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Abstract

We complete a paper written by Edward Pollak in 1974 on a multitype branching process
the generating functions of whose birth law are fractional linear functions with the same
denominator. The main tool is a parameterization of these functions adapted using the
mean matrix M and an element w of the first quadrant. We use this opportunity to give
a self-contained presentation of Pollak’s theory.
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1. Introduction

Pollak (1974) developed the following idea of Harris (1963, p. 49). Suppose that we have a
branching process (Zn)

∞
n=0 of k types with birth law exemplified for k = 2 by

E(sZ1 | Z0 = (1, 0)) = a11s1 + a12s2 + b1

c1s1 + c2s2 + d
,

E(sZ1 | Z0 = (0, 1)) = a21s1 + a22s2 + b2

c1s1 + c2s2 + d
,

(1)

where the aij , the bi , the ci , and d are real numbers and s = (s1, s2). Each function appearing in
the components is called a fractional linear function, or homography. Note that the denominators
are the same. Harris (1963, p. 49) observed that in such circumstances E(sZn | Z0) has a similar
form. For k = 1, when

E(sZ1 | Z0 = 1) = hG(s) = (as + b)/(cs + d)

and when

G =
(

a b

c d

)

is in the group GL(2, R) of nonsingular 2 × 2 real matrices, elementary solutions are known
for all classical problems concerning Zn. This is due to the fact that hGG1 = hG ◦hG1 for all G

and G1 in GL(2, R), which implies that asymptotic calculations about hGn(s) = E(sZn | Z0)

become easy. The index of Harris (1963) gives many references to this fractional linear case.
For a textbook treatment, see Toulouse (1999, Section 13.6).
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1092 A. JOFFE AND G. LETAC

The fact that hGG1 = hG ◦ hG1 still holds for R
k is easily checked by brute calculation.

The geometer will find that it hardly needs a proof, since hG can be seen as a projective
transformation of the projective real space of dimension k. Note that while there are still some
restrictions on the (k + 1) × (k + 1) matrix G, to avoid trivialities, we do not assume that G is
nonsingular.

Let M be the classical mean matrix of the birth law and denote by Ik the unit matrix of order k.
Pollak’s exposition overlooks the fact that Ik −M is not necessarily invertible when the spectral
radius, ρ, of M is larger than 1 (Equation (2.9) of Pollak (1974) and all its consequences).
This note gives counterexamples (see (13), below) and corrects this point by showing that the
conclusions drawn by Pollak still hold (Theorem 3, part 1). This is achieved by a systematic
use of linear algebra which unifies the computations. As a by-product we obtain new results:
identification of the domain of the parameters (Proposition 2); identification of the limit law
of the normalized projection of Zn for ρ < 1 under conditioning by Zn �= 0 (Theorem 1);
identification of the limit law of the normalized projection of Zn on the orthogonal space of the
left eigenvector ν of M corresponding to ρ ≥ 1, under conditioning by Zn �= 0 (Theorem 1 and
Theorem 2, part 3); and comments on the total progeny and imbeddability (Sections 7 and 8).
Basically, we present a self-contained exposition which includes most of Pollak’s (1974) results.
It is interesting to observe that these results can be proved without the help of the general theory
of multitype branching processes.

Section 2 studies the fractional linear distributions on N
k and Section 3 studies the frac-

tional linear birth laws extending (1) to N
k . Essentially, the fractional linear birth laws are

parameterized by a pair (R, w), where R is an arbitrary substochastic k × k matrix and w is an
arbitrary line vector of (0, ∞)k . Another useful parameterization is given by the pair (M, w).
In particular, the nth iteration of the birth law can be easily expressed using the parameterization
(Mn, w(n)) where

w(n) = w(Ik + M + · · · + Mn−1)

(Proposition 3). However, the knowledge of M and w will impose strong restrictions on the
domains of w and, respectively, M . In particular, the matrix M of a fractional birth law is
by no means arbitrary, and its row vectors have to be close to proportionality. A consequence
is the surprising result (Proposition 5) that if ρ > 1 then all the other eigenvalues of M have
a modulus less than or equal to 1. This is in contrast with the case k = 1, where the linear
fractional birth law yields the same asymptotic behavior as the general case when the variance
is finite.

Sections 4, 5, and 6 give probabilistic applications of these results for ρ < 1, ρ = 1, and,
respectively, ρ > 1. Sections 7 and 8 comment on the total progeny and the imbeddability. In
spite of its limitations, the multitype linear fractional process is the only one for which we can
perform extensive explicit computations.

2. Fractional linear distributions on N
k

Let us denote by E the linear space of row vectors, x = (x1, . . . , xk), of k real numbers and
by E∗ the linear space of column vectors of k real numbers. Such notation distinguishes the
state space E from the phase space E∗. If x is in E and y is in E∗ then we write 〈x, y〉 =
x1y1 + · · · + xkyk , which identifies E∗ with the dual space of E. Note that no Euclidean
structure is necessary here. A consequence of this formalism is that any k × k real matrix can
be interpreted either as an endomorphism of E∗ or as an endomorphism of E. In particular,
for t ∈ E and b ∈ E∗ we frequently consider the square matrix b ⊗ t , which represents the

https://doi.org/10.1239/jap/1165505210 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1165505210


Multitype linear fractional branching processes 1093

respective endomorphisms of E and E∗ defined by x 
→ 〈x, b〉t and y 
→ b〈t, y〉. Note that in
fact 〈t, b〉 = tb and b ⊗ t = bt , but we believe that this less simple notation is easier to follow.
Finally, sometimes we shall consider E∗ (but not E) to be a commutative algebra by defining
ss′ by coordinatewise multiplication. This gives meaning to the map s 
→ es from E∗ to E∗.

A fractional linear distribution on N
k is the distribution of a random variable of E denoted

X = (X1, . . . , Xk), with values in N
k , such that its generating function, fX, has the form

fX(s1, . . . , sk) = E(s
X1
1 · · · sXk

k ) = a1s1 + · · · + aksk + b

c1s1 + · · · + cksk + d
,

where a = (a1, . . . , ak) and c = (c1, . . . , ck) are in E, b and d are in R, and s ∈ E∗. We also
use the compact notation

fX(s) = E(sX) = 〈a, s〉 + b

〈c, s〉 + d
.

Let us first observe some obvious facts about such a distribution. The sequence (a, b, c, d) is
called the sequence of parameters of the fractional linear distribution.

1. a1 + · · · + ak + b = c1 + · · · + ck + d, since fX(1) = 1.

2. Replacing (a, b, c, d) by (λa, λb, λc, λd) for some λ �= 0 produces the same fractional
linear distribution.

3. If ci = 0 for some i then Xi is concentrated on {0, 1}.
4. In the case d = 0 we must have b = 0 in order to have analyticity at 0. However, this also

implies that a and c are equal, that is, Pr(X = 0) = 1. If d �= 0 then Pr(X = 0) = b/d.

5. If a1 = c1 then E(s
X1
1 ) = fX(s1, 1, . . . , 1) = 1. This says that X1 is concentrated on

{0}. A similar observation holds for the other Xi .

6. The vector m = f ′
X(1) of the means equals (a − c)/(c1 + · · ·+ ck + d). The calculation

is simplified by property 1.

Definition 1. A fractional linear distribution with parameters (a, b, c, d) is said to be regular
if d �= 0 and if, for all i = 1, . . . , k, ci �= 0 and ai �= ci .

Thus, regularity implies that X is not concentrated on a set {x ∈ E : xi = 0, 1} for some i.
We consider the two subsets T and P of E defined by

T = {t = (t1, . . . , tk) ∈ (0, 1)k : t1 + · · · + tk < 1},
P = {r = (r1, . . . , rk) ∈ [0, 1]k : 0 < r1 + · · · + rk ≤ 1}.

Thus, P is the closure of the open set T minus the point (0, . . . , 0). For (t, r) ∈ T × P , we
define the fractional linear law P(t, r) on N

k with generating function

f (s) = r0 + t0
r1s1 + · · · + rksk

1 − t1s1 − · · · − tksk
= r0 + t0

〈r, s〉
1 − 〈t, s〉 ,

where r0 = 1− (r1 +· · ·+ rk) and t0 = 1− (t1 +· · ·+ tk). Note that the parameters (a, b, c, d)

and the mean, m, of P(t, r) are

a = t0r − r0t, b = r0, c = −t, d = 1, m = r + 1 − r0

t0
t .
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1094 A. JOFFE AND G. LETAC

Remark 1. Denote by e1, . . . , ek the canonical basis of E; thus, for each i, ei is a row vector
whose ith component is 1 and whose other components are 0. Given a t ∈ T , or w = t/t0 ∈
(0, ∞)k with t = w/(1 + 〈w, 1〉), the values of m are severely restricted: in fact, m is in the
closed convex simplex with extreme points {0, w + e1, . . . ,w + ek} with the restriction m �= 0.
Conversely, given m ∈ (0, ∞)k , the set, Cm, of w ∈ (0, ∞)k such that m = r + (1 − r0)w

is the intersection of (0, ∞)k with the strip {λm : λ ≥ 1} + C, where C is the closed convex
simplex with extreme points {−e1, . . . ,−ek}.

To see that P(t, r) does exist, let us introduce the geometric distribution gt on N
k with

generating function
t0

1 − t1s1 − · · · − tksk
.

In other words, if gt (dx) = ∑
α∈Nk gt (α)δα(dx) we have, with n = |α| = α1 + · · · + αk ,

gt (α) = n!
α1! · · · αk! t0t

α1
1 · · · tαk

k = n!
α! t0t

α.

The distribution P(t, r) is a mixing of a mass at 0 with the k translations of gt by the basis
vectors. More specifically, we have

P(t, r) = r0δ0 + (r1δe1 + · · · + rkδek
) ∗ gt ,

where ‘∗’ is the convolution product, δa is the Dirac measure on a ∈ N
k , and (e1, . . . , ek) is

the canonical basis of R
k .

The next proposition shows that each regular fractional linear distribution has the form
P(t, r) for some (t, r) ∈ T × P .

Proposition 1. The map (t, r) 
→ P(t, r) is a bijection between T × P and the set of regular
fractional linear distributions on N

k .

Proof. Clearly the map is one-to-one. The surjectivity is the only thing that we have to prove.
Consider the generating function fX(s) = (〈a, s〉+b)/(〈c, s〉+d) of a fixed, regular fractional
linear distribution on N

k . Since d �= 0 and using property 3, without loss of generality we may
assume that d = 1. This implies that b ≥ 0, from property 4.

Now we observe that

〈a, s〉 + b

〈c, s〉 + 1
= b +

∑
α∈Nk

|α|!
α! (−c)α

(
b −

k∑
j=1

aj

cj

αj

|α|
)

sα.

This implies that, for all α ∈ N
k , we have

(−c)α
(

b −
k∑

j=1

aj

cj

αj

|α|
)

≥ 0.

Denoting by S ⊂ N
k the set of α such that b − ∑k

j=1(aj /cj )(αj /|α|) = 0, we find that

α ∈ N
k \ S implies

(−c)α
(

b −
k∑

j=1

akj

cj

αj

|α|
)

> 0.
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A little thought shows that this implies cj < 0 for all j = 1, . . . , k. Finally, for all α ∈ N
k we

obtain

b ≥
k∑

j=1

aj

cj

αj

|α| .

Note that the right-hand side of this inequality is a convex combination with rational coefficients
αi/|α| for the numbers aj /cj . Since this is true for all α ∈ N

k , this is equivalent to saying that
b ≥ aj /cj for all j = 1, . . . , k.

We now write t = −c. To see that t ∈ T we observe that the function

z 
→ z(a1 + · · · + ak) + b

1 − z(t1 + · · · + tk)

is analytic in the unit disc and equals 1 for z = 1. This proves that t ∈ T . We let t0 =
1 − (t1 + · · · + tk) > 0 and we write r0 = b and r = (1/t0)(a + r0t). The fact that
r0 + aj /tj ≥ 0 for all i implies that r ∈ P . To see this we write rj = (1/t0)(aj + r0tj ) ≥ 0.
The fact that r0 ∈ [0, 1) follows from the fact that b/d is the mass of the atom at the origin and
is less than 1 since the distribution is regular. Thus, r is in P .

3. Fractional linear birth laws

Let us consider a (k + 1) × (k + 1) matrix G written in four blocks,

G =
(

A b

c d

)
,

where A is a k × k matrix, c is in E, b is in E∗, and d is a real number. We shall denote by 1
the element of E∗ whose entries all equal 1. Assume that the real number d does not equal 0
and consider the fractional linear mapping s 
→ hG(s) from a neighborhood of 0 ∈ E∗ into E∗
defined by

hG(s) = As + b

〈c, s〉 + d
.

It is easily checked that the composition of two fractional linear mappings hG and hG1 satisfies
hG ◦ hG1(s) = hGG1(s) in a suitable small neighborhood of 0. This implies, in particular, that
iterating the function hG n times gives hG ◦ hG ◦ · · · ◦ hG = hGn . Note that hG = hG1 if and
only if there exists a real number λ �= 0 such that G1 = λG.

If G is chosen such that each component of hG is the generating function of a fractional
linear distribution on N

k , we shall say that hG is the generating function of a fractional linear
birth law, and we consider the multitype branching process Z = (Zn)n≥0 such that

(E(sZ1 | Z0 = ei ))
k
i=1 = hG(s).

Property 1, above, shows that the (k+1)-dimensional column vector with each component equal
to 1 is an eigenvector of G. As stated in the introduction, birth laws of this type are mentioned
in Harris (1963, p. 49). In these circumstances we say that the matrix G is associated with this
law. According to property 6, the matrix of the means of this birth law is

M = 1

〈c, 1〉 + d
(A − 1 ⊗ c).
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We shall say that this fractional linear birth law is regular if each component is regular. It
is easy to see that regularity implies positive regularity in the sense of Harris (1963, p. 38).
Proposition 1 enables us to parameterize the set of regular fractional linear birth laws. The
following statement is an immediate consequence of Proposition 1.

Proposition 2. Let R = (rij ) be a k × k matrix whose rows are in P , and consider the vector
of E∗ defined by R0 = 1 − R1. Let t be fixed in T and let w = t/t0 ∈ (0, ∞)k . Then

G ≡ G(t, R) =
(

t0R − R0 ⊗ t R0
−t 1

)

is a matrix associated with a regular fractional linear birth law. Conversely, every regular
fractional linear birth law has an associated matrix which is proportional to G(t, R), for some
matrix R with rows in P and some t ∈ T . Finally, the matrix of the means is

M ≡ M(t, R) = R + (1 − R0) ⊗ w = R(Ik + 1 ⊗ w).

The transformation (t, R) 
→ (w, M) satisfies

R = M(Ik − 1 ⊗ t), R0 = (Ik − t0M)1, t0 = 1

1 + 〈w, 1〉 , t = w

1 + 〈w, 1〉 .

The parameterization of G in terms of M and w is given by

G =
(

t0M − 1 ⊗ t (Ik − t0M)1
−t 1

)
. (2)

Proof. The only result needed in the proof is the identity

Ik + 1 ⊗ w = Ik + 1 ⊗ t

t0
= (Ik − 1 ⊗ t)−1.

We omit the remaining details.

Remark 2. The parameterization in terms of (t, R) 
→ G(t, R) is simple in the sense that it
defines a bijection of our regular fractional linear birth laws with the product set T × P k . The
parameterization in terms of the mean M and w = t/t0 offers different advantages, but one
should realize that, given w, the set of matrices M such that there exists a birth law associated
with (2) is severely restricted by Remark 1: each row mi of M must belong to the simplex of E

with vertices {0, w + e1, . . . ,w + ek}, where w = t/t0. Thus, given a matrix M with positive
coefficients, there exists a t ∈ T such that there exists a birth law associated with (2) if and
only

⋂k
i=1 Cmi

is not empty (where Cm ⊂ (0, ∞)k is as defined in Remark 1 and mi is the ith
row of M). For instance, for k = 2 the matrix

M =
(

1 10
10 10

)

cannot be the matrix of means of a fractional linear birth law.

We now observe that the parameterization in terms of (M, w) leads to an easy computation
of the iterates of hG.
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Proposition 3. Let G be a matrix associated with a regular fractional linear birth law para-
meterized by t ∈ T and by the mean M . Let w = t/t0. If Gn is associated with t (n) ∈ T and
Mn, then w(n) = t (n)/t

(n)
0 in E satisfies w(n) = w(Ik +M +· · ·+Mn−1). Furthermore, let ρ

denote the eigenvalue of M of largest modulus, and denote by ν and µ two eigenvectors of M

associated with ρ that are elements of E and E∗, respectively, and have positive components
such that 〈ν, µ〉 = 1. Then

lim
n→∞ w(n) = w(Ik − M)−1 for ρ < 1, (3)

lim
n→∞

w(n)

n
= 〈w, µ〉ν for ρ = 1, (4)

lim
n→∞

w(n)

ρn
= 1

ρ − 1
〈w, µ〉ν for ρ > 1. (5)

Proof. Since hGn is the generating function of a regular fractional linear birth law with mean
Mn, by Proposition 2 there exists a t (n) ∈ T and a real number λn �= 0 such that

Gn = λn

(
t
(n)
0 Mn − 1 ⊗ t (n) (Ik − t

(n)
0 Mn)1

−t (n) 1

)
.

Thus, we write Gn+1 = GnG and, as a consequence, obtain
(

t
(n+1)
0 Mn+1 − 1 ⊗ t (n+1) (Ik − t

(n+1)
0 Mn+1)1

−t (n+1) 1

)

= λn

λn+1

(
t
(n)
0 Mn − 1 ⊗ t (n) (Ik − t

(n)
0 Mn)1

−t (n) 1

) (
t0M − 1 ⊗ t (Ik − t0M)1

−t 1

)

= λn

λn+1

( ∗ ∗
−t

(n)
0 t − t0t

(n)M t
(n)
0 + t0t

(n)M1

)
(6)

(where asterisks indicate terms which do not at the moment interest us). This shows that

t (n+1) = t
(n)
0 t + t0t

(n)M

t
(n)
0 + t0t (n)M1

, t
(n+1)
0 = 1 − t (n+1)1 = t0t

(n)
0

t
(n)
0 + t0t (n)M1

.

Writing w(n) = t (n)/t
(n)
0 , we obtain w(n+1) = w(n)M + t/t0, which leads to w(n) = w(Ik +

M + · · · + Mn−1) by induction on n. Let us also mention here that by considering the (2,2)th
entry of (6) we obtain λn+1 = λn(t

(n)
0 + t0t

(n)M1). Since w(n) = w(Ik + M + · · · + Mn−1),
we obtain 〈w(n+1), 1〉 = w(n)M1 − w, which gives a way to compute λn by induction. We
therefore have the set of useful formulae

λn = tn0 (1 + 〈w(n), 1〉), t
(n)
0 = 1

1 + 〈w(n), 1〉 , t (n) = w(n)

1 + 〈w(n), 1〉 . (7)

Clearly, if ρ < 1 then the matrix (Ik − M)−1 exists and (3) holds. If ρ ≥ 1 then we rely on
the Perron–Frobenius theorem (see Harris (1963, p. 37)), which implies that

Mn = ρn(µ ⊗ ν + Qn), (8)

where the largest modulus of the eigenvalues of Q is less than or equal to r , with r < 1. This
leads easily to (4) and (5).
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For future use it is useful to state explicitly the form of the generating function of Zn in
terms of M and w, and two consequences of this form.

Proposition 4. Let G be a matrix associated with a regular fractional linear birth law para-
meterized by w and by the mean M . Using the notation of Proposition 3, we have

(E(sZn | Z0 = ei ))
k
i=1 = hGn(s) = [Mn − 1 ⊗ w(n)]s + [(1 + 〈w(n), 1〉)Ik − Mn]1

1 + 〈w(n), 1〉 − 〈w(n), s〉 , (9)

hGn(s) − hGn(0) = (1 + 〈w(n), 1〉)Mns − 〈w(n), s〉Mn1
(1 + 〈w(n), 1〉)(1 + 〈w(n), 1〉 − 〈w(n), s〉) , (10)

1 − hGn(0) = Mn1
1 + 〈w(n), 1〉 . (11)

Proof. This is just a reformulation of (2) in which (w, M) is replaced by (w(n), Mn).

Now comes a surprising result, which is fundamental to the proof of part 3 of Theorem 2.

Proposition 5. Let M be the mean matrix of a regular fractional linear birth law. Then M has
at most one eigenvalue of modulus greater than 1.

Proof. Let ρ0 be any eigenvalue of M such that 1 < |ρ0|. Let f ∈ E∗ + iE∗ be such that
Mf = ρ0f with f �= 0. Observe that, for all n,

Mnf = ρn
0 f .

From Proposition 2 there exists some substochastic matrix R(n) such that

Mnf = ρn
0 f = R(n)(Ik + 1 ⊗ w(n))f

with w(n) = w(Ik + · · · + Mn−1). Therefore,

ρn
0 f = R(n)(f + 〈w, f 〉(1 + ρ0 + · · · + ρn−1

0 )1).

Since |ρ0| > 1, we have

f = ρ−n
0 R(n)f + 1 − ρ−n

0

ρ0 − 1
〈w, f 〉R(n)1.

Since R(n) is substochastic, limn→∞ ρ−n
0 R(n) = 0 and, thus, h = limn→∞ R(n)1 exists.

Thus, f = [1/(ρ0 − 1)]〈w, f 〉h. The fact that f �= 0 implies that 〈w, f 〉 �= 0. From
〈w, f 〉 = [1/(ρ0 −1)]〈w, f 〉〈w, h〉 we therefore obtain ρ0 = 1+〈w, h〉. Now, a basic remark
is that h does not depend on ρ0. Therefore, ρ0 = ρ and the result is proved.

Remark 3. The above proof gives an expression for ρ, namely ρ = 1 + 〈w, h〉 with h =
limn→∞ R(n)1. The following proposition will help us in building a counterexample to the
statement of Equation (2.9) of Pollak (1974).

Proposition 6. If ρ > 1 then 1 is an eigenvalue of M with right eigenvector f if and only if 1
is an eigenvalue of R with right eigenvector f such that 〈w, f 〉 = 0. If R is a substochastic
matrix with eigenvalue 1, then the associated eigenspace E1 has dimension greater than or
equal to two.
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Proof. First, if 1 is an eigenvalue of M with eigenvector f , then

f = Mnf = R(n)(Ik + 1 ⊗ w(n))f .

From Proposition 3, we obtain

f = R(n)f + n〈w, f 〉R(n)1. (12)

The representation of R in Proposition 2 yields

R(n) = Mn

(
Ik − 1 ⊗ w(n)

1 + 〈w(n), 1〉
)

and R(n)1 = Mn1
1 + 〈w(n), 1〉 ,

from which it follows that

lim
n→∞ R(n)1 = (ρ − 1)

µ ⊗ ν1
〈w, µ〉〈ν, 1〉 = (ρ − 1)

µ

〈w, µ〉 .

Hence, R(n)1 is bounded away from 0 and it follows from (12) that 〈w, f 〉 = 0 and f = Rf .
Second, the converse result is obvious (since Mf = R(Ik + 1 ⊗ w)f = Rf = f ).
Third, if R is a substochastic matrix with eigenvalue 1, then, by the Perron-Frobenius

theorem, the associated eigenspace, E1, contains a nonnegative eigenvector. By the first
argument, the eigenvector f of this eigenspace cannot be a multiple of a nonnegative vector.
This implies that dim E1 ≥ 2.

Example 1. Take k = 3, t = ( 1
5 , 1

5 , 2
5 ), and, thus, w = (1, 1, 2), and let

R =
⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠ and M = R(Ik + 1 ⊗ w) =

⎛
⎝1 2 2

2 1 2
1 1 3

⎞
⎠ . (13)

In this case we have ρ = 5 and the other eigenvalues of M are ±1. Thus, (I − M)−1 does
not exist, even though ρ > 1, contradicting Equation (2.9) of Pollak (1974). An even simpler
counterexample is obtained for k = 2, R = I2, and an arbitrary w. For w = (1, 1), we obtain

M =
(

2 1
1 2

)
.

In (1) it is obtained by taking a11 = a22 = 1, a12 = a21 = b1 = b2 = 0, d = 3, and
c1 = c2 = −1.

4. The case ρ < 1

Theorem 1. Let Z be a branching process governed by a regular fractional linear birth law
parameterized by t ∈ T and by the mean M . Denote by ν the left eigenvector of M for the
eigenvalue normalized by 〈ν, 1〉 = 1. Let us assume that ρ < 1. Let w(∞) = w(Ik − M)−1

and

t (∞) = w(∞)

1 + 〈w(∞), 1〉 .
Then limn→∞ Zn = 0 almost surely. Furthermore,

lim
n→∞ E(sZn | Zn �= 0, Z0 = ei ) = 〈ν − t (∞), s〉

1 − 〈t (∞), s〉 .

In particular, this does not depend on i = 1, . . . , k.
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Remark 4. Note that Pollak (1974, p. 454, ll. 2–6) considered the last formula to be too
complicated to be presented, while our parameterization leads to a compact form.

Proof of Theorem 1. We denote by µ the left eigenvector of M for the eigenvalue ρ such
that 〈ν, µ〉 = 1. Recall that each component of µ is positive. We use

E(sZn | Zn �= 0, Z0 = ei ) = (hGn(s) − hGn(0))i

1 − (hGn(0))i
. (14)

Equation (8) implies that Mns ∼ ρn〈ν, s〉µ and Mn1 ∼ ρnµ. Substituting (10) and (11) into
(14) and using these equivalences and the limit (3) leads to the result.

5. The case ρ = 1

Theorem 2. Let Z be a branching process governed by a regular fractional linear birth law
parameterized by t ∈ T and by the mean M . Let us assume that ρ = 1. Then the following
statements hold.

1. limn→∞ Zn = 0 almost surely.

2. The limit of the distribution of Zn/n conditioned by the event {Zn �= 0, Z0 = ei} exists
and is an exponential distribution concentrated on the line Rν. More specifically, its
Laplace transform is (1 + 〈w, µ〉〈ν, s〉)−1.

3. Denote by π the canonical projection of E on the quotient space E/Rν. Then the limit,
α, of the distribution of π(Zn)/

√
n conditioned on the event {Zn �= 0, Z0 = ei} exists,

and the Fourier transform of α is, for all s ∈ E∗ such that 〈ν, s〉 = 0,∫
E/Rν

ei〈u,s〉α(du) = lim
n→∞ E(ei〈Zn/

√
n,s〉 | Zn �= 0, Z0 = ei ) = (1 + 〈w, µ〉〈ν, s2〉)−1,

where s2 is the vector in E∗ obtained by squaring the coordinates of s. The limit does
not depend on i = 1, . . . , k.

Remark 5. For a general multitype process, part 2 of Theorem 2 can be found in Athreya
and Ney (1972, p. 191). Here, for a rational multitype generating function, we have an
elementary proof and a rather explicit description, also given in Pollak (1974, Equation (4.4)).
The Fourier transform of α shows that any of its projections on a real line is a bilateral
exponential distribution. However, it is worthwhile describing α(du) in some detail. Observe
that s 
→ Q(s) = 〈w, µ〉〈ν, s2〉 is a positive-definite quadratic form on the subspace (Rν)⊥ of
E∗, which is the orthogonal complement of Rν as well as the dual space of E/Rν. Introduce
the unique symmetric linear map a from (Rν)⊥ to E/Rν defined by 〈a(s), s〉 = Q(s) (it is
easy to prove that 〈a(s), s′〉 = 〈w, µ〉〈ν, ss′〉 where ss′ is simply the vector of E∗ obtained by
coordinatewise multiplication). We now write

(1 + Q(s))−1 =
∫ ∞

0
e−σ 2/2e−(σ 2/2)〈a(s),s〉σ dσ

= C

(2π)(k−1)/2

∫
E/Rν

ei〈u,s〉
(∫ ∞

0
e−σ 2/2e−〈u,a−1(u)〉/2σ 2 dσ

σk−2

)
du,

where C is a constant depending both on the choice of Lebesgue measure du on E/Rν and on a.
Actually if E/Rν has the Euclidean structure induced by the squared norm ‖u‖2 = 〈u, a−1(u)〉
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and if du is the canonical Lebesgue measure associated with this Euclidean space, then C = 1.
Computing the last integral yields

α(du) = C

2(2π)(k−1)/2
〈u, a−1(u)〉(k−2)/4K(k−2)/2(

√
〈u, a−1(u)〉) du,

where Kp(λ) = ∫ ∞
0 e−(λ/2)(t+1/t)tp−1 dt is a modified Bessel function of the third kind.

The normalization in part 3 of Theorem 2 was introduced by Ney; see Athreya and Ney
(1972, p. 192, Theorem 2).

Proof of Theorem 2. 1. The fact that Zn tends to 0 is classical.

2. This is also a classical fact, but for a fractional linear birth law the proof is rather simple. In
(14) we replace s by

e−s/n = 1 − s

n
+ ε(n)

n
,

where ε(n) ∈ E∗ tends to 0. We now use (10), (11), and (4) and we apply (8) to the case ρ = 1.
Passing to the limit gives the result.

3. The proof of part 3 is similar. In order to avoid the introduction of an artificial Euclidean
structure on E, we consider the random variable π(Zn)/

√
n with values in the quotient space

H = E/Rν. We look for its Fourier transform, which is a function on the dual space H ∗ =
(E/Rν)∗, which in turn is the subspace of vectors s ∈ E∗ such that 〈ν, s〉 = 0. In (14) we
replace s by

eis/
√

n = 1 + is√
n

− s2

n
+ ε(n)

n
,

where ε(n) ∈ E∗ tends to 0 and 〈ν, s〉 = 0. We again use (10), (11), and (4) and apply (8) to
the case ρ = 1. Passing to the limit then gives the final result.

6. The case ρ > 1

Theorem 3. Let Z be a branching process governed by a regular fractional linear birth law
parameterized by t ∈ T and by the mean M . Let us assume that ρ > 1. Respectively denote by
µ and ν the right and left eigenvectors of M for ρ normalized such that 〈ν, µ〉 = 〈ν, 1〉 = 1.

1. Denote by q ∈ E∗ the column vector defined by qi = Pr(limn→∞ Zn = 0 | Z0 = ei ),
namely the vector of extinction probabilities. Then q is characterized by the fact that 1 − q is
the eigenvector of M for the eigenvalue ρ such that 1 − 〈t, q〉 = t0ρ. Furthermore, (q, 1)� is
an eigenvector of G for the eigenvalue ρt0 and, with the notation w = t/t0, we have

q = 1 − (ρ − 1)µ

〈w, µ〉 .

2. The limit W = limn→∞ Zn/ρ
n exists almost surely, and its distribution for Z0 = ei is a

mixture of a Dirac mass at 0 and an exponential distribution concentrated on the line Rν. More
specifically, its Laplace transform is

E(e−〈W ,s〉 | Z0 = ei ) = qi + (1 − qi)
ρ − 1

ρ − 1 + 〈w, µ〉〈ν, s〉 . (15)
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3. Denote by π the canonical projection of E on the quotient space E/Rν. Then the limit, βi ,
of the distribution of π(Zn)/ρ

n/2 conditioned on Z0 = ei is given by its Fourier transform,
defined for all s ∈ E∗ such that 〈ν, s〉 = 0 by

lim
n→∞(E(ei〈π(Zn)/ρn/2,s〉 | Z0 = ei ))

k
i=1 = 1 − (ρ − 1)µ

〈w, µ〉 + (ρ − 1)µ

ρ − 1 + 〈w, µ〉〈ν, s2〉 .

Remark 6. The remarks, following the statement of Theorem 2, about a distribution concen-
trated on E/Rν are still applicable. The probability βi is a mixture of the image of the dilation
x 
→ (ρ − 1)1/2x of the probability α occurring in Theorem 2 with an atom at 0 of mass
qi . Also, note that parts 1 and 2 of Theorem 3 were given in different forms in Pollak (1974,
Equations 3.1 and 4.3).

Example 2. (k = 2.) The probability of extinction can be explicitly computed. For k = 2 we
are given three positive numbers, t0, t1, and t2, such that t0 + t1 + t2 = 1, and the mean matrix

M =
(

m1 m12
m21 m2

)
.

We compute q = (q1, q2)
�. For simplicity, we write 	 = (m1 − m2)

2 + 4m12m21. Thus,
the largest eigenvalue of M is ρ = 1

2 (m1 + m2 + √
	). We have ρ > 1 if and only if

1 + det M < trace M . The corresponding eigenvector, (v1, v2) = (1 − q1, 1 − q2), therefore
satisfies the linear equation

(ρ − m1)v1 = m12v2.

Furthermore, the condition 1 − 〈t, q〉 = t0ρ becomes

t1v1 + t2v2 = t0(ρ − 1)

and v1 and v2 are obtained by solving a linear system.

Proof of Theorem 3. The vector q = (q1, . . . , qk)
� of extinction probabilities (see Harris

(1963, p. 41)) belonging to E∗ satisfies

G

(
q

1

)
= λ

(
q

1

)
(16)

for some real number λ �= 0; that is, (q, 1)� is an eigenvector of G. To see this, we observe
that hG(q) = q implies (16) with λ = 〈c, q〉 + d. Furthermore, since this birth law is regular,
it is positively regular in the sense of Harris (1963, p. 38). The largest positive eigenvalue, ρ,
of M exists and is simple and all complex eigenvalues of M have modulus less than ρ. This
implies that

t0Mq − 1t�q + (Ik − t0M)1 = λq,

which, with the above value of λ, is equivalent to

t0M(1 − q) = λ(1 − q).

Now, from a classical result (Harris (1963, Chapter 2, Theorem 8.1), 1 − q has strictly positive
components. The Perron–Frobenius theorem (Harris (1963, p. 37)) implies that λ = t0ρ and
that the dimension of the eigenspace of t0M associated with it is one.
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For the second part of the theorem, the existence of the almost-sure limit W of Zn/ρ
n is

classical. To find the distribution of W , we look for the limit of the sequence

(E(e−〈s,Zn/ρn〉 | Z0 = ei ))
k
i=1 = hGn(e−s/ρn

) as n → ∞.

Now we replace s in (9) by e−s/ρn = 1 − ρ−ns + ρ−nε(n), where the vector ε(n) tends to 0
as n tends to ∞. We then use (5) and (8) to obtain (15) by an easy calculation.

The proof of the third part is quite similar to that of the third part of Theorem 2, starting
from

eis/ρn/2 = 1 + is

ρn/2 − s2

ρn
+ ε(n)

ρn
.

The calculations are standard and use the fact that Ln = Mn − ρnµ ⊗ ν has a spectral norm,
ρn

0 , which is less than or equal to 1, from Proposition 5. Thus, ρ−n/2Ln tends to 0, which leads
to the result.

7. Total progeny

For ρ ≤ 1, the multitype branching process Z = (Zn)n≥0 governed by a regular fractional
linear birth law satisfies limn→∞ Zn = 0, and the total progeny,

S =
∞∑

n=0

Zn,

is a finite vector. When Z0 = z0 ∈ N
k is not random, we write S = Sz0 . We also write

gj (s) = E(s
Sej ) and g(s) = (g1(s), . . . , gk(s))

�. It is then easy to see that, as in the one-
dimensional case,

g(s) = diag(s)hG(g(s)).

Here again this is equivalent to saying that there exists a λ �= 0 such that
(

diag(s)A diag(s)b

c d

) (
g(s)

1

)
= λ

(
g(s)

1

)
.

Here the eigenvalue λ must equal 〈c, g(s)〉 + d. However, while for k = 1 an explicit solution
for g is easily obtained from

g(s) = 1 − s(r − t) − [(1 − s(r − t))2 − 4s(1 − r)t]1/2

2t
,

for k = 2 the explicit solution is too complex to be displayed here, since the eigenvalue λ has
the form

p1 + (p3 + p
1/2
6 )1/3 + (p3 − p

1/2
6 )1/3,

where pj is an inhomogeneous polynomial in s1 and s2 of degree j .

8. Imbedding in a continuous semigroup for k ≥ 2

For k = 1, consider the fractional birth law governed by the generating function

f (s) = hG(s) = 1 − r + (1 − t)
rs

1 − rs
= (r − t)s + 1 − r

1 − ts
,
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where, in the notation of Proposition 2,

G ≡ G(t, r) =
(

r − t 1 − r

−t 1

)
=

(
(1 − t)m − t 1 − (1 − t)m

−t 1

)
,

with m = r/(1 − t) as usual. If α > 0 then the fractional power of the matrix G is

Gα =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

t0 − r

(
r0r

α − ttα0 r0(t
α
0 − rα)

−t (tα0 − rα) −trα + r0t
α
0

)
for m �= 1, (17)

rα−1
(

1 − (α + 1)t αt

−αt 1 + (α − 1)t

)
for m = 1. (18)

It can indeed be checked both that α 
→ Gα is continuous on [0, ∞) with the convention
G0 = I2 and, by inspection, that GαGβ = Gα+β .

This formula can be guessed, for positive integers α = n, from the results of Proposition 3.
The fractional linear function hGn = hG ◦ · · · ◦ hG is a generating function. Since hM = hM ′
implies the existence of a λ such that M ′ = λM , there must exist t (n) ∈ (0, 1), r(n) ∈ (0, 1],
and λ(n) > 0 such that Gn = λnG(t(n), r(n)). By applying w(n) = w(1 + · · · + mn−1) and the
identities (7), for m �= 1 we find that

w(n) = t (n)

t
(n)
0

= ttn − trn

tn+1
0 − rtn0

, λ(n) = −trn + r0t
n
0

t0 − r
,

t(n) = (tn0 − rn)t

−trn + r0t
n
0

, r(n) = (1 − t (n))mn.

(19)

If m = 1, that is, if r = 1 − t = t0, similar calculations hold with

w(n) = n
t

t0
, λ(n) = tn−1

0 (1 + (n − 1)t),

t (n) = nt

1 + (n − 1)t
, r(n) = t0

1 + (n − 1)t
.

(20)

Thus, (17) and (18) hold for any positive integer α = n.
Now we define λ(α), t (α), and r(α) for the continuous parameter α ≥ 0 by simply replacing

n by α in (19) (for m �= 1) and in (20) (for m = 1). We observe that λ(α) > 0, t (α) ∈ (0, 1),
and r(α) ∈ (0, 1] still hold; therefore, Gα = G(t(α), r(α)) makes sense. Note that Gα defined
by (17) and (18) satisfies Gα = λ(α)Gα . Checking that Gα satisfies GαGβ = Gα+β for all
α, β ≥ 0 is a tedious task. The reward is that, for

hGα (s) = (r(α) − t (α))s + 1 − r(α)

1 − t (α)s
,

we have hGα ◦ hGβ
(s) = hGα+β

(s). Furthermore, limα→0 hGα (s) = s. Thus, α 
→ hGα

provides a continuous imbedding of the transition matrix of the Markov chain (Zn)n≥0 into a
continuous semigroup. The imbedding of a discrete branching process into a continuous one
has a venerable history. Other than Harris (1963, Chapter V, Section 5) and Athreya and Ney
(1972, Chapter III, Section 12), we cite Karlin and McGregor (1968a), (1968b), Goryainov
(1993), (1995), (2002), and Grey (1975). We thank the referee for these references. Most of
these authors mention the fractional linear case and give its characteristic properties for k = 1.
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We might wonder whether a similar situation holds for k > 1. As we are going to see
for k = 2, the answer is ‘not in general’. There are multitype branching processes with a
fractional birth law which are not imbeddable. In (7) we in general cannot simply replace the
positive integer n by the positive real number α as we can for k = 1. To see this, we first state
without proof a simple proposition giving a necessary condition for imbeddability, and make
an elementary remark about 2 × 2 matrices.

Proposition 7. Let G be the (k + 1) × (k + 1) matrix associated with a regular birth law with
mean matrix M , such that the process is imbeddable. Then the following statements hold.

1. There exists a continuous mapping α 
→ Mα , from [0, ∞) to the matrices with positive
entries, such that Mα+β = MαMβ , M1 = M , and limα→0 Mα = Ik .

2. There exists a k×k matrix Q such that M = eQ, where Q has only nonpositive diagonal
elements and the nondiagonal elements of Q are positive.

Remark 7. If M has rank 1, say M = a⊗b where a and b are vectors with positive components,
then Mα = 〈a, b〉α−1M satisfies Mα+β = MαMβ and M1 = M , but limα→0 Mα �= Ik . In
general, note that statement 2 of the previous proposition implies that M = eQ is invertible.

Proposition 8. Let a, b ∈ (0, 1). There then exist α, β ≥ 0 such that(
a 1 − a

1 − b b

)
= exp

(−α α

β −β

)

if and only if a + b > 1.

We now show from these two propositions that there exists a fractional birth law for k = 2
which is not imbeddable, while M is invertible. For this, we take (w1, w2) = t/t0 with
w1 + w2 < 1. The mean vectors m which are compatible with w are in the triangle with
vertices (0, 0), (w1 + 1, w2), and (w1, w2 + 1) (see Remark 1). Thus, we can find two such
vectors, of respective forms (a, 1 − a) and (1 − b, b). Since they lie in the prescribed triangle,
they satisfy

w1 ≤ a ≤ 1 − w2, w2 ≤ b ≤ 1 − w1.

Taking, for instance, ε < 1
2 (1−w1−w2) and a = w1+ε, b = w2+ε will give a+b < 1. Thus,

the fractional linear birth law associated with M and w does exist, while from Propositions 7
and 8 it is not imbeddable. Choosing ε properly gives det M �= 0.
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