THE VALENCE OF SUMS AND PRODUCTS

A. W. GOODMAN

1. Introduction. A function $f(z)$ is said to be p-valent in a region \mathscr{D}, if it is regular in \mathscr{D}, if the equation

$$
\begin{equation*}
f(z)=w_{0} \tag{1}
\end{equation*}
$$

has p distinct roots in \mathscr{D} for some particular w_{0}, and if for each complex w_{0}, equation (1) does not have more than p roots in \mathscr{D}. The function $f(z)$ is also said to have valence p in \mathscr{D}. In the case when $p=1$, the function is said to be univalent in \mathscr{D}.

Given two functions f and g, there are various ways of composing them to form a new function $F=f \oplus g$. However, there seems to be little that is known about the valence of F in terms of the valence of f and g. In this note we examine the two simplest cases for \oplus, namely, $(f+g) / 2$ and $(f g)^{1 / 2}$.

It is clear that any result relative to the valence of F is essentially independent of the nature of the domain. For suppose that $\phi(z)$ maps \mathscr{D}_{1} conformally onto \mathscr{D}_{2}. Then any assertion about the valences in \mathscr{D}_{2} for the functions in the equation

$$
2 F(z)=f(z)+g(z)
$$

will also hold in \mathscr{D}_{1} for the functions in the equation

$$
2 F(\phi(z))=f(\phi(z))+g(\phi(z)) .
$$

2. Sums. We first observe that the two functions

$$
f(z)=z+z^{n} / n
$$

and

$$
g(z)=-z+z^{n} / n
$$

are both univalent in the unit circle $E=\{z| | z \mid<1\}$. But $f(z)+g(z)=2 z^{n} / n$ is n-valent in E. Thus, in order to form an interesting problem, we need some normalization that eliminates this type of example. Let $\mathscr{V}_{E}(1)$ be the set of all functions that are univalent in E and have a power series of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} . \tag{2}
\end{equation*}
$$

[^0]It has been conjectured ${ }^{1}$ that if $f \in \mathscr{V}_{E}(1)$ and $g \in \mathscr{V}_{E}(1)$, then

$$
F \equiv(f+g) / 2=z+\ldots
$$

has valence at most 2 in E. The truth is quite different.
Theorem 1. There exist two functions $f \in \mathscr{V}_{E}(1)$ and $g \in \mathscr{V}_{E}(1)$ such that the function $F \equiv(f+g) / 2$ has valence ∞ in E.

Proof. For convenience, we transfer the domain of definition from the unit circle to the right-half plane, $H=\{z \mid \mathscr{R} z>0\}$.

Let $\mathscr{V}_{H}(1)$ be the set of all functions that are univalent in H and have a power series of the form

$$
\begin{equation*}
f(z)=(z-1)+\sum_{n=2}^{\infty} a_{n}(z-1)^{n} \tag{3}
\end{equation*}
$$

in the neighbourhood of $z=1$. Clearly, $f(z) \in \mathscr{V}_{E}(1)$ if and only if

$$
2 f((z-1) /(z+1)) \in \mathscr{V}_{H}(1)
$$

The particular function

$$
\begin{equation*}
f_{1}(z) \equiv \frac{1}{1+i} e^{(1+i) \ln z}-\frac{1}{1+i} \tag{4}
\end{equation*}
$$

has a power series of the form (3). Further (using the proper branch) $\ln z$ carries H into the strip $-\pi / 2<\mathscr{I}(w)<\pi / 2$. The factor $1+i$ rotates this strip counterclockwise through an angle of $\pi / 4$ and stretches it in such a way that each vertical line intersects the resulting strip in a segment of length 2π. It then follows that $f_{1}(z)$ is univalent in H. Similar considerations show that the function

$$
\begin{equation*}
g_{1}(z) \equiv \frac{1}{1-i} e^{(1-i) \ln z}-\frac{1}{1-i} \tag{5}
\end{equation*}
$$

is also in the set $\mathscr{V}_{H}(1)$. Now let $F_{1}(z) \equiv\left(f_{1}(z)+g_{1}(z)\right) / 2$. A brief computation gives

$$
\begin{equation*}
F_{1}(z)=-\frac{1}{2}+\frac{1-i}{4} e^{(1+i) \ln z}+\frac{1+i}{4} e^{(1-i) \ln z} \tag{6}
\end{equation*}
$$

If we select $z_{n}>0$ such that

$$
\ln z_{n}=-\pi / 4+n \pi, \quad n=0, \pm 1, \pm 2, \ldots
$$

it is clear that $F_{1}\left(z_{n}\right)=-1 / 2$ for each integer n. Hence $F_{1}(z)$ has valence ∞ in H.

[^1]3. Products. It has been conjectured (see 4) that if $f \in \mathscr{V}_{E}(1)$ and $g \in \mathscr{V}_{E}(1)$, then the function $f g$ has valence at most 2 . Since the only zero of $f g$ is the double zero at the origin, the function $(f g)^{1 / 2}$ is regular in E, and one might expect that it is univalent in E. If f and g are, in addition, starlike, then this is indeed the case. It seems to be well known that if λ and μ are any two positive numbers with $\lambda+\mu=2$ and if f and g are star-like and univalent in E, then $\left(f^{\lambda} g^{\mu}\right)^{1 / 2}$ is star-like and univalent in E (see Hummel (2)). If we drop the star-like condition and assume only that f and g are normalized univalent, then $(f g)^{1 / 2}$ need not be univalent.

Theorem 2. There exist two functions $f \in \mathscr{V}_{E}(1)$ and $g \in \mathscr{V}_{E}(1)$ such that the function $F=(f g)^{1 / 2}$ has valence ∞ in E.

Proof. Just as in § 2, we transfer the domain from E to H and in fact use the very same functions from $\mathscr{V}_{H}(1)$. Let

$$
F_{2}{ }^{2}(z) \equiv f_{1}(z) g_{1}(z)
$$

where $f_{1}(z)$ and $g_{1}(z)$ are given by equations (4) and (5). Let $z_{k}=e^{x_{k}}$, where x_{6} is any real root of the equation $e_{6}=2 \cos x$. Then it is easy to see that

$$
F_{2}{ }^{2}\left(z_{k}\right)=\frac{1}{2}\left(e^{2 x_{k}}-2 e^{x_{k}} \cos x_{k}+1\right)=\frac{1}{2} .
$$

Since the equation $e^{x}=2 \cos x$ has infinitely many real roots, the function $F_{2}{ }^{2}(z)$ has valence ∞. The same is true of $F_{2}(z)$ no matter how the branch for the square root is selected.

What is the analogue of Theorem 2, if we change the normalization? Since each function in the set $\mathscr{V}_{E}(1)$ omits some value of unit modulus, a suitable linear transformation will give a new univalent function of the form

$$
\begin{equation*}
f(z)=1+\sum_{n=1}^{\infty} a_{n} z^{n}, \quad\left|a_{1}\right|=1 \tag{7}
\end{equation*}
$$

which is never zero in E. Let $\mathscr{V}_{E^{(0)}}(1)$ be the class of all functions $f(z)$ that are univalent in E, never zero in E, and for which $f(0)=1$ and $\left|f^{\prime}(0)\right|=1$. It is a trivial matter to show that Theorem 2 is still true when the class $\mathscr{V}_{E}(1)$ is replaced by $\mathscr{V}_{E^{(0)}}(1)$. If $f \in \mathscr{V}_{E^{(0)}}(1)$, then $1 / f \in \mathscr{V}_{E}{ }^{(0)}(1)$. Hence, if we set $g=1 / f$, then certainly $F^{2}(z) \equiv f(z) g(z)=1$ for all z in E and F has valence ∞. Although I have not been able to find a pair f, g in $\mathscr{V}_{E^{(0)}}(1)$ such that $f g \not \equiv$ constant and $f g$ has infinite valence, it is easy to show that no upper bound can be placed on the valence of $f g$. Indeed, we select a sequence of positive constants, $a_{1}, a_{2}, \ldots, a_{n}$, such that

$$
\sum_{k=2}^{n} k a_{k}<1 \quad \text { and } \quad 1>a_{2}>a_{3}>\ldots>a_{n}
$$

Then the function

$$
f_{2}(z) \equiv 1+z+\sum_{k=2}^{n} a_{k} z^{k}
$$

is univalent and never zero in E (Kakeya-Eneström Theorem). Hence, $f_{2}(z)$ and

$$
g_{2}(z) \equiv\left(1+z+\sum_{k=2}^{n-1} a_{k} z^{k}\right)^{-1}=1-z+\ldots
$$

are in $\mathscr{V}_{E^{(0)}}(1)$. On the other hand, the product

$$
f_{2}(z) g_{2}(z)=1+a_{n} z^{n}+\sum_{k=n+1}^{\infty} b_{k} z^{k}
$$

has valence greater than $n-1$.
Suppose that f and g are in $\mathscr{V}_{E^{(0)}}^{(1)}$ and, in addition, $f^{\prime}(0)=g^{\prime}(0)=1$. It seems likely that there are two such functions for which $f(z) g(z)$ has valence ∞ in E, but so far I have not been able to find such a pair.
4. Open questions. The results obtained in $\S \S 2$ and 3 suggest a number of questions. Let f and g belong to the set $\mathscr{V}_{E}(1)$. It is easy to prove that there is some positive constant R_{0} such that for every such pair the function $F=(f+g) / 2$ is univalent in $|z|<R_{0}$. What ${ }^{2}$ is the largest such R_{0} ? More generally, let $\mathscr{V}_{E}(p)$ be the set of all functions $f(z)$ that are p-valent in E, and have a power series of the form

$$
\begin{equation*}
f(z)=z^{p_{0}}+\sum_{n=p_{0}+1}^{\infty} a_{n} z^{n}, \quad 1 \leqq p_{0} \leqq p . \tag{8}
\end{equation*}
$$

Let $R(p, q, s)$ be the largest number with the property that if $f(z) \in \mathscr{V}_{E}(p)$ and $g(z) \in \mathscr{V}_{E}(q)$, then the function $F(z) \equiv f(z)+g(z)$ has valence less than or equal to s in $|z|<R(p, q, s)$. What can be said about the numbers $R(p, q, s)$ beyond the obvious and trivial facts?

What type functions can be obtained as the sum (or product) of functions $f \in \mathscr{V}_{E}(p)$ and $g \in \mathscr{V}_{E}(q)$? For example, is a Blaschke product ever the sum of two univalent functions, or the sum of two functions with finite valence? Further, we might re-examine Theorem 2 when one of the two functions is restricted to be star-like. More generally, let $f \in \mathscr{V}_{E}(p)$ and let $g \in \mathscr{V}_{E}(q)$, where g is generalized star-like in E (see $\mathbf{1}$ and $\mathbf{3}$). What can be said about the valence of $f g$ in E ? Certainly, if both f and g are star-like, then $f g$ is $(p+q)$-valent and star-like in E.

Suppose that both f and g are normalized, univalent, and convex in E. Then $(f g)^{1 / 2}$ is univalent star-like, but it is easy to show that $(f g)^{1 / 2}$ need not be convex. Under the same conditions, $(f+g) / 2$ need not be convex, but I do not know whether it is always star-like, or even always univalent. ${ }^{2}$

If f and g are normalized star-like and univalent, then $(f+g) / 2$ need not be univalent. But perhaps some upper bound can be put on the valence of $(f+g) / 2$ under these conditions.

[^2]
References

1. A. W. Goodman, On the Schwarz-Christoffel transformation and p-ialent functions, Trans. Amer. Math. Soc. 68 (1950), 204-223.
2. J. A. Hummel, The coefficient regions of starlike functions, Pacific J. Math. 7 (1957), 13811389.
3. __ Multivalent starlike functions, J. Analyse Math. 18 (1967), 133-160.
4. Problem 21, Classical function theory problems, Bull. Amer. Math. Soc. 68 (1962), 21-24.

University of South Florida, Tampa, Florida

[^0]: Received January 13,1967 . This work was supported by the National Science Foundation, Research Grant GP-5689.

[^1]: ${ }^{1}$ This conjecture, in a more general form, appeared in print in (4) in 1962, but I had already considered the problem at least ten years earlier.

[^2]: ${ }^{2}$ Added in proof. After the paper was accepted, I learned that T. H. MacGregor had solved this problem. His results will appear in J. London Math. Soc.

