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Abstract

A forwards induction policy is a type of greedy algorithm for Markov decision processes.
It is straightforward to implement and is optimal for a large class of models, especially
in stochastic resource allocation. In this paper we consider a model for the optimal
allocation of resources in pre-clinical pharmaceutical research. We show that although
they are not always strictly optimal, forwards induction policies perform well.
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1. Introduction

Markov decision processes (MDPs), also known as discrete-time stochastic control pro-
cesses, are central to the study of sequential optimisation problems that arise in a wide range
of fields. An MDP is characterised by sets of states and actions, with associated Markovian
transition probabilities, and rewards. An optimal solution is a policy for choosing actions which
in some sense maximises the total reward. The calculation of optimal policies is in general
a complex computational challenge. The standard approaches are iterative schemes based on
dynamic programming; see, for example, Puterman (2005).

Gittins (1979) (also see Gittins et al. (2011a)) proposed a forwards induction (FI) approach
to the development of policies for MDPs. The principle of FI is that the next decision is always
that which maximises the immediate expected reward rate, with no attempt to look further
ahead. It is thus a kind of greedy algorithm. FI policies are straightforward to implement, and
are optimal for a large class of models, especially in stochastic resource allocation. They are
discussed in detail in Glazenbrook and Gittens (1993) and Glazenbrook (1995).

In this paper we investigate the application of FI policies to resource allocation problems in
pharmaceutical research, where candidate drug (CD) selection is an important subproblem. The
conditions for an MDP do not hold, and FI policies are not in general strictly optimal. We shall
proceed as follows. In Section 2 we discuss an allocation problem in pharmaceutical research.
In Section 3 we describe a simplified CD selection problem and show the optimality of FI for
this problem. The use of FI for the general CD selection problem is discussed in Section 4, and
its performance is assessed by simulation tests in Section 5. It turns out to perform very well.

The authors are developing the software package OPRRA (see Gittins et al. (2011b)). This
is an acronym for optimising pharmaceutical research resource allocation. OPRRA is able to
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implement all the algorithms described in this paper. Its development is an important motivation
for the work described here.

2. Resource allocation in pharmaceutical research

2.1. Background

Typically a commercial pharmaceutical project begins with bio-scientists developing a
hypothesis for the way in which a chemical intervention in the body’s processes might achieve
the desired results. This is likely to mean identifying a target protein (or simply target)
with which the proposed new drug should bind. This leads to screening tests in which many
compounds are examined for relevant activity.

An important stage in pharmaceutical research is the discovery of a lead compound. This is
a compound which has sufficiently promising characteristics to be used as the starting point of
a lead series (LS) of compounds for use in screening tests in the search for a compound which
is worthy of submission for clinical trials as a CD. Because of the uncertainties involved, it is
desirable after finding a first LS to find further backup LS. We shall describe the search for a
CD as optimisation of the relevant LS. Any subsequent compound selected for development
after the first CD is found from any particular LS is called a backup compound. At most 20%
of CDs emerge as marketable drugs, so typically more compounds are screened while a CD is
undergoing clinical trials, so that one or more backup compounds may in turn be selected for
development. These may be from more than one LS, which reduces the risk that they all fail
for the same reason.

The number of LS to be optimised and the number of CDs to be selected from each of them
are key factors that influence the profitability of a pharmaceutical project. Yu and Gittins (2008)
considered a class of (s, n) selection policies which optimise the profitability with respect to s
and n, where s is the number of LS from which we hope to find CDs and # is the maximum
number of LS from which we will attempt to find CDs. Charalambous and Gittins (2008)
investigated explicit optimal policies for the selection of successive CDs for two restricted
versions of the model considered in Yu and Gittins (2008).

In the next subsection we introduce the notation and underlying assumptions for the CD
selection problem.

2.2. Preliminaries

The process of finding a candidate drug is modelled as five successive stages.

1. Before screening.

2. Looking for an LS.

3. Looking for a backup LS.

4. Looking for a first CD in an LS, also described as optimising the LS.

5. Looking for a backup CD from an LS which has already provided one or more CDs.

The probability that stage i reaches a successful conclusion, given the successful completion
of the relevant earlier stages, we write as p;, withg; = 1 — p;, i = 1,2,3,4, 5. Parallelism is
assumed between stages 3 and 4, and stages 3, 4, and 5 can be repeated as often as necessary,
except that if stage 3 fails, we assume that it is not repeated, for the reason that any repetition
would also result in failure. Reasonably realistically, we also assume that ps = 1.0. We assume
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that the effort rates assigned to stages 3 and 4 when they are in parallel are adjusted to ensure
that the two stages both finish at the same time.

For each stage, we have an allocation u;, i = 1,2, 3,4, 5, where u; is measured in terms of
senior scientists. Denote by g the cost per senior scientist per year.

The time taken to complete each stage is #;, i = 1, 2, 3,4, 5, except that the time required
to complete stage 4, given that a first LS has already been successfully optimised, is pt4
(0 < p < 1). An important aspect of the overall resource allocation problem for a project is
to choose suitable values for the stage allocations u;. This issue is discussed in Yu and Gittins
(2008), including the role of the effectiveness function governing the relationship between u;
and #;. In this paper, however, our primary focus is on the selection of CDs.

The drug development process involves three successive phases of clinical trials. Each phase
has a duration ¢#;, probability of success p;, conditional on the success of any previous phase or
phases, and associated cost ¢;, i = I, II, III.

A CD is successful if it passes through all three phases of clinical trials and becomes
marketable. An LS is good if it can produce successful CDs. The target is achievable if it
is possible to find a good LS. Let p, be the probability that the target is achievable, given
that we have found a CD; let p; be the probability that an LS is good given that the target is
achievable; and let p. be the probability that a CD is successful given that it is from a good
LS and the target is achievable. For achievable targets, LS are assumed to be good or bad
independently, and CDs from good LS are assumed to be successful or not independently.
Writing p for the probability that a CD is successful, we have p = prpnpm = paPbPe-

Since the value of a future sum of money is lower than that of the same sum of money
available immediately, an exponential discount rate y is used to calculate the expected present
value of future expenditure. For income, there is additional discounting. Sales of a drug will
be lower if the launch time is delayed, due to the general tendency for better drugs to become
available from competitors as time goes by. This effect is described as obsolescence and can be
represented by an increase in the discount rate. We denote by v the obsolescence rate, and by
y) the discount rate including obsolescence, so that y; = y + v. The expected value of the new
drug is discounted at the rate y;, whereas the expected expenditure is discounted at the rate y.

Let D be the expected value at the time when it becomes available of the first new drug from
the project which completes phase III clinical trials successfully. The expected value of the
first CD, ignoring the cost of clinical trials and without discounting for the time taken, is pD.

The additional expected value, at the time when it becomes available, of any second or
subsequent new drug is smaller than D, because of competition from the first new drug and
any others which are earlier. This is a separate effect from the obsolescence effect already
described, which is caused by competition from other companies’ products. We assume that
the additional expected present value of the nth new drug from a projectis A"~ 'D, 0 < A < 1.

The following proposition is proved in Charalambous and Gittins (2008).

Proposition 1. The additional expected value of a subsequent CD conditional on the set of
previously selected CDs is pD E(n™ | A), where n = 1 — (1 — 1) p., m is the number of earlier
CDs which are either from the same LS or from another LS which is good, and A is the event
{the target is achievable).

The measure which we shall use for profitability is the profitability index (PI), which is the
expected reward divided by the expected cost. The algorithms considered in this paper seek
to maximise the PI for the project. This is one of the standard criteria for the profitability of
investment projects (see, for example, Brealey and Myers (2000)). A portfolio of projects with
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high PI values leads to a high value for the total expected reward, or net present value (NPV),
when the total capital available for investment is limited. Our focus is on the efficient use of
resources before clinical trials start. For that reason, we evaluate the total reward as the net
reward after deduction of the cost of clinical trials, and include in the denominator only the
costs incurred before clinical trials start.

The PI is a reward rate, and may be defined for a CD, or for an LS, as well as for the project
as a whole. In all cases the expectations are conditional on the previous history of the project.
Although our setup is not a discounted MDP, we shall proceed to use PI as the basis for defining
FI policies.

2.3. FI policies

First some definitions. A decision point is a point at which a decision must be taken either
to look for a CD to send to clinical trials, in which case we must also decide on the LS from
which to look for a CD, or to stop. The youngest LS is the LS from which the minimum number
of CDs have been selected. PI(CD) is the PI for an additional CD from the youngest already
optimised LS, conditional on the set of previously selected CDs. PI(LS) is the PI for starting a
new LS, conditional on the set of previously selected CDs. PI(Proj) is the PI for the project as
a whole, maximised over all selection policies.

There are two versions of PI(LS), depending on whether stage 3 is to be run alongside stage 4.
Choosing between them involves evaluating the PI over the CDs chosen from two successive
LS. The simpler version, without a concurrent stage 3, is the PI for the LS up to the number &
of CDs which gives the maximum PI; k has the property that the kth CD is the last CD from
the LS for which the PI is higher than the PI for the whole LS up to that point.

In an FI policy, the sequence of CDs sent for clinical trials is determined with reference to
a reference PI, Pl(ref). The purpose of the reference PI is that it works as an approximation
to the optimal PI for the project, and, therefore, screens out CDs and LS which are likely to
reduce the overall PI. FI policies are more flexible than (s, n) policies, and might be expected
to perform better for suitable values of Pl(ref).

The FI selection algorithm is as follows.

Algorithm 1. (FI selection algorithm.)
(a) Decide a reference PI, PI(ref).
(b) At each decision point, compare PI(CD), PI(LS), and PI(ref).

(c) (1) IfPI(CD) is the biggest, take an additional CD from the youngest optimised LS
and go back to step (b).

(i) If PI(LS) is the biggest, optimise a new LS.

o [f the attempt to find a CD in this LS is successful, take the PI-maximising
number of CDs from this LS, then go back to step (b).

o [fthe attempt is not successful, go back to step (b).

(iii) If PI(ref) is the biggest, stop.

3. A simplified CD selection problem

In this simplified problem, we allow CDs to be selected from at most one LS. We also assume
in this section that whenever stage 4 is carried out stage 3 is carried out in parallel. This is for
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simplicity. The algorithm whose performance is described in Section 5 ensures that stage 3 is
only carried out if there is a possibility that the resulting LS will be used.

The Fl algorithm proceeds as before except that after the first LS, to be successfully optimised,
there is no longer the option to optimise a new LS. The main conclusion of this section is that,
for this modified problem, FI is optimal. We start with some further simplified problems and
solution algorithms which provide useful building blocks.

3.1. Infrastructure

Problem 1. For j = 1,2, ..., let r; be real numbers and c; be positive real numbers, and
let g; = rj/c;, where g; > qj41 when j > 1. Define R(k) = Zl;:l rj, Ck) = Zle cj,
Q(k) = R(k)/C(k), and Q = sup; Q(k). The problem is either to show that Q < 0 or to find

k such that Q(k) = Q.

The following proposition on ratios of real numbers is the key to solving this and similar
problems.

Proposition 2. (a) For real numbers x1, xa, y1, y2 with y1 > 0and yy > 0, the following three
statements are equivalent:

X1 X2 X1 x1+x2 X1+x2  x2
< —, — < and < —.

yiowlow v+ Nty »n
(b) The same is true with ‘<’ replaced by ‘="throughout, or by ‘<’.

Proof. (a) Assume that x1/y; < x3/y2, so that x;y» < x2y1. Adding x1y; to both sides of
this inequality we get x1y» + x1y1 < x2y1 + x1y1 and, hence, x1/y; < (x1 + x2)/(y1 + y2).
Similarly, adding x, y» to both sides of the inequality instead of x;y; gives us (x; + x2)/(y1 +
y2) < x2/y2. Now assume thatx1 /y; < (x1+x2)/(y1+y2); thus, x1y1 +x2y1 < x1y1+x1y2,
so that x,y1 < x1y2 and, thus, x1/y; < x3/y2. A similar proof shows that this also follows
from the inequality (x1 4+ x2)/(y1 + y2) < x2/y2, and so the three original inequalities are
equivalent.

(b) The proofs are almost identical.

For Problem 1, there is a straightforward solution algorithm, as follows from Lemmas 1 and
2 below.

Lemma 1. For Problem 1, if

Q) for some k then Q(k + 1) k).

dk+1

AV
AV

Proof. If i1 > Q(k) then rr41/ck+1 > R(k)/C(k). Using Proposition 2(a),

rept + R RGK).
et +CH) ~ Ch)’

hence, Q(k + 1) > Q(k). The other two parts of the lemma also follow, in similar fashion,
from Proposition 2.

Lemma 2. Consider Problem 1.

(a) There is at most one k for which qx > Q(k) > qx+1. For thisk, Q(k) = Q.
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(b) If Q > 0and qg; < O for some j, then there is a k with the above property.
(c) If, for some k, Q(j) <0, 1 <j <k, and qxy+1 <0, then Q <0.

Proof. If gx+1 = Q(k) then Q(k+ 1) > Q(k). So either (i) gx+1 > Q(k),and Q(k+ 1) >
Q (k) for all k, or (ii) there exist m such that g,,4-1 < Q(m), in which case we define k to be
the smallest such m. In case (ii) it follows that g,11 > Q(n) for all n < k, and gr+1 < Q(k).
The first of these statements implies that Q(n + 1) > Q(n) for all n < k. From the second
statement, it follows from Lemma 1 that gx+1 < Q(k + 1) < Q(k). This in turn implies that
qk+2 < Q(k + 1), and, hence, that gz < Q(k +2) < Q(k + 1), and the argument extends
by induction on n to show that g,+1 < Q(n + 1) < Q(n) foralln > k.

It follows that in case (i) limg—. o Q(k) = Q, and in case (ii) Q(k) = Q. For case (ii), it
is straightforward to check that the chosen k is the unique value described in the statement of
the lemma. In case (i) there is no k for which gx > Q(k) > gx+1, and part (a) of the lemma is
proved. For part (b) of the lemma, note that, under the given conditions, it is impossible that
Q(k+1) > Q(k) for all k, and, therefore, case (i) does not occur. Part (c) of the lemma follows
from Proposition 2 and the fact that g; > g1, j > 1.

From Lemma 2, and with the additional assumption that g; < 0 for some j, it follows that
Problem 1 may be solved by the following algorithm.

Algorithm 2. Compute in succession Q(k), k = 1,2, ..., stopping either when q;, > Q (k) >
Qk+1, in which case Q(k) = Q, or when Q(j) <0, 1 < j <k, and qx+1 < 0, in which case
0 =<0.

The following variants of Problem 1 are also of interest.

Problem 2. For x belonging to the finite index set /, which includes 1, let r, be a real number,
cx be a positive real number, and let g, = r,/cyx. Let S denote a subset of 7, and let R(S) =
Y oresTo C(8) =D cgcx, Q(S) = R(S)/C(S), and Q = maxgey Q(S), where U = {S C
I, 1 € S}. The problem is to find S € U such that Q(S) = Q.

Problem 3. This is the same as Problem 2 except that the class of index subsets U is replaced
by a subclass W C U.

Problem 4. The definition is motivated by Lemmas 3 and 4 below. In these lemmas V' denotes
the class of index subsets of the form {x: gx > &} + 1 for some &.

Lemma 3. For any S € U \ V, there exists S € U such that either Q(S,) > Q(S) or
0(S)=0(S)and |S|=|S[+ L

Proof. Suppose that S € U \ V. Then there existx € S — 1 and y € I \ S such that at least
one of the following statements holds.

@) gy > gx = Q(9).
(i) gy > gx < Q(S).
(i) gy = gx > Q(9).
(V) gy = qx < Q(S).
V) gy = qx = Q(S).
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In cases (i) and (iii), let S =S+ y. In cases (ii) and (iv), let S = § — x. In all these cases
it follows from Proposition 2 that Q(S ) > Q(S). In case (v), let S = § + y and we have
0S)=0()and |S | =|S|+ 1.

Lemma 4. Forany S € U, there exists S’ € V, with Q(S§") > Q(S).

Proof. We shall suppose the converse of the lemma and show that this leads to a contradiction.
Thus, suppose that S € U and that there does not exist S’ € V with Q(S) > Q(S), so that in
particular S ¢ V. From Lemma 3, it follows that there exists S; € U with Q(S1) > Q(S). By
our assumption, S; ¢ V, so again applying Lemma 3 it follows that there exists S, € U with
0(S2) > Q(S1). Again, by assumption, S» ¢ V, and the argument may be repeated to define
an infinite sequence S, (= S), S1, S2, ... suchthat S; € U\ V and Q(S;+1) > Q(S;) forall z.
However, this is impossible as the index set [ is finite, as is therefore the class of subsets U.
This completes the proof of the lemma.

It follows from Lemma 4 that if W is a class of subsets of I with V.C W C U then
maxsew Q(S) = maxsey Q(S) = Q. Problem 4 is the same as Problem 3 with the restriction
that W D V.

Problems 2 and 4 may be transformed into problems of the form of Problem 1 as follows.
For each triple (ry, cx, gx), change the index x to one of the first |/| integers, leaving the values
of the triple unchanged, with the new index values chosen so that r, ¢, and g1 are unchanged
and g; > gi+1, i > 1. Let g; be large and negative for i > |I|. To complete the solution, we
carry out Algorithm 2, and then reverse the index value changes.

The next step in this sequence of preliminary problems is to introduce a second subscript,
which allows us to model different LS.

Problem 5. For (i, j = 1,2,...), let r;; be real numbers, ¢;; be positive real numbers, and
qij = rij/cij, where i1 > qi+1,1 fori > 1, qij > qij+1 for (i, j) # (1,1), gi1 = g <O as
i — 00,and g;; — q; < 0as j — ooforalli.

Define

k k n
Riky=Y"rij,  Ciy=) cij,  Rkika,....kn) =Y Ri(ki),
j=1 j=1 i=1

n
Rki, ko, ..., ky)
Clky, ko, ... ky) = Ci(k), kika, ... k) = —————,
(k1, ka n) ; i (ki) Ok ky O NS
and Q =supy Q(ky, k2, ..., kp), where A ={n>0;k; >0,i=1,2,...,n}.
The problem is either to show that Q < 0 or to find n*,ki‘,k;,...,k;* such that Q =
QG K. ... k).

Lemma 5. Problem 5 may be regarded as an example of Problem 4, with the index pair 11 in
place of 1.

Proof. To establish this equivalence, we first note that, except that the indexset I = {ij: 1 <
i, j} is infinite, Problem 5 is equivalent to Problem 3, with 11 (to be read as ‘one-one’ rather
than as ‘eleven’) in place of 1, and W defined by the constraints thatif S € W and ij € S then
kl € Sforall k <i,and il € S forall/ < j. To show that Problem 5 is also an example of
Problem 4 (except for the infinite index set), we need to show that, for any &, the index subset
Se ={ij: gij > &} + 11 belongs to the subclass W.
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For any given &, this is trivially true if g;; < & forallij # 11. Suppose thatij (# 11) € Sg,
so that g;; > &. Itis sufficient to show that gy, > ¢;; for every index pair xy which belongs to
S¢ because ij € Sg, and because of the constraints defining W. If i = 1, we need to show that
lk € Sg, 1 <k < j. Thisis truesince 11 € Sz and g > qi3 > --- > ¢q1; > §. Ifi > 1, we
need to show that k1 € S¢, k <i,andil € S¢, | < j. Again, this is true since 11 € S¢ and
@1 =q31 = =qi1 =qi2 > = qij > §.

To solve Problem 5, our task is either to show that Q < 0, which means to show that there
isno § € V with Q(S) > 0, or to construct the set S of index pairs which maximises Q(S) for
S € V. For these purposes, any index pair ij (# 11) for which g;; < 0 may be excluded. This
is because if Q(S) > 0 for some index set S then Q(S+ij) < Q(S). We also need to note that
the restraints on W do not cause the exclusion of ij to necessitate the exclusion of any index
pair xy for which g,, > 0.

Finally, we note that it follows from the inequalities satisfied by ¢;;, g;, and g that the number
of index pairs ij for which g;; > 0 is finite. This means that in excluding every index pair i j
(# 11) with g;; < 0 we reduce the problem to one with a finite index set, and, therefore, to an
example of Problem 4, completing the proof of the lemma.

Thus, we have the following algorithm for solving Problem 5.

Algorithm 3. (a) Reduce the index set to the finite set I consisting of index pairs ij with q;; > 0
plus the pair 11.

(b) Transform the resulting Problem 4 into the form of Problem 1 by changing the index set.
(c) Use Algorithm 2 to solve the resulting Problem 1.
(d) If O < 0 for Problem 1, the same is true for Problem 5.

(e) If Q > 0 for Problem I, the same is true for Problem 5, and we may reverse the index set
changes to obtain the maximising n*, ki, k3, ..., k. for Problem 5.

3.2. The main problem and its solution

Returning to our CD selection problem, note that by restricting the selection of CDs to at
most one LS at each decision point we have ensured that there is only one way in which a
project may be continued. After stages 1 and 2, this is by carrying out stage 4 if there has not
yet been a successful stage 4, and by selecting a new CD from the current LS if there has been
a successful stage 4. The two possible continuations are never both available.

With this restriction we can write down formulae for the expected reward (after subtracting
the cost of clinical trials) and expected cost (before clinical trials) for each successive CD to be
selected. With discount rate y, the cost in scientist years of employing u scientists for ¢ years
is

! u
/ ue Vids = —(1 —e V.
0 14

Define ”
Ki=p—(—e"
14
as the total cost for stage i, i = 1, 2, 3,4, 5. Recall that we are assuming that 3 = 4. Define
Tij, Cij, and g;; = rij/c;; to be the expected reward, expected cost, and PI for the jth CD
selected from LS i. It is a consequence of the fact that there is an unique sequence of events

leading to the selection of the jth CD from LS i that the unconditional expected reward and
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cost are the same as the expected reward and cost conditional on previous history, apart from
a common factor. We may therefore, and we shall, define r;; and ¢;; to be unconditional
expectations without changing the value of g;;. The reason for the overlaps of notation with
Problem 5 will soon become clear.

From the description given in Section 2.2, it follows that

rij = p1p2(p3ga) " pa
x [pDexp{—y1(t1 + ta + its + (j — Dits + 11+t + trm) }n? ~!
—exp{—y (1 +t +its+ (j — Di1s)}
X (c1 + prexp{—ytr}cn + prpuexp{—y (1 + t)}ennl, i,j>1,

and that

K1+ prexp{—yt}Kz2 + pip2exp{—y(t1 + )} (K3 + K4), i=j=1,
cij = { p1p2(p3qa) ~Lexpl—y (i + 12 + (i — Dta)}(K3 + Ka), i>2,j=1,
P1P2(p3qa) " paexpl—y (ti + 12 +ita + (j — 2)t5)}Ks, foralli, and j > 1.

With 7;; and ¢;; as above, and using the fact that y; > y, it is easy to check that all the
assumptions of Problem 5 hold, except that it is not necessarily true that g;; > gj2, i > 1. We
shall use all the notation for Problem 5 to also refer to our CD selection problem, which we
shall call Problem 3. A deterministic CD selection problem, for example, may be expressed in
the form of a sequence A ={n > 0;k; >0,i=1,2,...,n}.

A deterministic policy is one for which the decision whether to continue or to stop depends
deterministically on the number of LS which we have so far tried to optimise, and on the number
of CDs so far selected. We could also consider randomised CD selection policies, for which
each continue/stop decision is determined randomly. However, it is an easy consequence
of Proposition 2 that if the maximum PI for a project is attainable then it is attained by a
deterministic policy.

As for Problems 1 and 5, we shall present an algorithm for Problem 3 which either shows
that O < 0, so that no CD selection policy produces a positive PI, or finds a CD selection
policy A which attains the optimum PI. As for Problem 5, our task is to maximise Q(S) over
the allowed sets S of index pairs. Each included index pair ij now corresponds to the selection
of the jth CD from LS i.

As for Problem 5, we may exclude from S any index pairij (j > 1) withg;; < 0. By a
similar argument we may exclude any index pair i1 (i > 1) if g;; < 0 and g;» < 0. These
exclusions mean that we have again reduced the index set to a finite set. However, there remains
the possibility that ¢;; < g;» > 0, unlike Problem 5, so we have not yet reduced the problem
to an example of Problem 4.

To proceed further, we next note that, for any LS 7, the conditions for Problem 1 are satisfied
with (r;, ¢i, qi) = (r,-j, Cij» q,-j) and Q(k) = Q;(k) = R;(k)/C;i(k), the PI for LS i when k
CDs are selected. Also, g;; < 0 for large j. We may therefore use Algorithm 2 to either find
k;* such that Q(k*) = sup; Q;(k), which we denote by Q;, or to show that Q; < 0. Note
that it follows from the definitions that Q; (k) > Q;41(k) fori > 1 and all k, and, hence, that
Qi > Qi41. Note too that since the number of i pairs for which ¢;; > 0 is finite, it follows
that Q; > 0 for at most a finite set of i values.

Since the class of allowed sets S is finite, if Q > O, there exist n, k1, k2, . . ., k, (all greater
than 0) such that Q = Q(ky, k2, ..., k,). We define n*, ki, k3, ..., k. to be chosen in that
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order to be the largest values of n, k1, k2, ..., k,, for which this is true. To further simplify
Problem 3, we shall use the following lemma.

Lemma 6. k;* > k;“*, 2 <i<n*

Proof. Notefirstthat Q,+ (k}.)> Q. If Q.+ (k;.) < Q,itfollows from the fact that Q (kT k7,
... k%) = Q that Q(kT, k3, ..., k;_,.) > Q, using Proposition 2(a), which contradicts the
definition of Q. Thus, Q= (k}.) > Q.
Now suppose that k7 < k7" and 1 < i < n*. We have

Gikr+1 = Qi(k[™) = Qp=(ky%) = Q= (kye) = Q.

The first inequality follows from Proposition 2 and the definition of k;*. The second inequality
is equivalent to Q; > Q,*, which is true since Q; is a decreasing function of i for i > 1.
The third inequality is by the definition of k;ff . Thus, Gikr+1 = Q,sothat Q(kT, k3, ..., kF +
1,..., k) > Q. This contradicts the assumed maximality of k; and completes the proof.

Now note that it follows from Proposition 2(a) and the definition of Q; that Q; > g4 1.
It thus follows from Lemma 6 that Problem 3 may be transformed into an equivalent prolblem
in the form of Problem 5 as follows: r{j =rij, c/lj =cij, q{j =qj, for all j; r/, =
Ri(1,2,.... k), cjy = Ci(1,2,..., k), q/; =r],/c};, and the index pair i; is replaced by
i(j—k),i>1land j > k™.

We can now write down an algorithm which solves Problem 3.

Algorithm 4. (a) Use Algorithm 2 to compute k}* and Q;, i = 2,3, ..., stopping when Q; <
0, at which point set n** =i — 1.

(b) For all index pairs ij with i > n™*, replace q;j by —M, where M is large.
(c) Transform the problem into one of the form of Problem 5 as just described.
(d) Use Algorithm 3 to solve the resulting Problem 5.

(e) Express the solution in terms of the index set for Problem 3.

We conclude Section 3 by noting that the output from Algorithm 4 defines the decision to
be taken at each decision point in the procedure for selecting CDs, and that the policy defined
in this way is equivalent to an FI policy with PI(ref) = Q, the optimal PI for the project under
the restrictions of this section.

4. FI for the general CD selection problem

In this section we present some properties of FI policies for the unrestricted CD selection
problem. Unlike the restricted problem considered in the previous section, it is not in general
true to say that an FI policy with a reference PI equal to the optimal PI for the project is itself
an optimal policy. This is shown by a counterexample. Lemma 7 below, on the other hand,
provides encouragement for the view that FI policies may be close to optimal, while Lemma 8
below narrows the choices which need to be considered at each step in an FI policy.

Let r;j and ¢;; now be the expected reward and cost from the jth CD in LS 7, conditional on
the set of previously selected CDs. Note that this is different from Section 3, where our notation
referred to unconditional expectations. Here r;; and c;; are random variables depending on time,
and on the numbers of CDs from previous LS. Let ¢ denote the time at which the jth CD from
LS i is selected.
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Counterexample 1. IfPI(CD) = PI(LS) > PI(ref) = PI(Proj) at a decision point P in an FI
policy, it does not in general follow that taking an additional CD and trying to optimise a new
LS lead to the overall maximum PI value for the project, PI(Proj).

Proof. Leta and b be the expected reward and cost for the additional CD, and let A and B be
the expected reward and cost for the new LS. Suppose thata/b = A/B. Let Pl(ref) = a/b—¢,
where ¢ (> 0) is sufficiently small to ensure that, after any of the three possible ways in which
the project might be continued from point P, PI(ref) > max (PI(CD), PI(LS)), so that the
project then terminates under an FI policy.

The three possible continuations are

1. an additional CD is chosen from an optimised LS,

2. we try successfully to find a CD from a new LS and then select the number of backup
CDs from that LS which maximises the PI for that LS,

3. we try unsuccessfully to find a CD from a new LS.

It is easy to construct numerical cases satisfying these conditions.

Let R and C be the expected reward and expected cost under an FI policy, excluding the
contributions which arise after reaching the decision point P, and let € be the probability that
point P is reached. Thus, the overall PI from an FI policy is (R +6 A)/(C 46 B) if at P we look
foraCDinanew LS, and (R +6a)/(C +6b) if at P we select a CD from an already optimised
LS. We have assumed that R/C < A/B = a/b, and it therefore follows from Proposition 2
thatif A > a then (R +60A)/(C +0B) > (R + 0a)/(C + 6b), completing the proof.

Lemma 7. In a sequence of backup CDs from the same LS the Pl is decreasing.

Proof. By definition, g;j+1 = rij+1/cij+1 is the PI for the jth backup CD in LS i. Using
Proposition 1, we have r;; = e ""n/v, —e "'y and ¢;; = e ' Ks. Here

va = pDexp{—yi(ts + 1 + tn + )} E@™),
where N is the number of previously selected CDs from good LS other than LS 7, and
vo =e V5 (cr + pre” e + prpue 7 T Wey).
Thus, the PI for the jth backup CD in LS i is

‘ rijg1 e Vinlu, —e My, e TVinlu, —
i+ = = - = )
Cij+1 e 7'Ks Ks

which is a decreasing function in j, j > 1. This completes the proof.

Lemma 7 means that within each optimised LS there is no reason for taking account of the
PIs from later CDs when deciding whether or not to select one more CD. To this extent, then,
the forwards induction greedy principle is correct.

Our next lemma reduces the computational complexity of implementing an FI policy. It
refers to a youngest LS, by which we mean an LS from which the minimum number of CDs
have so far been selected.

Lemma 8. The expected value of the next CD from an already optimised LS is maximised by
choosing it from the youngest optimised LS.
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Proof. 1t will be sufficient to show that, for any two optimised LS, we will get a higher
expected value if we choose a CD from the younger LS.

Consider selection from two LS, i and j, at time 7. Assume that we have so far selected x;
CDs from LS i and x; CDs from LS j. Let w;; denote the number of CDs which have been
selected from good LS other than i and j, and let

m; :wij—i—xjﬂ(j)—i-xi, m;j :a)ij—i—xj—}—x,-ﬂ(i),

where [(k) is the indicator random variable for the event {LS k is good}, k = i, j. Thus,
using Proposition 1, and dropping the condition |A from the notation, which applies to every
expectation in this proof,

Fig+1 =€ EM" g —e T vp,  rja1 = EM™ v, — e g,
where
Va = pDexp{—y1(t5 + t1 + tu + )},
vp = e V5 (cr + pre ey + prpue? ey,
so that

Fixi+1 — Vjx;+1 . .
—m. = E(") —E(")
e "ly,

=E@™ —n")

— E(nwij-i-xjﬂ(j)-l—xi _ na)ij+Xj+x,']I(i))

— E(nw;_,' (an]I(j)+JC[ _ an+X,‘H(l'))).

Since w;; is independent of the events {LS i is good} and {LS j is good}, conditional on the
event that the target is achievable, we have

E(nwl‘j (HXj]I(j)-in _ an-i-x,‘]I(i))) — E(nwi/‘)E(an]I(j)-‘rx,' _ UXj+XiH(i))v

so that
B0+ — pri 0l @y = pgsi 5 4 (1= )™ — ppn™ 5 — (1 — pp)n™
= (1= pp)(™ —n").

This is positive if x; < xj, since p, < 1and0 < n < 1. Hence, riy;+1 —Tjxj+1 > 0if x; < xj,
as required. This completes the proof.

5. Algorithm performance

In this section the performance of different algorithms for optimising the profitability index
of a project are compared. These are algorithms that are used to calculate and optimise expected
rewards and costs using explicit formulae ((s, n) policies, and the restricted FI policies discussed
in Section 3) and simulation algorithms (unrestricted FI policies). The advantage of (s, n)
policies is that we have explicit formulae for total expected rewards and costs, and can optimise
directly with respect to allocation rates (for a full account, see Charalambous (2009)); however,
they have the disadvantage of an inflexible procedure for selecting CDs. First we formally
define an (s, n) policy.
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5.1. (s, n) policies

The parameters s and n which define an (s, n) policy have the following meanings:
e s is the number of LS from which we would like to select CDs,

e 7 is the maximum number of LS from which we will attempt to find CDs. Obviously,
s <n.

The principles of an (s, n) policy are as follows.

1. Stage 3 is carried out in parallel with stage 4, except for the nth time that stage 4 is carried
out.

2. If an LS becomes the ith successfully optimised series, 1 <i < s, selecting k; CDs from
it has precedence over optimising further LS. After we have obtained k; CDs from the
ith optimised LS, we will never return to this LS for more CDs.

3. Ifan LS becomes the sth successfully optimised LS before all n attempts have been made,
the project will be terminated after selecting k; CDs from it.

4. The project is terminated after n optimisation attempts have been made, even if the
number of optimised LS is less than s.

5.2. Simulations

A simulation of any system or process in which there are inherently random components
requires a method of generating numbers that are random. Thus, a good random number
generator (RNG) is essential for obtaining accurate simulation results. The RNG we use in the
simulation study is a mixed generator recommended in the book by Press et al. (2007), with a
period length of 1.8 x 101,

A replication is a run of a simulation model that utilises a specific stream of random numbers.
Different streams of random numbers are used for different replications of simulation in our
study to ensure the accuracy of the estimate. Each run of the simulation results in a reward
and a cost for the project. Let X; and Y; be the reward and cost obtained on the ith replication
fori =1,2,...,n. Then the X;s and ¥;s are independent and identically distributed random
variables. Thus, the sample means

doie1 Xi Y iz Vi
n

X = and Y =
n

are unbiased estimators of the population means for reward and cost, and the sample variances

S IXi — X1
n—1

Yol —YP

S =
X n—1

and 7 =
are unbiased estimators of the population variances for reward and cost. Denote by PI = X /Y

the average PI for the project. The corresponding estimated variance for PI is derived using the
delta method (see, for example, Casella and Berger (2001)), which gives

(X 1rx>, S 2X oo
var{ — | = Sy + —cov(X,Y) |,
Y Y3

A 7T
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and, therefore, the 95% confidence interval for PI is

X |_(X\ X | (X
I:T —1.96 var(7>, — +1.96 Var<7>].
Y Y Y Y

We set the number of runs n = 100 000 in all of the simulation tests.

5.3. Examples

Six artificial projects are examined in this paper. Most of the parameters were set at realistic
values. The other values were chosen so as to illustrate particular features of the solution
algorithms. Stages 1 and 2 have to be completed successfully before anything else of interest
can happen, and were treated as one simplified stage by settingu; = #; = p2> = 0and py; =1
for all projects.

The procedures used to evaluate, and in some cases also to optimise, the PI were as
follows.

1. (s, n) expectation algorithm (SNEA). This algorithm evaluates the PI for given allocations
and values of s and n. It can also optimise the allocations for given s and n using numerical
optimisation procedures. The values sqpt and nope of s and n which lead to the overall
maximum value of the PI may be determined by repeatedly running the algorithm with
different values of s and n.

2. FI simulation. This algorithm provides a distribution of outcomes for given allocations,
using FI to select successive CDs. It was used to provide estimates for PI for the two
cases

L4 (S, n) = (S()pt, nop[), or FIOPTSIM,
e (s,n)=(1,1),or FI11SIM,

with allocations optimised using SNEA, and PI(ref) equal to the optimal PI calculated
with SNEA for the corresponding s and n.

3. Restricted FI expectation algorithm, or RFIEA. This is the algorithm described in Sec-
tion 3 for sequential CD selection. It was implemented with allocations optimised using
SNEA with (s, n) = (1, 1).

For many realistic projects, (sopt, 7opt) = (1, 1), and the optimal solutions from all solution
algorithms take simple forms. To avoid these simple cases, all projects (see Table 1) other
than project 1 have been defined with two distinct features. Firstly, they have been loaded with
high initial costs by giving high values to u» and ;. This means that more than one attempt to
optimise an LS is desirable to achieve a high PI. Secondly, to ensure that the effect of later CDs
on the PI is not of negligible importance compared with those discovered earlier, the discount
parameter yj is set to be small.

The desirability of selecting CDs from more than one LS, and, hence, the likelihood that
sopt > 1 is reinforced if backup CDs are loaded with high costs (projects 3, 4, and 6), and also
if X is low (projects 3 and 6) and py, is low (projects 3, 5, and 6).

All six projects have

(p1, D21, p22,u1, t1, c1, cu, cur, P, B, 1, t, tn)
=(,1,0,0,0,0.4m, 1.2m, 13m, 0.8, 300 000, 1, 2, 3).

For projects 1 to 5, D = 300 m, and for project 6, D = 600 m. The remaining project
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TaBLE 1: Parameters and SNEA results for projects 1 to 6.

Project 1

Optimal solution
Parameters
Initial inputs
Optimal outputs

(s,n)=(1,1)

(p1, pu, put, pa, py, p4) = (1,1, 1,1, 1,0.5), (v, y1, ) = (0.2,0.3,0.8)
(up, u3, uq, us, tr, 13, t4, t5) = (10, 10, 15,9, 1.0, 0.9, 2.5, 1.5)

(up, u3, uq, us, b, 13, t4, t5) = (33, 10, 40, 40, 0.33, 1.09, 1.09, 0.39),

ki =4, PI = 1.606

Project 2

Optimal solution
Parameters

Initial inputs
Optimal outputs

(s,n)=(1,4)

(pr, pu, pit, pa, pb, p3, p4) = (0.7,0.5,0.7,0.9,0.7, 1, 0.5),

(y, y1, A) = (0.09, 0.14, 0.8)

(up, u3, uq, us, tr, 13, 14, t5) = (40, 10, 15,9, 2.0, 1.0, 2.5, 1.5)

(up, u3, uq, us, tr, 13, 14, t5) = (43, 11, 52,40, 1.9, 0.92, 0.92, 0.39),
k; =10, PI =1.113

Project 3

Optimal solution
Parameters

Initial inputs
Optimal outputs

(s,n) = (@3,12)

(p1, pu, pm, pa, pbs p3, pa) = (0.5,1,1,1,0.5, 0.8, 0.5),

(y, y1, A) = (0.09,0.14, 0.5)

(u2, u3, ug, us, 1,13, 14, t5) = (30,5,5,9,4,0.5,0.5, 1.5)

(up, u3, ug, us, 1o, 13, t4, t5) = (39, 10, 10, 35, 3.28, 0.25, 0.25, 0.43),
(ky, k2, k3) = (2,2, 1), PI = 1.375

Project 4

Optimal solution
Parameters

Initial inputs
Optimal outputs

(s,n) =(2,5)

(p1, put, put, Pas Po» P3, p4) = (0.7,0.5,0.7,0.9,0.7, 0.6, 0.6),

(v, y1, 1) = (0.09,0.14,0.8)

(up, u3, uq, us, tr, 13, t4, t5) = (40, 10, 10,9, 3,1, 1, 1.5)

(up, u3, uq, us, t2, 13, t4, t5) = (43,51, 50, 41, 2.86, 0.25, 0.25, 0.38),
(k1,k2) = (9,4), PI = 1.158

Project 5

Optimal solution
Parameters

Initial inputs
Optimal outputs

(s,n)=(3,3)

(p1, pu, pm, pa, pbs p3, pa) = (0.7,0.5,0.6,0.9,0.3, 0.8, 0.6),
(y, y1, A) = (0.09, 0.14, 0.8)

(up, u3, uq, us, tr, 13, 14, t5) = (20, 10, 15,9,2,0.9, 1, 1.5)

(up, u3, uq, us, tr, 13, t4, t5) = (34, 24, 46, 32, 1.28, 0.4, 0.4, 0.46),
(k1, ka2, k3) = (4, 3,3), Pl = 1.357

Project 6

Optimal solution
Parameters

Initial inputs
Optimal outputs

(s,n) = (3,22)

(pt, pit, pit, Pas P, p3. p4) = (0.5,1,1,1,0.5,1,0.4),

(y, y1,A) = (0.09, 0.14, 0.5)

(up, u3, uq, us, t2, 13, ta, t5) = (40,2,5,9,4,0.5,0.5, 1)

(up, u3, uq, us, tr, 13, 14, t5) = (41, 4, 10, 33, 3.93, 0.25, 0.25, 0.3),
(k1, ky, k3) = (2,2,2), PI =3.322
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TABLE 2: Profitability index values for projects 1 to 6.

. SNEA FISIM RFIEA
Project  sopt  hopt
OPT (1,1) OPT (1,1) (1, 1)
1 1.606 — 1.607 — 1.606

4 1113 0987 1.116 1.111 1.219
12 1375 0.736 1401 1400 1.101
1.158 1.046 1.148 1.145 1.147
3 1.357 1248 1383 1.381 1.303
22 3322 1.061 3736 3.688 2272

(o) WL, T SN U T S I
W W N W= =
[V}

parameters, together with both the initial and SNEA optimised stage resource allocations and
stage durations, are detailed in Table 1.

5.4. Results

The PI values and estimates which result from applying the different optimisation and
simulation algorithms are shown in Table 2. They show the following features.

e For project 1, (Sopt, opt) = (1, 1), so there are just three distinct procedures. They all
give the same value for the PI.

o The values of (sopt, nopt) and of PI(sqpt, nopt) /PI(1, 1) for the SNEA are in line with the
expectations set out above.

e FIOPTSIM is always at least as good as SNEA.
o RFIEA is best when either sqpe = 1 or PI(sopt, 720pt)/PI(1, 1) for the SNEA is close to 1.

e FI11SIM is almost as good as FIOPTSIM, and better than RFIEA except when either
Sopt = 1 or PI(sopt, nopt)/PI(1, 1) for the SNEA is close to 1.

The 95% confidence intervals for each of the 22 PI values which were estimated by simulation
are of the form estimated PI value £x, where 0.007 < x < 0.020.

6. Conclusion

The most striking aspect of these results is the strong performance of FI11SIM. This means
that the performance of the FI algorithm does not depend strongly on the choice of PI(ref).
It also means that the PI resulting from allocations given by the SNEA with (s, n) = (1, 1),
followed by selection of CDs using FI11SIM, is close to the highest attainable PI. This in turn
means that there is no need to determine sope and nop, which requires repeated application of
the SNEA.

We plan to carry out further tests on the performance of the various algorithms and to use
the results as the basis for recommendations on the use of the OPRRA software.

References

BREALEY, R. AND MYERS, S. (2000). Principles of Corporate Finance, 6th edn. McGraw Hill, New York.

CASELLA, G. AND BERGER, R. L. (2001). Statistical Inference, 2nd edition. Duxbury Press.

CHARALAMBOUS, C. (2009). Models and software for improving the profitability of pharmaceutical research. Doctoral
Thesis, University of Oxford.

https://doi.org/10.1239/aap/1316792664 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1316792664

A forwards induction approach to candidate drug selection 665

CHARALAMBOUS, C. AND GITTINS, J. C. (2008). Optimal selection policies for a sequence of candidate drugs. Adv.
Appl. Prob. 40, 359-376.

GITTINS, J. C. (1979). Bandit processes and dynamic allocation indices. J. R. Statist. Soc. B 41, 148-177.

GITTINS, J., GLAZEBROOK, K. AND WEBER, R. (2011a). Multi-Armed Bandit Allocation Indices, 2nd edn. John Wiley,
Chichester.

GITTINS, J. C. et al. (2011b). OPRRA User Guide. Available at www.stats.ox.ac.uk/people/academic_staff/john_gittins.

GLAZEBROOK, K. D. (1995). Stochastic scheduling and forwards induction. Discrete Appl. Math. 57, 145-165.

GLAZEBROOK, K. D. AND GITTINS, J. C. (1993). The performance of forwards induction policies. Stoch. Process. Appl.
46, 301-326.

PrEss, W. H., TEUKOLSKY, S. A., VETTERLING, W. T. AND FLANNERY, B. P. (2007). Numerical Recipes, 3rd edn.
Cambridge University Press.

PUTERMAN, M. L. (2005). Markov Decision Processes, 2nd edn. John Wiley, New York.

Yu, J. Y. AND GITTINS, J. C. (2008). Models and software for improving the profitability of pharmaceutical research.
Europ. J. Operat. Res. 189, 459-475.

https://doi.org/10.1239/aap/1316792664 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1316792664

	1 Introduction
	2 Resource allocation in pharmaceutical research
	2.1 Background
	2.2 Preliminaries
	2.3 FI policies

	3 A simplified CD selection problem
	3.1 Infrastructure
	3.2 The main problem and its solution

	4 FI for the general CD selection problem
	5 Algorithm performance
	5.1 (s,n) policies
	5.2 Simulations
	5.3 Examples
	5.4 Results

	6 Conclusion
	References

