A DECOMPOSITION OF MEASURES

NORMAN Y. LUTHER

Let X be a set,.¥ a o-ring of subsets of X, and let u be a measure on.%.
Following (1), we define u to be semifinite if

w(E) = lub{u(F); F€%,FCE, and u(F) < ©} for every E €.%.

We show (Theorem 1) that every measure can be reduced to a semifinite
measure for many practical purposes. In many cases, this reduction can be
made even more significantly (Theorems 2 and 3). Finally, necessary and
sufficient conditions that a semifinite measure be o-finite are given as a corol-
lary to Theorem 3.

We shall need the following concepts. A measure u is anti-semifinite (or
degenerate; cf. 3, p. 127) if it takes on no finite, non-zero values, i.e., its range
is contained in {0, »}. Clearly, the only measure which is both semifinite
and anti-semifinite is the identically zero measure. If u and » are measures
on.?, then following (4), we shall say that » is S-singular with respect to u,
denoted » S, if for each E €.% there is a set F €.% such that F C E,
v(E) = v(F), and u(F) = 0. As is customary (2, p. 126), we use » L u to
signify that v is singular with respect to u, i.e., that there is a set 4 with
ENA4€e for all E€ .Y (ie., a locally measurable set A) such that
v(EMA) =0 = pu(E — 4) for all E €. Obviously, » L u implies that
v S and uSv. However, the converse fails, as we show below. Moreover, it
is clear that although singularity is a symmetric relation, S-singularity does
not possess this property. These facts suffice for our purposes. They, along
with other facts regarding S-singularity, are recorded in (4).

THEOREM 1. Let u be a measure on a o-ring &.
(1) There exists a unique decomposition u = uy + pe such that:

(@) w1 s a semifinite measure on &.

(b) w2 ts an anti-semifinite measure on .

(€) w1S po.

(d) u2S w1
(ii) Let p = pi’ + we, where ui’ is a semifinite measure on S’ and uy' 1s an
anti-semifinite measure on . Let p = uy + p2 be the decomposition of (i).

(@) p1 = p and pe = py'.

(b) If 4t is required that p S py', then py' is unique; i.e., ua' is necessarily
equal to ;.
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(c) If it is required that ps' S uy', then us' is unique; i.e., s’ s necessarily
equal to us.

Proof. For a locally measurable set F, let ur denote the measure on ¥ de-

fined by
vr(E) = u(FNE) for all E € &.
Let
M= {McSF: Mis u-o-finite}
and define

M1 = IUb{IJM; M ¢ c///}

Then u; is a measure on. by (1, Theorem 10.1) and one can readily verify
that:

(1) wi(E) = lub{u(M); M C E, M € M} for all E ¢.¥;

(2) w1 = u on A;

(3) For each E €.% there is an M € A such that M C E and

Ml(E) = #(M) = #1(M)

(since A is closed under countable unions);
(4) u is a semifinite measure on.%.
Next, we let
N =N €L u(N) = 0}
and define
p2 = lub{uy; N € N}

Then p. is a measure on.¥% which satisfies:
(1) u2(E) = lub{u(N); N C E, N € A} for all E €.¥;
(2) w2 =u on N
(3)" For each E €.% there is a set N € A such that N C E and

p(E) = p(N) = p2(N);

(4)" ue is an anti-semifinite measure on.%;

(5)’ Mo = 0 on %

(1)’, (2)!, and (3)" are obvious. (4)’ is shown as follows. Suppose there
exists £ €.% such that uy(E) = §, where 6 is finite and non-zero. There is a
set NV € A such that N C E and u(N) = us(E) = §; hence N € 4 so that
p1(N) = u(N) = 6 > 0, contradicting N € A. The proof of (5)" is similar:
If M € .#, there is a set N € A4 such that N C M (hence N € .#) and
pe(M) = p(N) = m(N) = 0.

Next we show that u = p; + us. Let E €.%. Since u; = p on & and
us = 0 on A, we can assume E ¢ A, hence u(E) = ©. If u3(E) = », the
result is obvious. Suppose ui(E) < ». There exists a set M € .# such that
M CE and uy(M) = u(M) = i (E) < . Thus u1(E — M) = 0 so that
E — M ¢ V. Hence us(E) Z po(E — M) = p(E — M) = p(E) — p(M) =
Consequently, u(E) = © = ui(E) + u(E).
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The last step in the existence part of this proof consists of showing that
u1S pe and we S pi. Since the proofs are similar, we shall only prove that
p1S us. Let E €.%. Thereisaset M € # such that M C E and u;(E) =y (M).
Moreover, u2(M) = 0 by (5)’.

To demonstrate the uniqueness assertions, it obviously suffices to prove
(i1) (b) and (ii)(c). In the process, we shall also prove (ii)(a). Suppose that
p = puy + we = wi’ + wo, where u; and i’ are semifinite measures on.¥ and
ue and wy’ are anti-semifinite measures on &. Clearly, it suffices to show:
(A) if uy Spue, then uy < wi'; and (B) if ws S py, then uy < wy'.

(A) Let E €.%. Since u1S pg, there is a set F €% such that F C E,
u1(F) = ui(E), and us(F) = 0. It suffices to show that u;(F) = ui’(F) since
then w1 (E) = u(F) < wi'(F) = wi'(E). Suppose w1’ (F) < ui(F). There is a
set G €. such that G C F and ui/(F) < u1(G) < = since w; is semifinite.
Then w1’ (G) < u1(G) < » and w2(G) = 0 by monotonicity. Hence

pe' (G) = p(G) — p'(G) = m(G) — u'(G),

contradicting the anti-semifiniteness of u.’.

(B) Let E €.%. Since uyS ui1, there is a set F €.% such that F C E,
w2 (F) = us(E), and u1(F) = 0. Clearly, it suffices to show that uy(F) u,' (F)
in order to verify that wy(E) =< w'(E). Suppose uy (F) < us(F). Then
wo' (F) = 0 and w2(F) = « by the anti-semifiniteness of u, and uy’. Conse-
quently, u,’(F) = = ; therefore, there is a set G €.% such that G C F and
0 < ' (G) < = because w1 is semifinite. But u;(G) = 0 and wy'(G) = 0 by
monotonicity. Hence wu:(G) = u(G) = ui’(G), contradicting the anti-semi-
finiteness of us. The proof is complete.

The following easily verified remarks pertain to the uniqueness of u;’ and
[or] wo in the decomposition u = uy’ 4 ws', where uy’ is a semifinite measure
and po is an anti-semifinite measure. In particular, they indicate that Theo-
rem 1 (ii) is quite optimal.

() w!' =pon M ={McS;Mis p-o-finite} and u;’ = 0 on #. This
is probably the strongest uniqueness statement that can be made in general.

(IT) If one requires that uy S us [ue’ S ui'], then ui' [us'] is unique, by
Theorem 1 (ii), but us’ [u1’] need not be unique.

(ITI1) wy S uy' is necessary as well as sufficient for the uniqueness of uy’. (To
show this, one may copy, from the proof of Theorem 1, the argument that
w1 S ua since, necessarily, us’ = 0 on .4 by Remark (I).) However, in general,
we' S i’ is not necessary for the uniqueness of wy'.

(IV) If wis semifinite, then i’ is unique (in fact, ui’ = w) but us’ need not
be unique.

(V) If p is anti-semifinite, then w.’ is unique (in fact, p.’ = u) but u/’
need not be unique.

The following two simple examples may help to clarify the preceding
remarks for the reader.
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(a) Let X be an uncountable set, and let /" be its power set. Let
p1(E) = card (E) and let

us(E) = {0 if E is countable,
»(E) =

|« if E is uncountable.

Let u = u1 + ue. Then u is semifinite and u; is not unique. In fact, if Fis a
given subset of X, and p2'(E) = u2(E N F) for all E €.%, then p=pu;+u,'.
(b) Let X,.¥ be as in (a). Let

foo if E 8,

u(E) = 10 if E=0.

Then u; must be g, and w; can be any semifinite measure on.%. In this in-
stance, us S u; does not necessarily hold (e.g. if u(E) = card(E)).

That it is not possible to replace conditions (c) and (d) of Theorem 1 (i)
by the condition u; L ue is illustrated by the following example. Let (X, .%)
be the measurable space of (2, Exercise 31.9). Let u;(E) be the number of
horizontal lines on which E is full, let u2(E) be = if E is full on some vertical
line, and 0 otherwise, and let 4 = u1 + we. Then clearly, u; is semifinite (in fact,
o- finite), ue is anti-semifinite, w1 S w2, and w2 S u1. However, it is false that
u1 L we since if there were a locally measurable set 4 such that

pi(E — A) =0 = u(ENA4)

for all E €., then 4 would be full on every horizontal line and countable
on every vertical line, which is impossible.

Under what circumstances can one replace conditions (¢) and (d) of
Theorem 1 (i) by the condition u; L we? By the preceding example, it is not
sufficient that u; be o-finite. However, by (4, Theorem 3.3), it is sufficient
that w1 be strongly o-finite. (See 4 for a discussion of strong o-finiteness;
finite measures on o¢-rings and o¢-finite measures on c¢-algebras are common
examples of strongly s-finite measures.) As for conditions on , it is obviously
sufficient that u be semifinite or anti-semifinite. Broader sufficient conditions
are given in Proposition 1 and its application, Theorem 2, which follow.

ProprosITION 1. Let u = p1 + pe be the decomposition of Theorem 1 (i). If u
is not semifinite (equivalently, ps # 0), then, by the maximal principal and the
fact that ws S p1, there exists a maximal disjoint subfamily ¥ of

G ={GeSLmG) =0 and p(G) = =}
= {G €S m(G) =0 and us(G) = »}.
If some such % has the property that for each E €% only countably many
members of & intersect E, then wy L ug; hence there is a unique decomposition

u = w1+ e such that ui is a semifinite measure on. S, uz is an anti-semifinite
measure on S, and py L po.
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Proof. Let A = U{B; B € #}. Then for every E €.%we have
ANEecN = (N c¥;m(N) =0}

and, consequently, u;(4 M E) = 0. Moreover, for each E €.% there is a set
N € N such that N C E — 4 and p:(E — 4) = u2(N); but us(N) = 0 by
the maximality of & so that us(E — A) = 0.

THEOREM 2. Let u be a measure on a o-ring.S. Suppose there is a measure v
on 'S which 1is non-zero on every set in.’ of non-semifinite u-measure where
either (i) v s finite or (i) & is a o-algebra and v is o-finite. Then there isa
unique decomposition u = py + ue Such that:

(a) w1 1s a semifinite measure on.%,

(b) we 1s an anti-semifinite measure on %,

(€) wp1l mo.

Proof. Obviously, it suffices to prove the result under assumption (i). If u
is semifinite, we may take p = p; and us = 0. Otherwise, letting p=u1+ u
be the decomposition of Theorem 1 (i), we have ¥ = {G €. %; u1(G) = 0
and u(G) = «} non-empty since ue # 0 and u2 .S u1. Now ¥ is closed under
countable unions, thus 2 = lub{»(G); G € ¥} is finite (and positive) and there
is a set G1 € ¥ such that»(G;) = k. Indeed, the one-member family {Gi} is
a maximal disjoint subfamily of ¥ since, if, Go € ¥ were disjoint from G,
then »(Go) > 0 by hypothesis, since every set in ¥ is a set of non-semifinite
p-measure; but then, Gy U Gy € 9 and »(G; \U Gy) > k, a contradiction.
Proposition 1 applies and the proof is complete.

Along the same lines, we establish the following conditions under which
both p; L we and u; is o-finite.

ProrosITION 2. If u is not anti-semifinite, then by the maximal principle,
there exists a maximal disjoint subfamily € of

Mt = {M €S; M is of positive and o-finite p-measure}.

If some such € has the property that for each E € & only countably many
members of € intersect E, then there is a unique decomposition u = u1 + e
such that py is a o-finite measure on.F, uy is an anti-semifinite measure on L,
and M1 1 M.

Proof. Let A = U{C; C € ¥} and let u = u; + p» be the decomposition
of Theorem 1 (i). Then for each E €. we have EMN 4 € .# and, conse-
quently, ps(4 N E) = 0. Now, for each E €. thereisaset M € .4 such that
MCE — A and wi(E — A) = u(M); but u(M) = 0 by the maximality of
% so that ui(E — 4) = 0. Accordingly,

m(E) = m(ENA) = p(ENA) = ua(E)

for all E €.%, where u, is a o-finite measure on.%.
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As an application of Proposition 2, we establish a result which is essentially
that of (2, Exercise 30.11). If », n are measures on a ¢-ring.#, then 7 is abso-
lutely continuous with respect to », denoted by n < », if (E) = 0 for every
E €.% such that »(E) = 0.

THEOREM 3. Let u be a measure on a a-ring . Suppose there is a measure v
on¥ such that u << v, where etther (i) v is fintte or (ii).¥ s a o-algebra and v is
o-fintte. Then there is a unique decomposition u = py + us such that:

(a) w1 1s a o-finite measure on .

(b) uq is an anti-semifinite measure on ¥ .

(€) L po

The proof, in which Proposition 2 is applied, is similar to that of Theorem 2,
and is left to the reader.

One should note that the hypotheses of Theorem 3 imply those of Theorem
2. Moreover, it is clear from the proofs that hypothesis (i) of Theorem 2
can be weakened to ‘v is finite on every set of non-semifinite u-measure’’ and,
likewise, (i) of Theorem 3 can be weakened to ‘‘v is finite on every set of
positive and o-finite u-measure’’.

We cannot delete the hypothesis that ‘‘’ is a oc-algebra’ from (ii) of
Theorems 2 or 3. This is illustrated by our earlier example since, if v(E) is
defined as the number of horizontal or vertical lines on which E is full, then
v is o-finite and u < v in that example.

Since any measure possessing the decomposition of Theorem 3 with uy % 0
cannot be semifinite, we deduce the following.

COROLLARY. Let u be a semifinite measure on a o-ring . Then u is o-finite
if, and only if, there is a o-finite measure v on ¥ such that p << v.

Proof. 1f p is o-finite, let v = u. To prove the converse, let E €.%. Since
v is o-finite, there is a sequence of sets E; €.% of finite v-measure such that
E C UE,. Then, for each 7, vy is a finite measure on.?, uz; is a semifinite
measure on.¥, and pz; < vg,; hence uy, is a o-finite measure on.¥ by Theorem
3. Accordingly, for each 7 there is a sequence of sets F;; €. such that
E;, C US Fyj and pg(Fij) = w(E; N Fiy;) < o for all j. Since

ECU.,ENF,
i is o-finite.

In closing, we remark that most of the results of this paper fail for measures
on rings or algebras. More specifically, suppose we extend the concepts of this
paper to measures on a ring &% in the obvious way, namely, by substituting
R for &. Then it is easily shown that every measure x on &% can be written
as u = u1 + we, where u; and ug are semifinite and anti-semifinite measures
on Z, respectively. However, it may happen that (i) the decomposition is
not unique and (ii) for every such decomposition, (a) neither u;S p; nor
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wa S p1, (b) wris finite, and (¢) w << p1. (For such an example, let X be the
set of positive real numbers, # the class of all E C X such that E or its
complement is finite, and let u(E) be > uezns 1/2" or © according as E is finite
or not, where J denotes the set of positive integers.) In particular, Theorems
2 and 3 do not generalize to measures on rings or algebras.
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