient in the following analysis, and use only the linear gradient as a predictor for
experimental profiles. This provides a lower bound for critical gradient values and can be a good approximation for the
full nonlinear threshold value.
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Optimisation of gyrokinetic microstability using adjoint methods 3

briefly discuss how the process is implemented using the δf -gyrokinetic code stella,
with § 4.2 specialising to the case where p consists of the parameters needed to specify the
local magnetic geometry within the Miller formalism (Miller et al. 1998); we describe the
motivation behind this choice, and describe how it is implemented numerically. Section 5
covers the numerical methods employed in solving the adjoint system. Finally, § 6 presents
the numerical results, including tests for an example application in which the adjoint
method is utilised to vary the magnetic geometry with the aim to minimise the linear
ITG growth rate.

2. Plasma evolution equations

We model the evolution of plasma fluctuations with the δf -gyrokinetic equation (Catto
1978; Antonsen & Lane 1980; Abel et al. 2013), which one derives by exploiting spatial
and temporal scale separation. Our starting point is the Vlasov–Maxwell system of
equations including collisions

dfν
dt

=
∑
ν ′

Cνν ′[ fν, fν ′], (2.1)

∇ · E = 4π�, (2.2)

∇ · B = 0, (2.3)

1
c
∂B
∂t

= −∇ × E, (2.4)

∇ × B = 1
c

(
4πj + ∂E

∂t

)
, (2.5)

where � is the electric charge density, j is the current density, ν is the particle species
index, c the speed of light, t the time, E and B are the electric and magnetic fields,
respectively, and Cνν ′[ fν, fν ′] accounts for the effects on species ν from Coulomb collisions
with species ν ′. We relate the charge density and current density to the particle distribution
function, fν , via the velocity space integrals

� =
∑
ν

Zνe
∫

d3vfν, (2.6)

j =
∑
ν

Zνe
∫

d3vvfν, (2.7)

with Zνe the species charge, and e the proton charge. We take the frequency of fluctuations,
ω, to be much less than the gyrofrequency of particles, Ων , defined as Ων = ZνeB/mνc,
with B the magnitude of the magnetic field, and mν the species mass.

We decompose quantities into their mean and fluctuating parts. The mean components
determine the evolution of the background plasma, and are found by averaging over all
fluctuations. We represent the average of a given quantity, h, over all fluctuations by 〈h〉turb
and define this average as

〈h(t)〉turb = 1
T

∫ t+T/2

t−T/2
dt′〈h(t′)〉⊥, (2.8)

where T is some intermediate time shorter than the (transport) time scale associated with
mean profile evolution, and longer than time scales associated with typical fluctuations,
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such that ω−1 � T � L/vth,i, where L is the system size, and vth,ν
.= √

2Tν/mν the
species thermal velocity, with Tν the species temperature. Here, 〈·〉⊥ is an appropriately
defined spatial average over a length l satisfying ρref � l � L for a surface perpendicular
to the magnetic field (Abel et al. 2013). The distribution function is decomposed as
fν = Fν + δfν with Fν = 〈 fν〉turb determining the profile of the equilibrium plasma, and
δfν the contribution from plasma fluctuations.

We take the Larmor radius of particles, ρν = v⊥/Ων , to be much smaller than the system
size, L, where v⊥ is the magnitude of velocity in the plane perpendicular to the magnetic
field. We henceforth take the reference scale to be ordered the same as the ion scale, with
ρref = vth,ref/Ωref ∼ ρi. We expand the Vlasov–Maxwell equations including collisions,
(2.1)–(2.5), in the small parameter ε ∼ ρ
 � 1, with ρ
 = ρi/L the ratio of the reference
ion gyroradius to the system size, and equate terms of equivalent order. We order terms as
follows:

ε ∼ ρ

.= ρi

L
∼ ω

Ωi
∼ k‖

k⊥
∼ eφ

Tν
∼ δB

B0
∼ δfν

F0,ν
� 1 and k⊥ρi ∼ 1. (2.9)

In the above orderings we have decomposed the magnetic field into the equilibrium
contribution, B0, and the magnetic fluctuations, δB, such that the full magnetic field
is B = B0 + δB. We have also introduced the parallel and perpendicular wavenumbers,
k‖ = k · b̂ and k⊥ = (I − b̂b̂) · k, with b̂ the unit vector in the direction of the magnetic
field, and I the identity matrix. The perturbed electric potential has been introduced as φ.
We also expand the mean and fluctuating components of the distribution function

Fν = F0,ν + F1,ν + F2,ν · · · ,
δfν = δf1,ν + δf2,ν + · · · ,

}
(2.10)

with F0,ν ∼ fν , F1,ν ∼ δf1,ν ∼ εfν , F2,ν ∼ δf2,ν ∼ ε2fν and so on. Equilibrium quantities are
taken to have characteristic length scales of order L, and evolve slowly on the long transport
time scale τ−1

E ∼ ε3Ωi; they are thus understood to be static during our considerations.
Small-scale fluctuations, captured in δfν , have characteristic length scales of the order
ρi ∼ εL and frequencies ω ∼ εΩi.

The charged particles follow magnetic field lines and perform rapid gyration in the
plane perpendicular to the field. We introduce Rν as the gyro-centre for species ν,
and r to indicate the spatial position vector for any given particle. These descriptions
of particle location are related through Rν = r − ρν(ϑ), with ρν(ϑ) = b̂0 × v/Ων the
velocity-dependent vector gyroradius. Our analysis need only consider b̂0; hence, we
shall set b̂ ≡ b̂0 in the remainder of this paper for notational brevity. The gyrophase, ϑ ,
characterises this gyro-motion, and has a large associated frequency |ϑ̇ | ≈ Ων . A natural
approach is to average over these fast oscillations by introducing a gyroaverage, defined
through

〈h(r)〉Rν = 〈h(Rν + ρν(ϑ))〉Rν = 1
2π

∫ 2π

0
h(Rν + ρν(ϑ)) dϑ, (2.11)

〈h(Rν)〉r = 〈h(r − ρν(ϑ))〉r = 1
2π

∫ 2π

0
h(r − ρν(ϑ)) dϑ, (2.12)

where Rν and r are held constant when performing the ϑ integrations in (2.11) and (2.12),
respectively.
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Optimisation of gyrokinetic microstability using adjoint methods 5

Expanding the Vlasov–Maxwell equations, then equating terms of order ε−1 with
respect to vth,iF0,i/L, we obtain the equation ∂F0,ν/∂ϑ = 0, which demands F0,ν be
independent of gyrophase. In the presence of modest collisionality2 zeroth-order terms
provide the further constraint that the equilibrium component is a Maxwellian in velocities

F0,ν := nν
(πv2

th,ν)
3/2

e−v2/v2
th,ν , (2.13)

where nν represents the species density.
Equating terms ordered ε1 gives the evolution equation for first-order perturbations.

This exists within a six-dimensional phase space with coordinate choice {Rν, v‖, μν, ϑ}.
Here, μν is the magnetic moment defined as μν = mνv

2
⊥/2B and is a conserved quantity

to the order of consideration. Gyrophase dependence is removed by gyroaveraging
the full equation, reducing the phase-space dimensionality by one. As a result
the gyroaveraged fluctuating distribution function of guiding centres arises, denoted
using gν(Rν, v‖, μν)

.= 〈δfν〉Rν = δfν + (Zνe/Tν)F0,ν[φ − 〈φ〉Rν], such that gν is gyrophase
independent.

We expand the total time derivative in (2.1) in terms of partial derivatives in
{t, v‖, μν, ϑ,Rν} – with each partial derivative taken assuming all other variables are
held fixed, unless explicitly stated otherwise – and then gyroaveraging over ϑ to reduce
the dimensionality of our equations from 6 to 5. We define a ‘low-flow’, or ‘drift’,
ordering to be when the flow speed is ordered as ρ∗ small compared with the thermal
speed. In this ordering the resulting linear, electromagnetic gyrokinetic equation including
collisions is

∂gν
∂t

+ v‖

[
b̂ · ∇gν + Zνe

Tν
F0,ν b̂ · ∇〈χ〉Rν

]
+ vM,ν ·

[
∇⊥gν + Zνe

Tν
F0,ν∇⊥〈χ〉Rν

]

−μν
mν

b̂ · ∇B0
∂gν
∂v‖

+ 〈vχ 〉Rν · ∇|E F0,ν + Zνe
Tν

μν

mνc
b̂ · ∇B0F0,ν〈A‖〉Rν = C(l)

ν , (2.14)

where C(l)
ν = ∑

ν ′Cl
ν,ν ′ is the linearised collision operator taken to be self-adjoint such

that C(l)†
ν = C(l)

ν .3 We have introduced χ = φ − v · A/c as the gyrokinetic potential,
with A = A‖b̂ + A⊥ the fluctuating magnetic vector potential, (δB = ∇ × A), which
has been decomposed into components parallel and perpendicular to the equilibrium
magnetic field. The gradient acting on the Maxwellian appears as ∇|E . This indicates
that the derivative has been taken at constant kinetic energy, E = mνv

2/2, rather than at
fixed {v‖, μν} variables, in contrast to the other spatial gradients appearing in equation
(2.14). Finally, vM,ν and vχ are the magnetic and generalised E × B drifts defined
through

vM,ν = 1
Ων

b̂ ×
(
μν

mν

∇B + v2
‖κ
)
, (2.15)

vχ = c
B

b̂ × ∇⊥χ, (2.16)

with κ = b̂ · ∇b̂ the equilibrium magnetic field curvature.

2This requires the collisionality ν∗ � ρ∗ω – a regime within which we work.
3It should be noted that this encapsulates a broad range of collision operators including the linearised Landau, and

the linearised Fokker–Planck collision operators.
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The system is closed by the field equations consisting of quasineutrality,
∑

ν Zνδnν = 0,
with δnν the perturbed density, and the low-frequency Ampère’s law, ∇ × δB =
(4π/c)δJ , with δB and δJ the fluctuating magnetic field and current density, respectively.
When written in terms of the distribution function these relations become∑

ν

Zν

∫
d3v

[
〈gν〉Rν + Zνe

Tν
F0,ν

(〈〈χ〉Rν

〉
r − φ

)] = 0, (2.17)

∇2
⊥A‖ − 4π

c

∑
ν

Zνe
∫

d3vv‖

[
gν + Zνe

Tνc
F0,νv‖

〈〈A‖〉Rν

〉
r

]
= 0, (2.18)

∇⊥δB‖ − 4π

c

∑
ν

Zνe
∫

d3v∇ ·
[(

gν + Zνe
Tν

F0,ν
〈〈χ〉Rν

〉
r

)
(b̂ × v⊥)

]
= 0, (2.19)

where δB‖ = δB · b̂ = (∇ × A⊥) · b̂ is the parallel component of the perturbed magnetic
field.

2.1. Magnetic coordinates
We can express the magnetic field using the Clebsch representation

B = ∇α × ∇ψ, (2.20)

where ψ and α are the flux surface and field line labels, respectively. We choose to work
in field-aligned coordinates (Beer, Cowley & Hammett 1995) denoted by (x, y, z), with z
the position along the magnetic field line and (x, y) the position in the plane perpendicular
to b̂. Together, the unit vectors {x̂, ŷ, b̂} form a left-handed, orthonormal basis. We relate
the coordinates (x, y) to (ψ, α) using

x = dx
dψ
(ψ − ψ0),

y = dy
dα
(α − α0),

⎫⎪⎪⎬
⎪⎪⎭ (2.21)

with (ψ0, α0) denoting the values at the centre of the domain.
We take the discrete Fourier transform in {x, y} whilst retaining the real-space coordinate

for the parallel direction, and evaluate nonlinear terms pseudo-spectrally in order to retain
spectral accuracy in spatial derivatives when implementing the equations numerically.4
The discrete Fourier transform in {x, y}

gν(x, y, z, v‖, μν, t) =
∑
kx,ky

ĝk,ν(z, v‖, μν, t)e(ikxx+ikyy), (2.22)

is justified provided the condition kx ∼ ky  1/L is satisfied. This translates to a
requirement that the turbulent fluctuations at the edges of our domain are decorrelated,
such that they may be considered statistically identical, and periodic boundary conditions
can be enforced in (x, y) (Beer et al. 1995).

4Spatial derivatives are exact in the Fourier representation and are hence more accurate than using a finite-difference
scheme in configuration space.
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2.2. System equations
We next transform our evolution equations (2.14), and (2.17)–(2.19). The definition of
χ is used to find the Fourier transform of the quantity 〈χ〉Rν = 〈φ〉Rν − v‖〈A‖〉Rν /c −
〈v⊥ · A⊥〉Rν /c

Fk
[〈χ〉Rν

] .= χ̂k,ν =
[

J0,k,ν φ̂k − v‖
c

J0,k,νÂ‖,k + 2
μν

Zνe
J1,k,ν

ak,ν
δB̂‖,k

]
, (2.23)

where we define Fk[〈χ〉Rν ]
.= χ̂k,ν to be the Fourier components of 〈χ〉Rν . The variables

Jn,k,ν above are the nth-order Bessel functions of the first kind for species ν. The Bessel
functions arise naturally as a result of the gyroaverages that appear in (2.14), and have
argument ak,ν = k⊥v⊥/Ων . Utilising this, we can write each of our functional operators in
terms of {ĝk,ν, φ̂k, Â‖,k, δB̂‖,k}. The resulting gyrokinetic equation is

Ĝk,ν = ∂ ĝk,ν

∂t
+ v‖b̂ · ∇z

[
∂ ĝk,ν

∂z
+ Zνe

Tν

∂χ̂k,ν

∂z
F0,ν

]

+ iω∗,k,νF0,ν χ̂k,ν + iωd,k,ν

[
ĝk,ν + Zνe

Tν
χ̂k,νF0,ν

]

− μν

mν

(b̂ · ∇B0)
∂ ĝk,ν

∂v‖
+ Zνe

Tν

μν

mνc
(b̂ · ∇B0)F0,νJ0,k,νÂ‖,k − Ĉk,ν[ĝk,ν]

= 0. (2.24)

The drift frequencies, ωd,ν and ω∗,ν , correspond to the magnetic drift frequencies
resulting from the gradient and curvature of the magnetic field and the diamagnetic drift
respectively, and are given by

ωd,k,ν = 1
Ων

(v2
‖vκ + μνv∇B) · (kx∇x + ky∇y), (2.25)

ω∗,k,ν = cky

B0

dy
dα

d ln F0,ν

dψ
, (2.26)

with vκ = b̂ × (b̂ · ∇b̂), and v∇B = b̂ × ∇B.
The distribution function and field quantities are time-dependent functions, and their

evolution equations admit normal mode solutions. For a generic set of initial conditions,
the fastest growing (or slowest decaying) mode is likely to have an initial amplitude that is
comparable to or smaller than other normal modes in the system. This results in an initial
transient period due to the competition between these different normal modes, followed
by exponential growth or decay once the fastest growing (or slowest decaying) mode
has a much larger amplitude than all others. Therefore, we decompose f̂k = ∑

j f̄k,jeγk,j t5

with γk,j ∈ C the complex frequencies, and f̄k,j the amplitude for the jth normal mode.6
Quasineutrality and Ampère’s law, along with the linearity of the gyrokinetic equation,
ensure that all fluctuating quantities for an equivalent normal mode share the same
complex frequency and will thus exhibit the same time-dependent behaviour during the

5We remind the reader that, here, k denotes the Fourier mode from the spatial decomposition, and j is the subscript
denoting the temporal normal mode.

6It is worth noting that there are instances when the linear growth rates of two independent modes may be very
similar, and a single dominant growth rate may require long run times to become evident.
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8 G.O. Acton, M. Barnes, S. Newton and H. Thienpondt

period of exponential growth or decay. After a sufficiently long period of time (the exact
length of which will depend on both the relative growth rates and starting amplitudes of
each mode) the fastest growing mode will dominate, meaning we can approximate the
time dependent behaviour after large times using a single temporal mode; f̂k ≈ f̄k,0eγk,0 t̃,
with Re(γk,0) > Re(γk,j), ∀j, j �= 0. Using this normal mode decomposition in the
gyrokinetic equation and considering behaviour beyond the transient period gives

Ĝk,ν = γk,0ḡk,ν,0 + v‖b̂ · ∇z
[
∂ ḡk,ν,0

∂z
+ Zνe

Tν

∂χ̄k,0

∂z
F0,ν

]

+ iω∗,k,νF0,ν χ̄k,0 + iωd,k,ν

[
ḡk,ν,0 + Zνe

Tν
χ̄k,0F0,ν

]

− μν b̂ · ∇B0
∂ ḡk,ν,0

∂v‖
+ Zνe

Tν

μν

mνc
(b̂ · ∇B0)F0,νJ0,k,νĀ‖,k,0 − Ĉk,ν[ḡk,ν,0]. (2.27)

The corresponding transformed, normalised field equations are Q̂k = M̂k = N̂k = 0,
where

Q̂k =
∑
ν

Zνe
{

2πB0

mν

∫
d2v J0,k,ν ḡk,ν,0 + Zνenν

Tν

(
Γ0,k,ν − 1

)
φ̄k,0 + nν

B0
Γ1,k,νδB̄‖,k,0

}
,

(2.28)

M̂k = − 4π

k2
⊥c

∑
ν

Zνe
2πB0

mν

∫
d2vv‖J0,k,ν ḡk,ν,0

+
[

1 + 4π

k2
⊥c2

∑
ν

(Zνe)2nν
mν

Γ0,k,ν

]
Ā‖,k,0, (2.29)

and

N̂k = 8π
∑
ν

2πB0

mν

∫
d2v

J1,k,ν

ak,ν
μν ḡk,ν,0 +

[
4π
∑
ν

Zνenν
B0

Γ1,k,ν

]
φ̄k,0

+
[

1 + 16π
∑
ν

nνTν
B2

0
Γ2,k,ν

]
δB̄‖,k,0, (2.30)

with
∫

d2v
.= ∫

dμ
∫

dv‖. In the above we have defined

Γ0,k,ν = I0(αk,ν)e−αk,ν , (2.31)

Γ1,k,ν = [I0(αk,ν)− I1(αk,ν)]e−αk,ν , (2.32)

Γ2,k,ν = I1(αk,ν)e−αk,ν , (2.33)

where I0 and I1 are modified Bessel functions of the first kind, and αk,ν = k2
⊥ρ

2
ν /2.

3. Adjoint method for gyrokinetics

The adjoint-based optimisation method is a tool that, at its heart, efficiently calculates
derivatives of a desired quantity with respect to a potentially large number of parameters.
The associated computational cost depends only on the expense of solving both the
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Optimisation of gyrokinetic microstability using adjoint methods 9

objective functional and adjoint system of equations, and is essentially independent of
the dimension of the parameter space. Adjoint methods have already been successfully
applied to certain other aspects of MCF devices, such as optimising coil configurations
for stellarator geometries (see, e.g. Paul et al. 2018; Geraldini, Landreman & Paul 2021;
Nies et al. 2022). The novelty here is to apply the adjoint method to geometric optimisation
and plasma microstability, which includes the complexity of the full linearised gyrokinetic
system.

We now turn to the gyrokinetic equation and the objective of minimising the dominant
linear growth rate, γk,0, with respect to a set of currently unspecified parameters {pi}, which
we take to be the components of vector p. This section outlines how one can take advantage
of the adjoint method to efficiently obtain the gradient ∇pγk,0. Although a finite-difference
scheme could be used to obtain such a gradient, this becomes computationally expensive
when the dimension of p, Np, is large: for each gradient a finite-difference scheme
demands we solve the system equations Np + 1 times. In contrast, the adjoint method
allows us to solve the system equations only once, and in exchange one must solve the
set of adjoint equations, for which the cost is computationally equivalent to the original
system equations.

We start by considering the general case of low-flow, linear, electromagnetic,
δf -gyrokinetics including collisions, with equations (2.27)–(2.30) as the functional
operators defining our system in the long time limit.

3.1. General formalism
Since our equations are limited to the linear regime, there is no coupling of different
Fourier modes and it is thus possible to consider each perpendicular wavenumber
individually. Given that we are also considering the post-transient limit with only one
dominant growth rate, it will henceforth be assumed that only a single perpendicular
wavenumber is being considered, and we will thus drop the k subscript, along with the
subscript that denotes the dominant mode for the distribution function and field quantities.
For notational brevity we shall also drop the overbars that appear on the distribution
function and fields that denoted normal mode decomposition. Hence, everywhere gν , φ,
A‖ and δB‖ appear it shall be assumed that they contain suppressed spatial and temporal
Fourier subscripts.

Consider now a set of variables that influences our system and which exists within a
parameter space spanned by all possible p. We take the set {pi}, i ∈ [1,Np], to be linearly
independent, with no time variation, and explore how variations within this space affect
the linear growth rate. At present we need not specify which variables are denoted by
p, and thus derive a general set of adjoint equations for the gyrokinetic-Maxwell system
above, (2.27)–(2.30).

Our objective functional, Ĝν , is a linear functional of {gν, φ,A‖, δB‖}, which are coupled
to the fields through the field equations, (2.28)–(2.30). When taking derivatives of Gν we
invariably end up with derivatives acting on all four of these variables. This is undesirable
because it requires we calculate the gradients of ĝν and the fields, which in turn requires
us to solve the gyrokinetic system Np + 1 times, as discussed above. In order to eliminate
these four derivatives we use something akin to the method of Lagrange multipliers and
introduce four adjoint variables which multiply the corresponding constraint equations.
The optimisation Lagrangian is thus

L :=
〈
Ĝν, λν

〉
z,v,ν

+
〈
Q̂, ξ

〉
z
+
〈
M̂, ζ

〉
z
+
〈
N̂, σ

〉
z
, (3.1)
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10 G.O. Acton, M. Barnes, S. Newton and H. Thienpondt

with the angle brackets representing inner products defined through7

〈a, b〉z =
∫

dz

B0 b̂ · ∇z
ab∗, 〈a, b〉v,ν =

∑
ν

2πB0

mν

∫
d2vab∗,

〈a, b〉z,v,ν =
∑
ν

∫
dz

B0b̂ · ∇z

2πB0

mν

∫
d2vab∗.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.2)

We have introduced the set of adjoint variables λν , ξ , ζ and σ , whose forms are to be
determined.8 We identify λν as the adjoint variable to the distribution function, gν , whereas
ξ , ζ and σ are adjoint to the field variables (referred to henceforth as adjoint fields).
The quantities Ĝν , Q̂, M̂ and N̂ are our objective functions, and we remark that since
Ĝν = Q̂ = M̂ = N̂ = 0 for a consistent set of {p0, gν(p0), φ(p0),A‖(p0), δB‖(p0)} we have
L|p0

= 0 for all choices of adjoint variables. For later convenience we decompose the
functional operators into their components that act on gν , φ, A‖ and δB‖ separately

Ĝν[p; gν, φ,A‖, δB‖] = Ĝg,ν[p; gν] + Ĝφ,ν[p;φ] + ĜA‖,ν[p; A‖] + ĜB‖,ν[p; δB‖]

− Ĉν[p; gν], (3.3)

Q̂[p; gν, φ, δB‖] =
〈
Q̂g,ν[p; gν], I

〉
v,ν

+ Q̂φ[p;φ] + Q̂B‖[p; δB‖], (3.4)

M̂[p; gν,A‖] =
〈
M̂g,ν[p; gν], I

〉
v,ν

+ M̂A‖[p; A‖], (3.5)

N̂[p; gν, φ, δB‖] =
〈
N̂g,ν[p; gν], I

〉
v,ν

+ N̂φ[p;φ] + N̂B‖[p; δB‖], (3.6)

with I simply equal to one. Explicit expressions for these operators are given in
Appendix A.

We next consider taking the gradient of (3.1) with respect to the variables in our
parameter space, p. We now isolate all terms multiplying derivatives of {gν, φ,A‖, δB‖}
so that each of their coefficients can be set to zero. We are at liberty to do this because of
the freedom that exists in choosing the adjoint variables introduced in (3.1). The gradient
of (3.1) is expanded using (3.3)–(3.6)

∇pL = ∂pL +
〈
∇pgν, Ĝ†

g,ν[p; λν] − Ĉ†
ν[p; λν] + Q̂†

g,ν[p; ξ ] + M̂†
g,ν[p; ζ ] + N̂†

g,ν[p; σ ]
〉

z,v,ν

+
〈
∇pφ, Ĝ†

φ,ν[p; λν] + Q̂†
φ[p; ξ ] + N̂†

φ[p; σ ]
〉

z
+
〈
∇pA‖, Ĝ†

A‖,ν[p; λν] + M̂†
A‖[p; ζ ]

〉
z

+
〈
∇pδB‖, Ĝ†

B‖,ν[p; λν] + Q̂†
B‖[p; ξ ] + N̂†

B‖[p; σ ]
〉

z
+ B. (3.7)

Here, the daggers that appear on the functional operators denote the adjoint of those
operators with respect to the relevant inner product. The partial derivative, ∂p, is taken
at fixed gν , φ, A‖ and δB‖. Note that it acts on the inner product itself in addition to the

7Note that these must be linear in their arguments, exhibit conjugate symmetry and satisfy the Cauchy–Schwartz
inequality to be well defined. We also require that all arguments are square integrable in order for the optimisation to be
finite.

8Note that the adjoint variables here are defined in Fourier space, so λν , ξ , ζ and σ also contain suppressed k
subscripts, and thus we are calculating each for a specific k. The derivatives ∇p indicate how these Fourier components
respond to external changes of the parameters p in our system.
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Optimisation of gyrokinetic microstability using adjoint methods 11

terms within it to account for the p-dependence of the Jacobians9 and functional operators.
The term ‘B’ accounts for boundary terms that arise when we integrate by parts to invert
operators such as

〈∇p∂zgν, λν
〉
z onto the adjoint variables,

〈∇pgν, ∂zλν
〉
z, and is given by

B =
∑
ν

2πB0

mν

∫
d2vv‖λ∗

ν

[
∇pgν + Zνe

Tν
J0,νF0,ν∇pφ

−2
Zνe
Tν
v‖J0,νF0,ν∇pA‖ + 4μν

J1,ν

aν
F0,ν∇pδB‖

]∣∣∣∣z=∞

z=−∞

−
∑
ν

2πB0

mν

∫
dz
∫

dμμν
∂B0

∂z
λ∗
ν∇pgν

∣∣∣∣∣
v‖=∞

v‖=−∞
. (3.8)

We can conveniently set these terms to zero by applying appropriate restrictions on
our adjoint variables. These terms consequently define the boundary conditions we
apply to our adjoint variables. The incoming boundary conditions along the magnetic
field on gν are taken to be gν(z → −∞, v‖ > 0, μν), gν(z → ∞, v‖ < 0, μν) → 0,
independently of p, such that dpgν = 0 at these limits. We impose the boundary
condition on λ∗

ν to be λ∗
ν(z → −∞, v‖ < 0, μν), λ∗

ν(z → ∞, v‖ > 0, μν) → 0 in order to
eliminate the boundary term arising from the z integration by parts, and hence remove
the need to calculate ∇p{gν, φ,A‖, δB‖} at the boundaries in z. The boundary term
arising from integration by parts in v‖ is automatically satisfied as it is assumed that
gν(z, v‖ → ±∞, μν) = 0, ∀{z, μν} independently of p. However, it is convenient to
impose that λ∗

ν(z, v‖ → ±∞, μν) = 0 such that λ∗
ν and gν satisfy similar boundary

conditions, whilst also ensuring λν is sensibly defined and normalisable.10 The substitution
λ↔,∗
ν = λ∗

ν(z,−v‖, μν) is made such that the adjoint equations more closely resemble those
in the original gyrokinetic system. This redefines the z-boundary condition on the adjoint
variable λ↔,∗

ν (z → −∞, v‖ > 0, μν), λ↔,∗
ν (z → ∞, v‖ < 0, μν) → 0, which now mirrors

those satisfied by gν .
Setting the remaining coefficients of ∇pgν , ∇pφ, ∇pA‖ and ∇pδB‖ in (3.7) equal to zero

yields the constraint equations for the adjoint variables

Ĝ†
g,ν[p; λ↔

ν ] + Q̂†
g,ν[p; ξ ] + M̂†

g,ν[p; ζ ] + N̂†
g,ν[p; σ ] − Ĉ†

ν[p; λ↔
ν ] = 0, (3.9)

〈Ĝ†
φ,ν[p; λ↔

ν ]〉v,ν + Q̂†
φ[p; ξ ] + N̂†

φ[p; σ ] = 0, (3.10)

〈Ĝ†
A‖,ν[p; λ↔

ν ]〉v,ν + M̂†
A‖[p; ζ ] = 0, (3.11)

〈Ĝ†
B‖,ν[p; λ↔

ν ]〉v,ν + Q̂†
B‖[p; ξ ] + N̂†

B‖[p; σ ] = 0. (3.12)

The expressions for these adjoint operators are stated in Appendix B. The z-derivatives
which appear in the Ĝν operators, under the velocity integrals, in (3.10)–(3.12) pose a
potential difficulty; to calculate the adjoint fields, information is required for λ∗

ν at all
z, for both positive and negative velocities. Given the boundary conditions on λν and
the propagation of information by advection this information is not readily available.

9It is noteworthy to point out that although the Jacobians present in the integrals (as well as the Lagrange multipliers
themselves) are p-dependent, we anticipate that when the distribution function and fields are evaluated at p0 their
derivatives provide zero contribution as they multiply the functional operators, which are identically zero at p0. Hence,
we would be justified in pulling the partial derivative through these inner products, and the final derivative of the growth
rate obtained should be the same.

10An additional consequence is that this choice simplifies the implementation into an existing gyrokinetic code.
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12 G.O. Acton, M. Barnes, S. Newton and H. Thienpondt

This is akin to the problem faced when solving the gyrokinetic system; an incoming
boundary condition is imposed on the distribution function at z → ±∞ when v‖ < 0 and
v‖ > 0, respectively. The outgoing boundary information is not known a priori but must
instead be solved for. Anticipating the difficulties this will create for numerical solution,
we take moments of (3.9) are taken to simplify the adjoint equations. This simplifies
the adjoint equations, bringing them into a form more closely resembling the that of the
gyrokinetic field equation. It should be emphasised that we retain a fully kinetic treatment
in doing so.

A summary of this calculation can be found in Appendix C, and the result after algebraic
manipulation is

γ ∗λ↔
ν + v‖b̂ · ∇z

∂λ↔
ν

∂z
− μν

mν

b̂ · ∇z
∂B0

∂z
∂λ↔

ν

∂v‖
− iωd,νλ

↔
ν + ZνeJ0,νξ

−4π

k2
⊥

ZνeJ0,ν
v‖
c
ζ + 8π

J1,ν

aν
μνσ − Ĉν[λ↔

ν ] = 0, (3.13)

ξ + 1
η

∑
ν

2πB0

mν

∫
d2v

[
iω∗,ν + Zνe

Tν
γ ∗
]

J0,νF0,νλ
↔
ν = 0, (3.14)

ζ − 1
k2

⊥

∑
ν

2πB0

mν

∫
d2v

v‖
c

[
iω∗,ν + Zνe

Tν
γ ∗
]

J0,νF0,νλ
↔
ν = 0, (3.15)

σ −
∑
ν

2πB0

mν

∫
d2v

(
2
μν

Zνe
J1,ν

aν

)[
iω∗,ν + Zνe

Tν
γ ∗
]

F0,νλ
↔
ν = 0, (3.16)

with η = ∑
ν(Zνe)

2nν/Tν . Noting that we can also rewrite Ĝν[p; gν, φ,A‖, δB‖] = γ gν +
L̂ν[p; gν, φ,A‖, δB‖], and using ∇pL|p0

= 0, we can rearrange equation (3.7) to obtain

∇pγ 〈gν, λν〉z,v,ν = −
[
〈∂pL̂ν, λν〉z,v,ν + 〈∂pQ̂, ξ〉z + 〈∂pM̂, ζ 〉z + 〈∂pN̂, σ 〉z

]∣∣∣
p0

, (3.17)

where the partial derivatives have been pulled inside the inner products as the contribution
arising from the Jacobian derivatives is zero by virtue of Ĝν(p0) = Q̂(p0) = M̂(p0) =
N̂(p0) = 0.

To solve for the derivative of the linear growth rate, the following procedure is taken: the
gyrokinetic equations, (2.27)–(2.30), are solved to obtain gν and γ , and then the equations
(3.13)–(3.16) are used to solve for the adjoint variables. These quantities are then all fed
into (3.17) to compute ∇pγ .

3.2. Electrostatic, collisionless limit
We consider now the electrostatic, collisionless limit, as we shall perform numerical tests
in this regime. In the limit of small plasma β, meaning the ratio of plasma to magnetic
pressure tends to zero, the magnetic field perturbations tend to zero. Hence, to extract the
electrostatic, collisionless limit from these equations we set A‖ = δB‖ = 0, and Cν,ν ′ = 0.
The linear, collisionless, electrostatic gyrokinetic equation is

Ĝν[p; gν, φ] = γ gν + v‖b̂ · ∇z
[
∂gν
∂z

+ Zνe
Tν

∂J0,νφ

∂z
F0,ν

]
+ iω∗,νJ0,νφF0,ν

− μν

mν

b̂ · ∇z
∂B0

∂z
∂gν
∂v‖

+ iωd,ν

[
gν + Zνe

Tν
J0,νφF0,ν

]
, (3.18)
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Optimisation of gyrokinetic microstability using adjoint methods 13

which is closed by the electrostatic limit of quasineutrality

Q̂[p; gν, φ] =
∑
ν

Zνe
[

2πB0

mν

∫
d2vJ0,νgν + Zνnν

Tν
(Γ0,ν − 1)φ

]
, (3.19)

with Ĝν and Q̂ identically zero, and M̂, N̂ providing no contribution in the electrostatic
limit. In the above we are once again considering the long time behaviour of a single
wavenumber, and have suppressed the associated subscripts.

As in § 3.1 we decompose the functional operators Ĝν[p; gν, φ] and Q̂[p; gν, φ] into
components that act on gν and φ separately, with all other operators in (3.3)–(3.6) set to
zero. The derivation in § 3.1 is unchanged, with the exception that some terms may now
be omitted. The resulting derivative of the growth rate in the electrostatic, collisionless
regime is

∇pγ 〈gν, λν〉z,v,ν = −
[
〈∂pL̂ν, λν〉z,v,ν + 〈∂pQ̂, ξ〉z

]∣∣∣
p0

, (3.20)

where L̂ν = Ĝν − γ gν is given by equation (3.18), and the adjoint equations are

γ ∗λ↔
ν + v‖b̂ · ∇z

∂λ↔
ν

∂z
− μν

ms
b̂ · ∇z

∂B0

∂z
∂λ↔

ν

∂v‖
− iωd,νλ

↔
ν + ZνeJ0,νξ = 0, (3.21)

ξ + 1
η

∑
ν

2πB0

mν

∫
d2v

[
iω∗,ν + Zνe

Tν
γ ∗
]

J0,νF0,νλ
↔
ν = 0, (3.22)

with λ↔
ν (v‖) = λν(−v‖), and η = ∑

ν(Zνe)
2nν/Tν as before.

4. Normalisations and magnetic geometry

To evaluate (3.20), we need to solve for the set of variables {γ, gν, φ, λ↔
ν , ξ}, evaluated

at the unperturbed geometric values, p0. We do this by implementing and combining the
adjoint system within the local δf -gyrokinetic code stella (Barnes, Parra & Landreman
2019). In this section we write the gyrokinetic equations in normalised coordinates along
with the corresponding normalised equations for the adjoint variables. We then introduce
a specific choice for p, the Miller parametrisation used to specify local magnetic equilibria
in tokamaks (Miller et al. 1998), and detail how the adjoint method can be applied in this
case.

4.1. Normalisation
4.1.1. Gyrokinetic normalisations

Here, we normalise the full electromagnetic gyrokinetic system and give the reduced
electrostatic limit at the end of the section. We choose our reference quantities to be
the same as in stella to aid in numerical implementation, and denote these with
a subscript ‘r’. A reference length scale that characterises the parallel lengths in the
simulation is introduced as L = a; for the Miller formalism stella takes a to be the
half diameter of the plasma volume (minor radius), at the height of the magnetic axis.
The perpendicular reference length scale is taken as a reference gyroradius ρr

.= vth,r/Ωr,
with vth,r = √

2Tr/mr the reference velocity, and Ωr = eBr/mrc, with Tr, nr, Br and mr
being user specified quantities. The normalised variables are denoted with a tilde, and are
provided in table 1.

Multiplying the gyrokinetic equation, rewritten in normalised coordinates, by the
factor (a2/ρrvth,r)exp(−v2/v2

th,ν)/F0,ν , we obtain the normalised low-flow, electromagnetic
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14 G.O. Acton, M. Barnes, S. Newton and H. Thienpondt

Normalised Parameters

Parameter Normalisation

t̃ t a/vth,r
T̃ν Tν/Tr
B̃ B/Br
m̃ν mν/mr
ñν nν/nr
∇̃ a∇
ṽ‖ v‖/vth,ν
μ̃ν μνBr/mνv2

th,ν
ṽth,ν vth,ν/vth,r
g̃k,ν gk,ν

(
exp

(−ṽ2
ν

)
/F0,ν

)
(a/ρr)

φ̃k φk(e/Tr)(a/ρr)

Ã‖,k (a/Brρ
2
r )A‖,k

B̃‖,k (a/Brρr)δB‖,k
ãk,ν k̃⊥ṽ⊥/Ω̃ν

Normalised Variables

〈χ̃〉k,ν = J0,k,ν φ̃k − 2ṽth,ν ṽ‖J0,k,ν Ã‖,k + 4μ̃ν(T̃ν/Zν)(J1,k,ν/ãk,ν)δB̃‖,k
ω̃d,k,ν = (T̃νρr/Zν B̃)(ṽ2

‖vκ + μ̃νv∇B) · (kx∇̃x + ky∇̃y)
ω̃∗,k,ν = (kyρr/2)aBr(dy/dα)(d ln F0,ν/dψ)

TABLE 1. List of normalised parameters and variables.

gyrokinetic equation taken in the long time limit

Ĝk,ν = γ̃ g̃k,ν + ṽth,ν ṽ‖ b̂ · ∇̃z̃
[
∂ g̃k,ν

∂ z̃
+ Zν

T̃ν

∂〈χ̃〉k,ν

∂ z̃
e−ṽ2

ν

]

+ iω̃∗,k,νe−ṽ2
ν 〈χ̃〉k,ν + iω̃d,k,ν

[
g̃k,ν + Zν

T̃ν
〈χ̃〉k,ν e−ṽ2

ν

]

− ṽth,νμ̃ν b̂ · ∇̃B̃0
∂ g̃k,ν

∂ṽ‖
+ 2

Zν
m̃ν

μ̃ν b̂ · B̃0e−ṽ2
ν J0,k,νÃ‖,k − Ĉk,ν[g̃k,ν]. (4.1)

The corresponding transformed, normalised field equations are given by

Q̂k =
∑
ν

Zν ñν

{
2B̃0√

π

∫
d2ṽJ0,k,ν g̃k,ν,0 + Zν

Tν

(
Γ0,k,ν − 1

)
φ̃k,0 + 1

B̃0

Γ1,k,νδB̃‖,k,0

}
, (4.2)

M̂k = − βr

(k⊥ρr)
2

∑
ν

Zν ñν ṽth,ν
2B̃√
π

∫
d2ṽṽ‖J0,k,ν g̃k,ν,0

+
[

1 + βr

(k⊥ρr)
2

∑
ν

Zν ñν
m̃ν

Γ0,k,ν

]
A‖,k,0, (4.3)
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N̂k = 2βr

∑
ν

ñν T̃ν
2B̃0√

π

∫
d2ṽμ̃ν

J0,k,ν

ãk,ν
g̃k,ν,0 +

[
βr

2B̃0

∑
ν

Zν ñνΓ1,k,ν

]
φ̃k,0

+
[

1 + βr

2B̃0

∑
ν

Zν ñν T̃νΓ2,k,ν

]
δB̃‖,k,0, (4.4)

with the reference plasma beta, βr = 8πnrTr/B2
r .

4.1.2. Adjoint normalisation
We choose the normalisation of the adjoint variables in such a way that our optimisation

Lagrangian is dimensionless. In general, this is achieved by enforcing that the dimension
of the adjoint variables in § 3 satisfy

[λν] = [Ĝν]−1 [ξ ] = [Q̂]−1,

[ζ ] = [M̂]−1 [σ ] = [N̂]−1,

}
(4.5)

with [A] denoting the dimensionality of A. The normalised adjoint variables should then
satisfy

λ̃ν = λν

[λν]
ξ̃ = ξ

[ξ ]
,

ζ̃ = ζ

[ζ ]
σ̃ = σ

[σ ]
.

⎫⎪⎪⎬
⎪⎪⎭ (4.6)

Analysis of (2.27), and (2.28)–(2.30) gives the normalisations consistent with those chosen
for the gyrokinetic variables

λ̃ν = λν F0,ν

e−ṽ2
ν

ρrvth,r

a2
ξ̃ = ξ

nreρr

a
,

ζ̃ = ζ
Brρ

2
r

a
σ̃ = σ

Brρr

a
.

⎫⎪⎪⎬
⎪⎪⎭ (4.7)

We then multiply the adjoint equation (3.13), written in terms of normalised coordinates,
by a factor of (ρr/a)F0,ν/e−ṽ2

ν to obtain the electromagnetic, collisional adjoint equations
in normalised units

∂ λ̃↔
ν

∂ t̃
+ γ̃ ∗λ̃↔

ν + ṽth,ν ṽ‖ b̂ · ∇̃z̃
∂ λ̃↔

ν

∂ z̃
− ṽth,ν μ̃ν b̂ · ∇̃z̃

∂B̃0

∂ z̃
∂ λ̃↔

ν

∂ṽ‖
− iω̃d,ν λ̃

↔
ν

+Zν ñνJ0,ν ξ̃ − βr

(k⊥ρr)2
Zν ñν ṽth,νJ0,ν ṽ‖ζ̃ + 2βrT̃νμ̃ν

J1,ν

ãν
σ̃ − Ĉν[λν] = 0, (4.8)

ξ̃ + 1
η̃

∑
ν

2B̃√
π

∫
d2ṽ

[
iω̃∗,ν + Zν

T̃ν
γ̃ ∗
]

J0,νe−ṽ2
ν λ̃↔
ν = 0, (4.9)

ζ̃ −
∑
ν

2B̃√
π

∫
d2ṽ(2ṽth,ν ṽ‖)

[
iω̃∗,ν + Zν

T̃ν
γ̃ ∗
]

J0,νe−ṽ2
ν λ̃↔
ν = 0, (4.10)

σ̃ −
∑
ν

2B̃√
π

∫
d2ṽ

(
4μ̃ν

T̃ν
Zν

J1,ν

ãν

)[
iω̃∗,ν + Zν

T̃ν
γ̃ ∗
]

e−ṽ2
ν λ̃↔
ν = 0, (4.11)
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with λ̃↔
ν = λ̃ν(z̃,−ṽ‖, μ̃ν), and η̃ = ∑

ν Z2
ν ñν/T̃ν . This change of variables has been made

such that the adjoint equations more closely resemble the gyrokinetic equations, with the
boundary conditions on λ̃↔

ν mimicking those on g̃k,ν,0. This is convenient as the numerical
machinery from existing gyrokinetic codes can be re-used. An artificial time dependence
has also been introduced in (4.8) in order to make computation easier, and we solve for the
steady-state solution for λ̃ν , when ∂t̃λ̃ν = 0.11

As before, we can use Ĝν[p; g̃ν, φ̃, Ã‖, δB̃‖] = γ̃ g̃ν + L̂ν[p; g̃ν, φ̃, Ã‖, δB̃‖], with the
added constraint of ∇pL|p0

= 0 to rearrange the above and obtain

∇pγ̃ 〈g̃ν, λ̃ν〉z̃,ṽ,ν = −
[
〈∂pL̂ν, λ̃ν〉z̃,ṽ,ν + 〈∂pQ̂, ξ̃〉z̃ + 〈∂pM̂, ζ̃ 〉z̃ + 〈∂pN̂, σ̃ 〉z̃

]∣∣∣
p0

, (4.12)

with closure equations provided by (4.8)–(4.11).

4.1.3. Electrostatic collisionless limit
Finally, in the electrostatic, collisionless regime, the system of equations to solve in the

normalised stella coordinates is given by

∂ λ̃↔
ν

∂ t̃
+ γ̃ ∗λ̃↔

ν + ṽth,ν ṽ‖ b̂ · ∇̃z̃
∂ λ̃↔

ν

∂ z̃
− ṽth,ν μ̃ν b̂ · ∇̃z̃

∂B̃0

∂ z̃
∂ λ̃↔

ν

∂v‖
− iω̃d,ν λ̃

↔
ν

+Zν ñνJ0,νe−ṽ2
ν ξ = 0, (4.13)

ξ + 1
η̃

∑
ν

2B̃√
π

∫
d2v̂

[
iω̃∗,ν + Zν

T̃ν
γ̃ ∗
]

J0,νe−ṽ2
ν λ̃↔
ν = 0, (4.14)

and

∇pγ̃ 〈g̃ν, λ̃ν〉z̃,ṽ,ν = −
[
〈∂pL̂ν, λ̃ν〉z̃,ṽ,ν + 〈∂pQ̂, ξ̃〉z̃

]∣∣∣
p0

. (4.15)

4.2. Magnetic geometry
The coefficients in equations (4.1)–(4.4), and thus the associated linear growth rates, are
implicitly dependent on the magnetic geometry. For the remainder of the paper we will
take p to be an appropriate set of parameters that specifies the local magnetic geometry.
In particular, we will use the Miller formalism (Miller et al. 1998) to parameterise the
magnetic field on the flux surface of interest. The Miller approach ensures that the
Grad–Shafranov (Shafranov 1966) equation is always satisfied locally by using a set of
independent parameters to define a single flux surface in an axisymmetric device. The
model equations describing the shape of the flux surface with flux label r are

R(r, θ) = R0(r)+ r cos {θ + sin(θ)δ(r)} , (4.16)

Z(r, θ) = rκ(r) sin(θ). (4.17)

Here, R(r, θ) and Z(r, θ) define the major radial and vertical locations for a given
poloidal location, θ , which is related to the cylindrical angle, and δ and κ indicate the
triangularity and elongation of the surface, respectively. Specifying the full set of Miller
parameters provides all of the information required to compute the geometric coefficients
in the gyrokinetic-adjoint system consistent with the local magnetohydrodynamic

11Here, the time derivative serves as an iterative scheme to converge to the correct steady-state solution for λ̃↔ν .
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(MHD) equilibrium (though consistency with a global MHD equilibrium is not
guaranteed).

The user specified input parameters used in the local version of stella are
{rψ0,Rψ0,Δψ0, qψ0, ŝψ0, κψ0, κ

′
ψ0
, Iψ0, δψ0, δ

′
ψ0
, β ′

ψ0
}, corresponding to markers for the minor

and major radii, horizontal Shafranov shift (Δψ0 = R′
ψ0

), safety factor, magnetic shear
(ŝ .= (r/q)q′), elongation and its radial derivative, the external axial discharge current
(which is used as a proxy for the reference magnetic field), triangularity and its
radial derivative and the radial pressure derivative, respectively, with each being
specified at the flux surface of interest. Further information about how the Miller
geometry is treated in stella is given in Appendix E. We henceforth set
p := {rψ0,Rψ0,Δψ0, qψ0, ŝψ0, κψ0, κ

′
ψ0
, Iψ0, δψ0, δ

′
ψ0
, β ′

ψ0
}.

5. Numerical implementation

The aim is to find the magnetic geometry that minimises the linear growth rate for the
ITG instability, and maximises the linear critical temperature gradient across the device.
This requires three distinct stages: first, the computation of ∇pγ at a fixed ion temperature
gradient, T ′

i ; second, its subsequent use in an optimisation algorithm to find the p that
minimises γ for this given T ′

i ; third, iteration of this procedure with variable T ′
i to find the

maximum temperature gradient for which γ ≤ 0 for the range of p considered.

5.1. Initial simulation
Solving, at an initial set of p0, for γ̃ , g̃ν and φ̃ is achieved by allowing stella to run for
a sufficiently long time, such that the solution is dominated by a single normal mode. To
determine the time at which this is satisfied, we employ a convergence test: the growth rate
is calculated at each time step and if the value of this is constant in time (within a specified
tolerance) then the system is deemed to be converged. There are two components of the
convergence test. The first is to check that the growth rates calculated at adjacent time
steps are within a given tolerance of each other. The second is to perform a windowed
average to check that the growth rate remains consistent over a defined number of time
steps. Two windowed averages are done; one over Nt time steps and one over Z(Nt/2) time
steps. When these two window-averaged growth rates agree within a set tolerance, g̃ν and
φ̃ are taken to have converged. The corresponding growth rate is then calculated from the
windowed average.12

5.2. Adjoint simulation
As previously introduced, an artificial time dependence is added to the adjoint equations
to facilitate computation. The solution is found in the steady-state limit, in which the time
derivative appearing in the adjoint equations goes to zero.

The resulting adjoint equations are treated in a similar way to the treatment of the usual
gyrokinetic system of equations in stella. The main aim is to ensure that the parallel
streaming term may be treated separately from the rest of the dynamics through operator
splitting. This is done by discretising in time, and splitting the time derivative into a series

12In cases where there exist two modes of similar growth rates, it may take a long run time to isolate the dominant
mode. In these instances of ambiguity, the adjoint method as demonstrated here, may fail to provide the correct gradient
of the linear growth rate in the desired parameter space at that point. However, it should be noted that as soon as you move
away from this region of ambiguity in the growth rate, the adjoint method can continue to be applicable, and will provide
the correct gradient in the parameter space. Hence, even if you take a step in the wrong direction within the space, the
adjoint method should correct itself to then step in the direction of stability.
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of three steps

∂ λ̃↔
ν

∂ t̃
=
(
∂ λ̃↔

ν

∂ t̃

)
1

+
(
∂ λ̃↔

ν

∂ t̃

)
2

+
(
∂ λ̃↔

ν

∂ t̃

)
3

, (5.1)

where (
∂ λ̃↔

ν

∂ t̃

)
1

= −γ̃ ∗λ̃↔
ν + iω̃d,ν λ̃

↔
ν − Zν ñν ξ̃ , (5.2a)

(
∂ λ̃↔

ν

∂ t̃

)
2

= ṽth,ν μ̃ν b̂ · ∇̃z̃
∂B̃0

∂ z̃
∂ λ̃↔

ν

∂ṽ‖
, (5.2b)

(
∂ λ̃↔

ν

∂ t̃

)
3

= −ṽth,ν ṽ‖ b̂ · ∇̃z̃
∂ λ̃↔

ν

∂ z̃
. (5.2c)

Analogous to stella, the terms in (5.2a) are treated explicitly using a
strong-stability-preserving, third-order Runge–Kutta method (Gottlieb, Shu & Tadmor
2001). In combination with the operator splitting employed within stella the overall
algorithm is second-order accurate in time step size, Δt̃.

The parallel streaming and mirror terms, given by (5.2c) and (5.2b), respectively, are
treated separately, due to the presence of the prefactor ṽth,ν , which increases the relative
amplitude of these terms when considering electron dynamics. As a result these terms have
the potential to exert a stringent Courant–Friedrichs–Lewy condition on the simulation,
and require a small time step to be taken in order to retain accuracy. Thus these terms are
treated implicitly in time to relax this constraint.

The mirror term, (5.2b), is a simple advection equation of λ̃↔
ν in ṽ‖, which is treated

using a semi-Lagrange method, akin to the algorithm used to advect the distribution
function in ṽ‖ within stella. The mirror coefficients are independent of both time and
ṽ‖ and hence the exact characteristics of this equation are known. The interpolation in ṽ‖
is forth order accurate in ṽ‖ grid spacing, Δṽ‖(Barnes et al. 2019).

The streaming term, (5.2c), is also an advection equation in z̃, which is treated using the
Thompson algorithm for tri-diagonal solve. When fully centred in time the discretisation
reduces to the Crank–Nicolson method, which is second-order accurate in time, and z̃ grid
spacings, Δt̃ and Δz̃, respectively.

We are seeking a steady-state solution to the adjoint equations. The same convergence
test is performed on λ̃↔

ν as that performed on the distribution function in order to check
that the complex growth rate has converged to zero within a given tolerance. When this
is satisfied, the resulting λ̃↔

ν is used to solve for λ̃ν . This is then stored for use in the
remainder of the calculation.

5.3. Optimisation loop
Once the gradients ∇pγ are obtained we use them inside an optimisation loop to find the
p that minimises γ . We employ the Levenberg–Marquardt (LM) algorithm, (Transtrum &
Sethna 2012), to find the local minimum. The method adopts a steepest descent behaviour
when the location in parameter space is considered to be far from the minimum, and
progresses towards Gauss–Newton behaviour as one approaches the minimum. This is
achieved by introducing a damping factor, Γ , which is updated with each iteration. The
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algorithm iteratively solves the following:

[H + Γ diag(H)] dp = −∇pγ, (5.3)

with H = ∇2
pγ ≈ (∇pγ )

†∇pγ the Hessian matrix. When Γ is large we have
pnew ≈ pold − α · ∇pγ , with α

.= [Γ diag(H)]−1, which mimics the gradient-descent
algorithm. However, when Γ is small, (5.3) reduces to pnew ≈ pold − H † · ∇pγ , which
matches with the Gauss–Newton algorithm.

The LM formalism is derived using the Taylor expansion, and as such a trust region is
included within the optimisation loop to ensure that the updated value of p is close enough
to the previous, such that the Taylor approximation is valid within the limits for which the
algorithm is applied. The trust region for p is defined via

ρ = 0.5 dp† · H · dp
dp · ∇pγ

< ε̄, (5.4)

where ε̄ is a chosen tolerance. If ρ > ε̄ for a given dp the algorithm rejects the output pnew
and increases the weight Γ in an attempt to improve the accuracy of the approximation.
This helps ensure that the updated value of p is a reasonable one.

It is worth noting that the LM algorithm is designed to find local minima, so there is no
guarantee that the minimum obtained is the global minimum of the system.

We also emphasise that the gradient-based optimisation algorithm is independent of the
adjoint method that has been developed for gyrokinetic microstability. The optimisation
loop may be itself optimised to efficiently search for regions of stability given a gradient
input. Different algorithms, and indeed different parameter choices within each algorithm,
will yield different efficiencies in finding stable solutions. An illustrative example of this
is given later in figure 1, where the step size for the optimisation loop is varied to yield
two distinct paths through the parameter space using the adjoint gradient. However, this
is not the focus of this paper and we will not labour on enhancing the gradient-based
optimisation loop.

6. Numerical results
6.1. Initial benchmark

The first numerical check we perform is to ensure that the values of dpγ0 obtained from our
adjoint method agree with those obtained using a finite-difference approach. Following
this, we perform a more extensive benchmark by conducting a parameter scan in the
growth rate using stella for different values of the Miller parameters. We then choose
an initial set of parameters and perform the adjoint-optimisation scheme described above,
and overlay the results of this with the parameter scan to see how these compare, whilst
checking the growth rates at each point considered by the adjoint-optimisation scheme
against those obtained using a finite-difference approach. As a proof of principle we
chose to vary two parameters: triangularity, δ, and elongation, κ , whilst holding the
other Miller variables fixed. Given that the Miller parametrisation is local to a given
flux surface, this variation is not necessarily consistent with a global solution to the
Grad–Shafranov equation. The choice to vary these two parameters in isolation is driven
by two considerations; first, it is only intended as a proof-of-principle check of the adjoint
approach so simplicity is desirable, and second, previous research has shown that maximal
shaping, with large elongation and triangularity, minimises the linear ITG instability,
whereas parameters such as κ ′ and δ′ have an order a/R0 � 1 is the inverse aspect ratio,
with a and R0 the scales associated with the minor and major radii, respectively (Highcock
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20 G.O. Acton, M. Barnes, S. Newton and H. Thienpondt

FIGURE 1. Two-dimensional parameter scan over elongation and triangularity, with the
colour map indicating the amplitude of the linear growth rate. Here, ky = 0.68, kx = 0.0,
me/mi = 2.7 × 10−4, Ti = Te = 1, ni = ne = 1, a/LTi = a/LTe = 2.42, a/Lni = a/Lne = 0.81,
with a the minor radius of the last closed flux surface. The path taken by the optimisation
algorithm is indicated in white, with the initial point κ = 1.5, and δ = 0.14. A second path,
drawn in grey, is shown indicating the adjoint optimisation with a different step size for the
optimisation loop.

Miller Parameter Initial Value

ρ 0.5
R0 2.94
Rgeo 2.94
Δ −0.11
κ 1.52
κ ′ 0.10
q 2.02
ŝ 0.34
δ 0.14
δ′ 0.29
β ′ 0.069

Equilibrium Miller parameter values used in the initial benchmark simulations.
TABLE 2. List of Miller Parameters.

et al. 2018). Table 2 lists the values of input equilibrium variables in the Miller geometry.
These have been chosen to coincide with values used in Beeke et al. (2020) in order to
verify the qualitative behaviour found.

Given these initial values of δ and κ , we determine the linear growth rates for a
grid of perpendicular wavenumbers within kx < 2.0, ky < 2.0, which reveals that the
most unstable mode is found at {ky, kx} = {0.68, 0.0} for mass ratio me/mi = 2.7 × 10−4,
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normalised species temperatures and densities of Ti = Te = 1, ni = ne = 1 and normalised
species temperature and density gradients of a/LTi = a/LTe = 2.42, a/Lni = a/Lne = 0.81.

In figure 1 we show a scan in the linear growth in elongation and triangularity obtained
by running stella with the Miller parameters specified in table 2, and the values of
κ and δ adjusted accordingly. The contour colour indicates the magnitude of the growth
rate, and the plot extends over a range of values that has been set by reasonable physical
constraints on devices.

Figure 1 shows that increasing the elongation and triangularity of our flux surface
reduces the linear growth rate, and that there exists a region of stability when the shaping
is maximal, in agreement with previous work. The path taken using the adjoint method
is indicated in white. At the chosen starting point, located in the region of instability,
the gradient dpγ is calculated and the value of p = {δ, κ} is updated using the previously
mentioned LM method. The final point is found to be locally stable as the growth rate here
is negative. The algorithm then checks a nearby point to determine if a small region of
stability exists and, once this has been verified, outputs this as the final p value. In this
particular case of a two-dimensional parameter scan, a finite-difference approach could
utilise the same optimisation loop, requiring only three simulations, plus one additional
simulation performed at the next iteration point to verify the growth rate. The adjoint
method must simulate the gyrokinetic equation once, and also solve the adjoint equations
– which are of similar computational cost as the gyrokinetic equation – in order to achieve
the same result. In this particular low-dimensionality case, the advantage of the adjoint
approach is comparatively small over using a finite-difference approach. However, the
computation time required for the traditional method scales linearly with the number
of parameters, so that for an N-dimensional parameter space, N + 1 simulations are
necessary at each iteration point, whilst the adjoint method is effectively independent
of the number of parameters, and only the steady-state solutions to the gyrokinetic and
adjoint equations are required. It can therefore be readily applied to a high-dimensional
parameter space without any significant increase in computational cost.

A second path is plotted on figure 1 in grey. This path is taken using the same adjoint
technique, but increasing the step size within the optimisation loop. When the step size is
small, as with the white path, the LM algorithm more closely resembles a gradient-descent
method, however, when the step size is larger, as with the grey path, the LM algorithm
resembles Newton’s method for gradient optimisation. The figure illustrates how the
adjoint algorithm can be combined with an optimiser to quickly and efficiently converge
to a stable region of parameter space.

6.2. Increasing the critical temperature gradient
We have seen that the adjoint method is a powerful technique for computing stable
points in a large parameter space; figure 1 shows that it can efficiently be used inside an
optimisation loop to find a minimum of the linear growth rate for a given temperature
gradient. Once the adjoint-optimisation loop locates a region in the parameter space
with negative or zero growth rate the local temperature gradient (or other plasma profile
variable of interest) may be increased and the process repeated. Conversely, if a minimum
positive (unstable) growth rate is found, the temperature gradient can be reduced to seek
out the optimal shape that maximises the critical temperature gradient at which linear
instability occurs to seek out microstability.

Figure 2 demonstrates an iterative use of the adjoint optimisation. Here, we have
iterated the temperature gradient, and inside each temperature-gradient iteration the
adjoint method is used to find a stable geometric configuration. However, this principle
could be extended further by continuing to increase the temperature gradient until no
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(a) (b)

FIGURE 2. Plots showing a parameter scan in elongation and triangularity, with a temperature
gradient of a/LTi = 3.80, increased from the a/LTi = 2.42 value used in figure 1. The geometry
of the initial point, located in the unstable region, is provided by final point in figure 1
and is now unstable due to the increased temperature gradient. Here, ky = 0.68, kx = 0.0,
me/mi = 2.7 × 10−4, Ti = Te = 1, ni = ne = 1, a/LTi = a/LTe = 3.80, a/Lni = a/Lne = 0.81.
Note that the colour scales used in the figures above are different than that used in figure 1. The
right-hand side plot is a zoomed in figure of the left.

region of stability is available, indicating a limiting temperature gradient that can be
achieved through geometric considerations alone. Figure 2 is a demonstration that the
adjoint method may be used to increase the temperature gradient, whilst retaining stability
using geometry. Though we have opted to consider only two parameters in the above as
a demonstration and for clarity have focused on ITG, it is possible to employ the adjoint
method to optimise over a large number of geometric parameters simultaneously. Such an
exploration would be expensive using traditional finite-difference methods.

6.3. Negative triangularity
To form a final example here, we note there has been previous evidence that negative
triangularity can offer improvements for microstability, Pochelon et al. (1999), so we
repeated the benchmark scan using negative triangularity. All values of equilibrium Miller
parameters are the same as in table 2, except we now set the initial value of triangularity
to δ = −0.14.

The path taken using the adjoint-optimisation loop is again shown in figure 3 by the
white path, starting in the dark red region at {δ, κ} = {−0.14, 1.52}.

This highlights a key feature of the gradient-based optimisation method: the solution is
not unique, and the output can depend on the starting region within parameter space. See
figure 4 for an illustrative example of this.

Finally, we consider increasing the temperature gradient for the negative triangularity
case, and we repeat the procedure to find a stable region of parameter space. We again take
the input parameters {δ, κ} = {−0.9965, 2.4488} to be the outputs from the previously
optimised case at a temperature gradient of a/LTi = 2.42. Then we use the adjoint
algorithm coupled with the gradient optimiser to look for a stable region of parameter
space at an increased temperature gradient of a/LTi = 3.8. The results of this are shown in
figure 5.
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FIGURE 3. Growth rate contours for a parameter scan with negative triangularity for ky =
0.68, kx = 0.0 and equilibrium parameters me/mi = 2.7 × 10−4, Ti = Te = 1, ni = ne = 1,
a/LTi = a/LTe = 3.80, a/Lni = a/Lne = 0.81. The white line indicates the path taken by the
optimisation algorithm. The initial values of {δ, κ} are taken to be {−0.14, 1.52}.

FIGURE 4. Growth rate contours for a parameter scan with both positive and negative
triangularity for ky = 0.68, kx = 0.0 and equilibrium parameters me/mi = 2.7 × 10−4,
Ti = Te = 1, ni = ne = 1, a/LTi = a/LTe = 3.80, a/Lni = a/Lne = 0.81. The white line
indicates the two paths taken by the optimisation algorithm starting in different regions in
parameter space. The initial values of {δ, κ} are taken to be {0.14, 1.52} and {−0.14, 1.52}.
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FIGURE 5. Growth rate contours for a parameter scan with negative triangularity at a
temperature gradient of a/LTi = 3.80, increased from a/LTi = 2.42. The geometry of the
initial point is taken as the final point in figure 3, and is now unstable due to the increased
temperature gradient. The scan is performed at the same parameter values as those in figure 3
– ky = 0.68, kx = 0.0 me/mi = 2.7 × 10−4, Ti = Te = 1, ni = ne = 1, a/LTi = a/LTe = 3.80,
a/Lni = a/Lne = 0.81. The white line indicates the path taken by the optimisation algorithm.
The initial values of {δ, κ} are taken to be {−0.9965, 2.4488}.

7. Numerical efficiency improvement

Recall that for a conventional finite-difference approach method for a parameter vector,
p, of size N we require N + 1 simulations to be carried out until convergence at each of
the points considered (these are shown by the white dots in the figures above) in order to
compute one gradient in our parameter space. However, when using the adjoint method the
same gradient may be computed for the cost of roughly two simulations – one gyrokinetic,
and one adjoint – which is of similar computational cost as a gyrokinetic simulation.
This approach is essentially independent of the number of parameters used, with the only
additional cost incurred being that associated with calculating the partial derivatives that
appear. However, these are extremely inexpensive for computers and can be calculated
using one processor.

To illustrate this example we will show the progressive computational improvement of
using the adjoint method, as compared with finite differences, and show how this scales
favourably with increasing N . In order for the comparisons to be fair, we shall run all
simulations to a standard time of 100a/vth,i.

7.1. Numerical demonstration of improved efficiency
For the case where N = 2 we are optimising with respect to two parameters, {δ, κ}.
We find that to calculate a gradient at each point in our parameter space requires a
total of ∼ 4.752 CPU (central processing unit) hours on 4 nodes, each with 48 cores
on the supercomputer Marconi. The same calculation as performed using the adjoint
method requires a total of ∼3.168 CPU hours. Though this is only a modest improvement,
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we shall show that as N increases the advantage of using the adjoint method, over a
finite-difference scheme, becomes increasingly apparent.

Increasing the number of parameters to N = 4, optimising over the miller parameters
{Δ, κ, q, δ}, we find that the finite-difference approach requires ∼7.920 CPU hours to
compute a gradient at each point in parameter space. However, when computing the same
gradient using the adjoint method the CPU time, to the precision of the CPU clock, is
∼3.168 CPU hours.

If we increase the number of parameters further to N = 7, optimising over the
miller parameters {R0,Rgeo,Δ, κ, q, ŝ, δ} we find that using the finite-difference approach
requires ∼ 12.672 CPU hours to compute each gradient at a point in parameter space.
When using the adjoint method to compute the same gradient, to the precision of the CPU
clock, is still ∼ 3.168 CPU hours.

Hence, we conclude that the numerical speed up is significant with increasing N . This
allows for the potential of including multiple harmonics within our shaping optimisation
for very little additional computing cost.

For the example including seven parameters, we iterate the process of stepping through
parameter space to find a point of stability. We take our set of initial parameters
to be those given in table 2, and we simulate using a temperature and density
gradient of a/LTi = a/LTe = 2.42 and a/Lni = a/Lne = 0.81, respectively. We perturb the
magnetic geometry by varying {R0,Rgeo,Δ, κ, q, ŝ, δ}. Following iterations of the coupled
adjoint-LM system we find a configuration that is stable when {R0, I,Δ, κ, q, ŝ, δ} =
{2.979, 2.846, 0.562, 1.656, 2.085, 0.167, 0.225}. A cross-section of the initial, unstable
configuration and the final, stable configuration, with their corresponding neighbouring
flux surfaces, are shown in figure 6.

8. Conclusion and discussion

We have derived an adjoint method tailored for local, linear gyrokinetics and
demonstrated its numerical integration within the δf -gyrokinetic code stella. As a
proof-of-principle case we have demonstrated the effectiveness of our adjoint method,
as applied to a gyrokinetic system, by finding the geometric configuration of the magnetic
field that is stable to microinstabilities. The illustrative example given has focused on
increasing the temperature gradient, whilst preserving microstability; ITG instabilities are
often prevalent in fusion devices due to the existence of large temperature gradients, and
thus it is conceivable that geometric considerations could help mitigate their growth and
improving overall efficiency.

As that the computational cost of the adjoint method remains independent of the number
of parameters, its applicability to high-dimensional parameter spaces is readily apparent.
The advantages become more pronounced with an expanding number of parameters, as
the adjoint method outperforms traditional techniques for calculating gradients, where the
computation cost scales with parameter count. This becomes especially beneficial when
examining devices like stellarators, which have a large number of geometric parameters
that can influence the microinstability of the confined plasma.

It is important to stress that although we have demonstrated a specific example focused
on increasing the ITG, this approach can be readily extended to optimise the density
gradient or other plasma properties, by adapting the overarching LM optimisation loop,
without necessitating alterations to the adjoint calculation itself. Such adaptability enables
the application of stella and other local, δf -gyrokinetic codes to explore the impact
of shaping on various types of microinstabilities and assess how geometry can be
instrumental in mitigating their growth.
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(a) (b)

FIGURE 6. Plots of the flux surfaces in the poloidal cross-section. The orange surface is the flux
surface at ρ = 0.5, and the blue and green surfaces are the two adjacent flux surfaces. The image
(a) is the initial unstable configuration, before optimising. The image (b) is the stable, optimised
configuration found using the adjoint-LM system.

A crucial point to note is that, while the numerical examples presented above have
focused on the electrostatic, collisionless regime for optimisation with respect to the
Miller geometry, equations (3.13)–(3.17) maintain generality. They can be applied to an
electromagnetic system, including collisions, and can be optimised using any appropriate
set {pi}. It should also be stressed that the adjoint method is agnostic to the underlying
mechanism driving the linear instability, and provides a gradient in the desired parameter
space independently of the drive. As a result the method presented here is applicable to a
wide range of microinstabilities.

It should also be emphasised that the adjoint method and the gradient-based
optimisation presented are independent of one another. We have considered the simplified
case of optimising the linear growth rate of a single wavenumber, k. For more practical
purposes one may wish to apply the adjoint method to a range of wavenumbers, and design
the external optimisation routine to take an appropriately weighted average of these as the
most unstable wavenumber may change as one moves within the parameter space.

Future extensions of this work may include: implementing the electromagnetic
equations derived into gyrokinetic codes, applying this work to three-dimensional
stellarator geometries, as well as potentially adapting the analytical framework to include
global effects (radial or poloidal), whereby different kx or ky modes are coupled, and
considering the time-dependent adjoint case to include effects such as E × B flow shear.
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Appendix A. Decomposition of operators

Here, we give the definitions of the operators introduced in § 3 in (3.3)–(3.4)

Ĝg,ν[p; gν] = γ gν + v‖b̂ · ∇z
∂gν
∂z

− μ

mν

b̂ · ∇z
∂B0

∂z
∂gν
∂v‖

+ iωd,νgν,

Ĝφ,ν[p;φ] = v‖b̂ · ∇z
Zνe
Tν

F0,ν
∂J0,νφ

∂z
+ i

Zνe
Tν
ωd,νJ0,νF0,νφ + iω∗,νJ0,νF0,νφ,

ĜA‖,ν[p; A‖] = −v
2
‖

c
b̂ · ∇z

Zνe
Tν

F0,ν
∂J0,νA‖
∂z

− i
Zνe
Tν
ωd,νJ0,νF0,ν

v‖
c

A‖ − iω∗,νJ0,νF0,ν
v‖
c

A‖

+ Zνe
Tν

μν

mνc
b̂ · ∇B0F0,νJ0,νA‖,

ĜB‖,ν[p; δB‖] = 2v‖b̂ · ∇zF0,ν
∂

∂z

(
μν

Tν

J1,ν

aν
δB‖

)
+ 2iωd,ν

μν

Tν

J1,ν

aν
F0,νδB‖

+ 2iω∗,ν
μν

Zνe
J1,ν

aν
F0,νδB‖,

Q̂g,ν[p; gν] = ZνeJ0,νgν,

Q̂φ[p;φ] =
∑
ν

(Zνe)2nν
Tν

(Γ0,ν − 1)φ,

Q̂B‖[p; δB‖] =
∑
ν

Zνenν
Γ1,ν

B0
δB‖,

M̂g,ν[p; gν] = −4π

k2
⊥

v‖
c

ZνeJ0,νgν,

M̂A‖[p; A‖] =
[

1 + 4π

k2
⊥c2

∑
ν

(Zνe)2nν
mν

Γ0,ν

]
A‖,

N̂g,ν[p; gν] = 8π
J1,ν

aν
μνgν,

N̂φ[p;φ] =
[

4π
∑
ν

Zνenν
B0

Γ1,ν

]
φ,

N̂B‖[p; δB‖] =
[

1 + 16π
∑
ν

nνTν
B2

0
Γ2,ν

]
δB‖,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A1)
and Ĉν,ν ′ is an appropriate collision operator.

Appendix B. Adjoints of operators

The adjoint operators appearing in equations (3.9)–(3.12) are obtained by performing
integration by parts wherever a derivative acts on the distribution function or a field
variable. After performing the change of variables ṽ‖ → −ṽ‖ the adjoint operators take
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the form

Ĝ†
g,ν[p; λ↔

ν ] = γ ∗λ↔
ν + v‖b̂ · ∇z

∂λ↔
ν

∂z
− μν

mν

b̂ · ∇z
∂B0

∂z
∂λ↔

ν

∂v‖
− iωd,νλ

↔
ν ,

Ĝ†
φ,ν[p; λ↔

ν ] = Zνe
Tν

J0,νF0,ν Ŝν,

Ĝ†
A‖,ν[p; λ↔

ν ] = Zνe
Tν

J0,νF0,ν
v‖
c

Ŝν + Zνe
Tν

μν

mνc
b̂ · ∇B0F0,νJ0,νλ

↔
ν ,

Ĝ†
B‖,ν[p; λ↔

ν ] = 2
μν

Tν

J1,ν

ãν
F0,ν Ŝν,

Q̂†
g,ν[p; ξ ] = ZνeJ0,νF0,νξ,

Q̂†
φ[p; ξ ] =

∑
ν

(Zνe)2nν
Tν

(
Γ0,ν − 1

)
ξ,

Q̂†
B‖[p; ξ ] = 4π

∑
ν

Zνenν
B0

Γ1,νξ,

M̂†
g,ν[p; ζ ] = −4π

k2
⊥

v‖
c

ZνeJ0,νζ,

M̂†
A‖[p; ζ ] =

[
1 + 4π

k2
⊥c2

∑
ν

(Zνe)2nν
mν

Γ0,ν

]
ζ,

N̂†
g,ν[p; σ ] = 8π

J1,ν

aν
μνσ,

N̂†
φ[p; σ ] =

[
4π
∑
ν

Zνenν
B0

Γ1,ν

]
σ,

N̂†
B‖[p; σ ] =

[
1 + 16π

∑
ν

nνTν
B2

0
Γ2,ν

]
σ,

Ĉ†
ν[p; λ↔

ν ] = Ĉν[p; λ↔
ν ],

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B1)

where we have defined

Ŝ[ p; λ↔
ν ] = v‖b̂ · ∇z

∂λ↔
ν

∂z
− iωd,νλ

↔
ν − iω∗,νλ↔

ν . (B2)

Appendix C. Simplifying adjoint equations

Consider taking the following moments of (3.9):

〈
Zνe
Tν

J0,νF0,ν, ·
〉
v,ν

,

〈
Zνe
Tν

J0,νF0,ν
v‖
c
, ·
〉
v,ν

,

〈
2

J1,ν

aν
F0,ν

μν

Tν
, ·
〉
v,ν

, (C1a–c)
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giving

0 =
∑
ν

2πB0

mν

∫
dv‖

∫
dμναν(z, v‖, μν)F0,ν

{
γ ∗λ↔

ν + v‖b̂ · ∇z
∂λ↔

ν

∂z

−μν
mν

b̂ · ∇z
∂B0

∂z
∂λ↔

ν

∂v‖
− iωd,νλ

↔
ν + ZνeJ0,νξ − 4π

k2
⊥

ZνeJ0,ν
v‖
c
ζ + 8π

J1,ν

aν
μνσ

}
, (C2)

where αν can take the forms

αν =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Zνe
Tν

J0,ν,

Zνe
Tν

J0,ν
v‖
c
,

2
J1,ν

aν

μν

Tν
.

(C3)

We now identify different terms in (C2) for each αν which are odd in v‖ so evaluate to zero
when integrated over the domain {−∞,∞}

0 =
∑
ν

2πB0

mν

∫
d2v

Zνe
Tν

F0,ν

⎧⎪⎪⎪⎨
⎪⎪⎪⎩γ

∗J0,νλ
↔
ν + v‖b̂ · ∇zJ0,ν

∂λ↔
ν

∂z
− iωd,νJ0,νλ

↔
ν

−μν
mν

b̂ · ∇z
∂B0

∂z
∂λ↔

ν

∂v‖
+ ZνeJ2

0,νξ + 4π

k2
⊥

ZνeJ2
0,ν
v‖
c
ζ︸ ︷︷ ︸

odd in v‖

+8π
J1,νJ0,ν

aν
μνσ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , (C4)

0 =
∑
ν

2πB0

mν

∫
d2v

Zνe
Tν

F0,ν

⎧⎪⎪⎪⎨
⎪⎪⎪⎩γ

∗J0,ν
v‖
c
λ↔
ν + v2

‖
c

b̂ · ∇zJ0,ν
∂λ↔

ν

∂z

− μν

mν

v‖
c

b̂ · ∇z
∂B0

∂z
∂λ↔

ν

∂v‖
− iωd,ν

v‖
c

J0,νλ
↔
ν

+ ZνeJ2
0,ν
v‖
c
ξ︸ ︷︷ ︸

odd in v‖

+4π

k2
⊥

ZνeJ2
0,ν

(v‖
c

)2
ζ + 8π

J1,νJ0,ν

aν

v‖
c
μνσ︸ ︷︷ ︸

odd in v‖

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , (C5)
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0 = 2
∑
ν

2πB0

mν

∫
d2vF0,ν

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

J1,ν

aν

μν

Tν
γ ∗λ↔

ν + v‖
J1,ν

aν

μν

Tν
b̂ · ∇z

∂λ↔
ν

∂z

− μν

mν

b̂ · ∇z
∂B0

∂z
J1,ν

aν

μν

Tν

∂λ↔
ν

∂v‖
− iωd,ν

J1,ν

aν

μν

Tν
λ↔
ν + Zνeμν

Tν

J0,νJ1,ν

aν
ξ

+ 4π

k2
⊥

Zνe
J0,νJ1,ν

aν

v‖
c
μν

Tν
ζ︸ ︷︷ ︸

odd in v‖

+8π

(
J1,ν

aν

)2
μ2
ν

Tν
σ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ . (C6)

We can then perform integration by parts on the remaining v‖ derivative, using velocity
independence of the fields. Using equations (3.10)–(3.12) it is then possible to simplify the
above equations to produce the results (3.14)–(3.16).

Appendix D. Integral weights

The code stella computes its μ̃ν grid points according to Gauss–Laguerre quadrature
such that the μ̃ν-integration of a variable, f , may be approximated numerically as

B
∫ ∞

0
dμν f (μν) ≈

Nμν∑
i

wieμ̂ν
B
B0

f (μ̂ν), (D1)

where Nμν is the number of grid points in μν , and the definition μ̂ν = μνB0 is made, with
B0 relating to the minimum of the normalised magnetic field. This B0 acts as a scaling
factor that acts on the upper limit of the μν grid such that the grid may be defined solely
based on the number of grid points whilst still covering the necessary domain as μ̂ν is
an independent coordinate that is independent of p. Previously, the importance of the role
of the Jacobians was mentioned with a stress that certain variables are being considered
as fixed, dummy variables, whilst others are dependent on the geometric inputs, p. We
take the μ̂ν variable to be the dummy variable that is kept fixed in the perpendicular
velocity integral such that the weights wi = B/B0 are the only factors to be perturbed in
the integrals and, in a similar manner, the fixed variable, μ̂ν , is weighted by a varying
factor, B0, when it appears in the equations. It should be noted that since the μ̂ν grid is
calculated independently of the geometry, it is the same for each perturbed value of p, and
as such the μ̂ν grids will always align even when multiplying terms that are evaluated at
different p values, such as when coefficients are perturbed but are multiplied by g̃ν(p0).

Appendix E. Geometry implementation

The code stella has an input option to use the Miller parametrisation of a flux
surface; it takes a set of input variables to describe the local geometry of a specified flux
surface along with the two adjacent flux surfaces on either side. We take (4.16) in the form

R(r, θ) = R0(r)+ r cos[θ + sin(θ)δ(r)], (E1)
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with the triangularity redefined as δ(r) := arcsin[δ̄(r)]. We now consider Taylor expanding
in r about r = rψ0

R0(r) = R0(rψ0)+ dR0

dr

∣∣∣∣
rψ0

(r − rψ0)+ · · · ≈ Rψ0 +Δψ0 dr + O(dr2), (E2)

with dr = r − rψ0 , Rψ0 = R0(rψ0), and Δψ0 = dR0/dr|rψ0
. Similarly

δ(r) = δ(rψ0)+ dδ
dr

∣∣∣∣
rψ0

(r − rψ0)+ · · · ≈ δψ0 + δ′
ψ0

dr + O(dr2), (E3)

with δψ0 = δ(rψ0), and δ′
ψ0

= dδ/dr|rψ0
. Combining (E2) and (E3) gives

R(r, θ) ≈ Rψ0 + rψ0 cos[θ + sin(θ)δψ0 ]

+ {Δψ0 + cos[θ + sin(θ)δψ0 ] − rψ0 sin[θ + sin(θ)δψ0 ] sin(θ)δ′
ψ0

}
dr, (E4)

such that the above definition holds on any given flux surface, ψ0. Equivalently, (4.17) can
also be expanded about r = rψ0 by first expanding the elongation

κ(r) = κ(rψ0)+ dκ
dr

∣∣∣∣
rψ0

(r − rψ0)+ · · · ≈ κψ0 + κ ′
ψ0

dr + O(dr2), (E5)

with κψ0 = κ(rψ0), and κ ′
ψ0

= dκ/dr|rψ0
to then write

Z(r, θ) ≈ rψ0κψ0 sin(θ)+ [
κψ0 + rψ0κ

′
ψ0

]
sin(θ) dr. (E6)

These functions are used to describe the geometry of the flux surface of interest and the
two adjacent flux surfaces by setting dr = {0,±Λ}, with Λ � 1 a constant, in order to
evaluate their radial derivatives. These quantities are then used to compute the Jacobian,
magnetic field strength and configuration along with other functions defined on the flux
surface.
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