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Let X be a set, y a a-r'mg of subsets of X , and let /x be a measure on y . 
Following (1), we define H to be semifinite if 

H(E) = lub{n(F);F e y , F C E, and »(F) < co} for every E £<¥. 

W e show (Theorem 1) t h a t every measure can be reduced to a semifinite 
measure for many practical purposes. In many cases, this reduction can be 
made even more significantly (Theorems 2 and 3) . Finally, necessary and 
sufficient conditions t h a t a semifinite measure be c-finite are given as a corol­
lary to Theorem 3. 

W e shall need the following concepts. A measure H is anti-semifinite (or 
degenerate] cf. 3, p . 127) if it takes on no finite, non-zero values, i.e., its range 
is contained in {0, oo}. Clearly, the only measure which is both semifinite 
and anti-semifinite is the identically zero measure. If /x and v are measures 
on y i then following (4), we shall say t h a t v is S-singular with respect to /x, 
denoted v S /x, if for each E ^ y there is a set F ^ y such t h a t F C E, 
v{E) = v(F), and ix(F) = 0. As is cus tomary (2, p . 126), we use v _1_ H to 
signify t h a t v is singular with respect to /x, i.e., t h a t there is a set A with 
E C\ A Ç y for all E Ç y (i.e., a locally measurable set ^4) such t h a t 
? (E n 4 ) = 0 = ix(E - 4 ) for all E ^y. Obviously, v± M implies t h a t 
v S fM and fx S v. However, the converse fails, as we show below. Moreover, it 
is clear t h a t al though singularity is a symmetr ic relation, 5-singularity does 
no t possess this property. These facts suffice for our purposes. They, along 
with other facts regarding ^-singularity, are recorded in (4). 

T H E O R E M 1. Let IJ, be a measure on a a-ring y . 
(i) There exists a unique decomposition /x — Mi + M2 such that: 

(a) mis a semifinite measure on y . 
(b) jii2 is an anti-semifinite measure on y . 

(c) M I ^ M 2 . 

(d) /x 2S>i . 
(ii) Let \x = fil + H2, where jui' is a semifinite measure on y and /x2' is an 
anti-semifinite measure ony. Let /x = /xi + \xi be the decomposition of (i). 

(a) /xi ^ m' and /x2 ^ /J.2-

(b) If it is required that HI S M2', then HI is unique; i.e., HI is necessarily 
equal to HI-
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(c) If it is required that /x2' 5 MI', then n% is unique) i.e., /z2' is necessarily 
equal to M 2-

Proof. For a locally measurable set F, let MF denote the measure on 5^ de­
fined by 

yF(E) = n(FC\E) for all E G <?. 
Let 

Jt = {M eS*; M is /x-o-nnitej 
and define 

Mi = lub{jttM; M ^Jé). 

Then MI is a measure on J/*7 by (1, Theorem 10.1) and one can readily verify 
that: 

(1) /xi(E) = lub{n(M);M CE,M e^} for all E £&>; 
(2) MI = M on <JK; 
(3) For each E f ^ there is an i f G ^ such that MCE and 

Mi(£) = # ) = /xi W 

(since Jt is closed under countable unions) ; 
(4) MI is a semifinite measure on j ^ . 
Next, we let 

Jf = {Ney;m(N) = 0} 
and define 

M2 = lub{M;v;N Ç:JV\. 

Then M2 is a measure on5^ which satisfies: 
(1)' ^ ( E ) = lub{M(iV);iVC£, i V G ^ J for all 5 ^ ; 
(2)' M2 = /i on ^K; 
(3 y For each £ G ^ there is a set N G -vf such that N CE and 

M2(£) = M W = M 2 W ; 

(4)' M2 is an anti-semifinite measure on5^; 
(5)' M2 = 0 on *JK. 
(1)', (2)', and (3)' are obvious. (4)' is shown as follows. Suppose there 

exists E G y such that \x^(E) = 8, where 8 is finite and non-zero. There is a 
set N G J/ such that N C E and /JL(N) = fx2(E) =8; hence N G Je so that 
Mi(i\0 = / i f f l = 8 > 0, contradicting iV G ^ . The proof of (5)' is similar: 
If I ^ J , there is a set iV G ^ such that N C M (hence TV G ^ 0 and 
M2(M) = n(N) = M I W = 0. 

Next we show that M = Mi + A<2- Let E G <5̂ . Since MI = M on c ^ and 
M2 = 0 on ^#, we can assume E G ^ , hence n(E) = <». If MICE) = °°, the 
result is obvious. Suppose M I ( ^ ) < °° • There exists a set AT G - ^ such that 
M C E and M I W = n(M) = m(E) < « . Thus M I ( £ - M) = 0 SO that 
£ - I f e^V. Hence M 2 ( £ ) ^ M 2 ( £ - Af) = M ( £ - Af) = M ( £ ) - M ( A T ) = °°. 
Consequently, M ( ^ ) = °° = m(E) + 112(E). 
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T h e last s tep in the existence pa r t of this proof consists of showing t h a t 
H1SH2 and ^SHI- Since the proofs are similar, we shall only prove t h a t 
fxiS fx2. LetE £ y . There is a set M 6 « ^ s u c h t h a t Af C E and m(E) = m(M). 
Moreover, ^(M) = 0 by (5) ' . 

T o demonst ra te the uniqueness assertions, it obviously suffices to prove 
(i i)(b) and (ii)(c). In the process, we shall also prove ( i i )(a) . Suppose t h a t 
H = Mi + M2 = Hi + H2, where HI and HI are semifinite measures o n y and 
jLt2 and H2 are anti-semifinite measures on y . Clearly, it suffices to show: 
(A) if niS H2, then HI ̂  HI) and (B) if H2S HI, then /x2 S H2'. 

(A) Let E e y . Since MI 5M2, there is a set F 6 ^ such t h a t F C £ , 
/xi(77) = HI(E), and ju2(i0 = 0. I t suffices to show t h a t m(F) S Hi (F) since 
then m(E) = HI(F) g /n ' (F ) g HI(E). Suppose / u ' ( / 0 < M I ( F ) . There is a 
set G (zS^ such t h a t G (Z F and Hi (F) < HI(G) < °o since #i is semifinite. 
Then HI (G) < M I ( G ) < °° and JU2(G) = 0 by monotonicity. Hence 

M2/(G:) = H(G) — HI(G) = HI(G) — /xi'(G), 

contradict ing the anti-semifiniteness of /z2'. 
(B) Le t E ^ y . Since ju2 5 /zi, there is a set F £<5^ such t h a t F C E, 

/x2(/7) = /x2(E), and M I ( ^ ) = 0. Clearly, it suffices to show t h a t tx2(F) SH2f(F) 
in order to verify t h a t ju2(i£) g H2f(E). Suppose 1*2 (F) < H2(F). Then 
H2 (F) = 0 and 112(F) = » by the anti-semifiniteness of JU2 and JU2'. Conse­
quently, m'(F) = 00 ; therefore, there is a set G £ <5̂  such t h a t G <Z F and 
0 < m'(G) < °° because JU/ is semifinite. Bu t JUI(G) = 0 and H2 (G) = 0 by 

monotonici ty. Hence /*2(G) = /x(G) = HI(G), contradict ing the anti-semi­
finiteness of H2- The proof is complete. 

T h e following easily verified remarks pertain to the uniqueness of HI and 
[or] H2 in the decomposition H = Mi' + ^2', where HI is a semifinite measure 
and H2 is an anti-semifinite measure. In particular, they indicate t ha t Theo­
rem 1 (ii) is quite optimal. 

(I) HI = M on Jt = {M ey-, M is ^ - f i n i t e } and H2 = 0 on Je. This 
is probably the strongest uniqueness s t a tement t h a t can be made in general. 

( I I ) If one requires t h a t HI S H2 [H2 S HI], then HI [H2] is unique, by 
Theorem 1 (ii), bu t H2 [HI] need not be unique. 

( I I I ) HI S H2 is necessary as well as sufficient for the uniqueness of HI- ( T O 
show this, one may copy, from the proof of Theorem 1, the a rgument t h a t 
Hi S H2 since, necessarily, H2 = 0 onJt by Remark (I) .) However, in general, 
H2 S HI is no t necessary for the uniqueness of H2-

(IV) If H is semifinite, then HI is unique (in fact, HI = H) b u t /z2' need not 
be unique. 

(V) If H is anti-semifinite, then H2 is unique (in fact, /z2' = H) b u t HI 
need not be unique. 

T h e following two simple examples may help to clarify the preceding 
remarks for the reader. 
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(a) Let X be an uncountable set, and let ^ be its power set. Let 
/xi CE) = card (E) and let 

(0 if E is countable, 
\co if E is uncountable. 

Let \x = \x\ + A<2- Then M is semifinite and M2 is not unique. In fact, if F is a 
given subset of X, and 112(E) = yt2(E C\ F) for all E dS?, then M = MI+M2'. 

(b) Let X , ^ be as in (a). Let 

foo if £ ^ 0 , 
" ( E ) = = \ 0 i fE = 0. 

Then M 2 must be M> and MI can be any semifinite measure on .ff. In this in­
stance, 1X2 S ixi does not necessarily hold (e.g. if MI CE) = card(£)) . 

That it is not possible to replace conditions (c) and (d) of Theorem 1 (i) 
by the condition MI J- M2 is illustrated by the following example. Let (X, Sf) 
be the measurable space of (2, Exercise 31.9). Let m(E) be the number of 
horizontal lines on which E is full, let 112(E) be 00 if E is full on some vertical 
line, and 0 otherwise, and let M = /xi + M2. Then clearly, AH is semifinite (in fact, 
a- finite), /z2 is anti-semifinite, JJLIS ^2, and M2»SMI- However, it is false that 
Mi -L M2 since if there were a locally measurable set A such that 

m(E - A) = 0 = M 2 C E n ^ ) 

for all E G «5 ,̂ then 4̂ would be full on every horizontal line and countable 
on every vertical line, which is impossible. 

Under what circumstances can one replace conditions (c) and (d) of 
Theorem 1 (i) by the condition MI -L M2? By the preceding example, it is not 
sufficient that MI be ^-finite. However, by (4, Theorem 3.3), it is sufficient 
that /xi be strongly o--finite. (See 4 for a discussion of strong er-finiteness; 
finite measures on c-rings and a-finite measures on cr-algebras are common 
examples of strongly cr-finite measures.) As for conditions on M> it is obviously 
sufficient that M be semifinite or anti-semifinite. Broader sufficient conditions 
are given in Proposition 1 and its application, Theorem 2, which follow. 

PROPOSITION 1. Let At = MI + M2 be the decomposition of Theorem 1 (i). If M 

is not semifinite (equivalently, 1x2 ^ 0), then, by the maximal principal and the 
fact that \i2 S MI, there exists a maximal disjoint subfamily 31 of 

<g = {G ey;m(G) = 0 and M(G) = 00} 

= {G e ^ ; / x i (G) = 0 and M2(G) =00} . 

If some such 3§ has the property that for each £ ^ y only countably many 
members of 3S intersect E} then MI _L M2Î hence there is a unique decomposition 
M = Mi + M2 such that AH is a semifinite measure onSf, M2 is an anti-semifinite 
measure on£f, and MI _L M2-
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Proof. Let A = \J{B\ B G Së\. Then for every E G ^ w e have 

i n £ G / = {Ney;m(N) = 0} 

and, consequently, MIC4 P\ £ ) = 0 . Moreover, for each E Gfff there is a set 
N Ç.J/ such t h a t iV C E - A and /x2(£ - A) = n2(N); bu t »2(N) = 0 by 
the maximali ty of 31 so t ha t M2CE — A) = 0. 

T H E O R E M 2. Le/ M be a measure on a a-ringS^. Suppose there is a measure v 
on Sf which is non-zero on every set in Sf of non-semifinite \x-measure where 
either (i) v is finite or (ii) 5 ^ is a a-algebra and v is a-finite. Then there is a 
unique decomposition M = Mi + M2 such that: 

(a) in is a semifinite measure onSf, 
(b) fji2 is an anti-semifinite measure on^f \ 

( c ) /xi _]_ /X2-

Proof. Obviously, it suffices to prove the result under assumption (i). If M 
is semifinite, we may take M = MI and /x2 = 0. Otherwise, lett ing M = M I + M 2 
be the decomposition of Theorem 1 (i), we have & = {G G < 5 ^ ; M I ( G ) = 0 
and n(G) = °° } non-empty since M2 TA 0 and M2 S MI- Now & is closed under 
countable unions, thus k = lub{^(G) ; G G ^ } is finite (and positive) and there 
is a set G\ G ^ such t ha t ^ (Gi ) = k. Indeed, the one-member family {Gi} is 
a maximal disjoint subfamily of c$ since, if, Go G ^ were disjoint from Gi, 
then V(GQ) > 0 by hypothesis, since every set in & is a set of non-semifinite 
jLt-measure; bu t then, G\ \J Go G ^ and *>(Gi U G0) > &, a contradiction. 
Proposition 1 applies and the proof is complete. 

Along the same lines, we establish the following conditions under which 
both MI -L M2 and MI is <r-finite. 

PROPOSITION 2. If M is not anti-semifinite, then by the maximal principle, 
there exists a maximal disjoint subfamily *io of 

*Jé+ = {M G J^7; M is of positive and c-finite fi-measure]. 

If some such ^ has the property that for each £ g y only countably many 
members of *io intersect E, then there is a unique decomposition M = Mi + M2 
such that MI is a a-finite measure onSf, M2 is an anti-semifinite measure onSf, 
and MI J- M2-

Proof. Le t A = U { C ; C G ^ \ and let M = Mi + M2 be the decomposition 
of Theorem 1 (i). Then for each E G Sf we have E C\ A ^ ^é and, conse­
quently, M2G4 C\E) = 0. Now, for each E G 5f there is a set M G <^#such t h a t 
M C E - A and M I ( £ - A) = M W ; b u t M (M) = 0 by the maximali ty of 
^ so t h a t m(E — A) = 0. Accordingly, 

M I ( £ ) = M I ( £ n 4 ) = /*(£ n 4 ) = M A ( £ ) 

for all £ G J^\ where M A is a o--finite measure on ¥. 
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As an application of Proposition 2, we establish a result which is essentially 

t h a t of (2, Exercise 30.11). If v, rj are measures on a cr-ringj^, then rj is abso­

lutely continuous with respect to v, denoted by rj <$C v, if v(E) = 0 for every 

E e y such t h a t v(E) = 0. 

T H E O R E M 3. Let JJ, be a measure on a a-ringS^. Suppose there is a measure v 

on5^ such that /x <<C v, where either (i) v is finite or ( i i ) j ^ is a cr-algebra and v is 

G finite. Then there is a unique decomposition /x = /xi + /x2 such that: 

(a) mis a a-finite measure on£f\ 

(b) /x2 is an anti-semi finite measure on5f. 

(c) MI J- M2. 

T h e proof, in which Proposition 2 is applied, is similar to t ha t of Theorem 2, 
and is left to the reader. 

One should note t h a t the hypotheses of Theorem 3 imply those of Theorem 
2. Moreover, it is clear from the proofs t h a t hypothesis (i) of Theorem 2 

can be weakened to "v is finite on every set of non-semifinite /x-measure" and, 

likewise, (i) of Theorem 3 can be weakened to "v is finite on every set of 

positive and o--finite jii-measure'\ 
We cannot delete the hypothesis t h a t "Sf is a o--algebra" from (ii) of 

Theorems 2 or 3. This is il lustrated by our earlier example since, if v(E) is 
defined as the number of horizontal or vertical lines on which E is full, then 
v is (7-finite and /x <3C v in t h a t example. 

Since any measure possessing the decomposition of Theorem 3 with /x2 9^ 0 
cannot be semifinite, we deduce the following. 

COROLLARY. Let \x be a semifinite measure on a G-ring £f. Then JJL is a-finite 

if, and only if, there is a a-finite measure v on 5^ such that xx « v. 

Proof. If /x is cr-finite, let v — \x. T o prove the converse, let E £ Sf. Since 
v is 0--finite, there is a sequence of sets Et Ç 5 ^ of finite ^-measure such t h a t 
E C UEi. Then , for each i, vEi is a finite measure o n 5 ^ , \xEi is a semifinite 
measure on 5^ , and jxEi « vEi ; hence jxEi is a cr-finite measure on S^ by Theorem 

3. Accordingly, for each i there is a sequence of sets F^ £ ^ such t h a t 

£ t C U"=i Fu and nEi(Fij) = ^ ( ^ H FtJ) < °° for all j . Since 

EC UitJEtnFtj9 

/x is cr-finite. 
In closing, we remark t h a t most of the results of this paper fail for measures 

on rings or algebras. More specifically, suppose we extend the concepts of this 
paper to measures on a ring £% in the obvious way, namely, by subs t i tu t ing 
3% for £f. Then it is easily shown t h a t every measure /x on S% can be wri t ten 
as /x = \x\ + /X2, where m and /X2 are semifinite and anti-semifinite measures 
on &, respectively. However, it may happen t h a t (i) the decomposition is 
no t unique and (ii) for every such decomposition, (a) neither /xi S JJL2 nor 
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fjL2 S m, (b) m is finite, and (c) M <̂C m. (For such an example, let X be the 
set of positive real numbers, S% the class of all E C X such that E or its 
complement is finite, and let n(E) be X^srv 1/2W or oo according as E is finite 
or not, where / denotes the set of positive integers.) In particular, Theorems 
2 and 3 do not generalize to measures on rings or algebras. 
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