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1. INTRODUCTION

In genetic experiments the population size is normally not a biologically important
variable but is determined by extraneous conditions or laboratory facilities; the
same is true in sampling natural populations as well as in breeding experiments.
The geneticist is therefore compelled to think in terms of relative frequencies of
gene variants rather than in absolute numbers of their carriers. Accordingly, the
mathematical formulas used by geneticists usually refer only to relative frequencies
and relative fitnesses. They describe the structural changes in a population satis-
factorily as long as the total population size remains constant. This condition is
usually inconsequential because in practice population sizes remain nearly constant
over moderate periods of observation. A novel situation confronts us in evolu-
tionary theory when one considers developments over extremely long periods.
The familiar formulas then introduce an error which is negligible over moderate
time-intervals, but whose cumulative effect may be so great that the whole picture
changes when absolute population sizes are taken into account. This seems to be
true in particular for the calculation of the cost of natural selection, for problems
of survival of genes and for the notion of an unstable equilibrium.

This paper is written by a mathematician, and accordingly no new biological
models or hypotheses are advanced. The models we study are the familiar ones
obtained by applying the Mendelian laws to a single isolated locus. Obviously
such a model is too crude to reflect the deeper problems currently exciting geneticists.
In fact, a one-locus Mendelian population is a mathematical fiction in the sense that
it cannot be observed in nature whereas it could be simulated on a computer.
Despite all this the model continues to be used for purposes of orientation, and
certain purely mathematical deductions from it (such as the notion of equilibrium
and the tendency to it) continue to play a fruitful role in genetical thinking. It may
be useful therefore to present the theoretical conclusions from this model when
proper account is taken of the fluctuations in the population size. The point is
that (save in certain exceptional configurations) a Mendelian population cannot
have a constant rate of increase, that is, it cannot be Malthusian. Given the various
fitnesses, it is possible to calculate the size Nn of the nth generation; if only the
relative fitnesses are known, the size Nn can be calculated up to a factor fxn where
ft is the maximal absolute fitness. When this is done there seems to be more room
and flexibility for evolutionary processes than is sometimes supposed.

For clarity we begin with a review of some fairly obvious facts concerning
l
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2 WILLIAM FELLER

Malthusian populations and the notion of environment. Next we turn to the main
topic of this paper, namely, an analysis of the calculation of the cost of natural
selection made by J. B. S. Haldane and M. Kimura (Haldane, 1957, 1960; Kimura,
1960, 1961). The problem is roughly to estimate the effect on the ultimate popula-
tion size of a depression in fitness at one particular locus due to an assumed change
of the prevailing conditions. The loss in population size is called selective death by
Haldane, and substitutional (or evolutional) load by Kimura. This loss was found
to be practically independent of the amount of depression (as long as the latter is
small) and so enormous as to lead to the conclusion that simultaneous selection
at several loci cannot proceed at a reasonable rate. The present scrutiny of these
calculations was undertaken at the suggestion of Th. Dobzhansky who commented
on the paradoxical nature of Haldane's result and its grave consequences. Other
evolutionists were worried by Haldane's conclusions and it was hoped that a revision
of the observational data may lead to a more acceptable result (Brues, 1964; Mayr,
1963).*

Haldane calculated the cost of selection for various types of organism, but
since the basic principle remains the same it will suffice to analyze in detail only
the case of haploid organisms, which is mathematically by far the simplest. Indeed,
in this special case no problem arises when one considers the population size. In
sections 4-5 we analyze Haldane's definition and the possibility of alternative
models assuming constant population size.

Next we consider the selection at an autosomal locus in a sexually reproducing
diploid without mutations. The (rather unexciting) result of the formal calculation
of the cost of natural selection is presented in a companion paper (Feller, 1966) but
here we discuss some noteworthy features requiring only a minimum of mathe-
matics.

In section 6 we indicate how the true population size can be calculated. In
section 7 it is shown that the so-called state of unstable equilibrium is easily mis-
interpreted: under the usual assumptions the population is destined to die out
rather than to be maintained at an equilibrium.

In section 8 we turn to the problem of survival of a gene, which cannot be treated
without reference to absolute population size because the fact that the frequency
qn of the a-gene tends to zero does not necessarily imply the disappearance of this
gene. Indeed, when qn -> 0 the absolute number of o-genes may increase from
generation to generation at a geometric rate. Even if the total population is kept
at a fixed level, the process of elimination of the a-genes may be so slow that these
genes are not in practice eliminated from the evolutionary process. The examples
of sections 9 and 10 will clarify this point.

2. MALTHUSIAN POPULATIONS AND CONSTANT ENVIRONMENT

Consider a uniform population with non-overlapping generations in which each
individual gives rise to a random number of direct descendants. If p is the expected

• After completion of this paper and the publication of the companion paper (Feller, 1966)
I became the grateful recipient of letters with references to other pertinent papers.
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On fitness and the cost of natural selection 3

number of such descendants and the parental population consists ofN0 individuals,
the expected size of the next generation is N1 = NO/J.. The actual size is a random
variable but for large populations the true size is likely to be close to the expected
size and it is therefore usual to treat Nt as if it were the actual size. Assuming
unchanged conditions we get for the expected size of the next generation
iV2 = iVr

1/x = iVo^2, and generally Nn = N0[j.n. This is the well-known Malthusian
model for population growth.

When /i = 1 the expected population size remains constant. A large population
may be expected to remain constant over a number of generations, but the cumula-
tive effect of chance fluctuations will grow more pronounced and ultimately a
Malthusian population with fitness fi = l is bound to die out.* A similar remark
applies to Mendelian populations and shows that caution is indicated in dealing
with very large time intervals and with assumed states of equilibrium.

Obviously evolution could not occur without some species having fertilities
exceeding 1, and then the Malthusian model breaks down for a different reason.
With increasing density the population is bound to affect the environment, and
hence the assumption of constant external conditions becomes biologically un-
tenable. To take this into account one assumes that the fertility /J. depends on the
population density in such a manner that the expected population size will tend
to a maximum value Nm. Over reasonably short observational periods the fertility
will not change appreciably, and over such periods the population will appear as
practically Malthusian. However, when the model of density-dependent fertilities
is accepted, the observed fertilities at any time cannot be used to predict the
ultimate population size: of two populations the one with lower fertility may tend
to a higher plateau.

Another limitation of the long-run significance of the Malthusian parameter
(and of fitness in general) is inherent in the relativity of the notion of environment.
To explain this by a simple example, consider a population which in two separated
geographic regions Ri and R2 has different fertilities ^1 and ju.2. We suppose positive
migration probabilities si and 52 with the effect that an offspring of an individual
in Ri may serve as a parent in either Ri or R2, with corresponding probabilities
1 — si and si. Initially the population may be distributed in an arbitrary manner,
for example, be concentrated in region Ri. Assuming constant conditions the two
regional subpopulations in Ri and R2 tend to become practically Malthusian with
the same fertility rate p which is a complicated averagef of /xi and /t2- Thus the
effective long-run fertility JX depends on the migration probabilities between the
two regions, however small these probabilities may be. To an observer in Ri one

* This is a basic result of the Galton-Fisher theory of branching processes which applies
to Malthusian populations. Readers puzzled by the phenomenon that a population with
fixed expected size can be condemned to extinction may consider a hypothetical population
as follows: the nth generation consists with probability \jn of n individuals, and with prob-
ability 1 — 1/w of 0 individuals. The expected size of the nth generation equals 1, but the
probability that the population survives n generations is only 1/ra and tends to zero.

t Letting at = /x,( 1 — 8,) one gets (using the theory of Markov chains)
V 2
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4 W I L L I A M F E L L E R

population may appear less fit than another, and yet it will ultimately grow faster.
This is so because the whole biological environment contains both Ri and R2
while any given observer sees only one region and the corresponding fertility. In
the long run the hidden parameters turn out to be crucial. With obvious verbal
changes this model applies also to temporal chance fluctuations within the same
region.

3. HAPLOID ORGANISMS AND MIXED MALTHUSIAN POPULATIONS

The theory of selection in haploid, clonal, or self-fertilizing organisms is con-
cerned with a gene pool of two kinds of genes A and A'. Assuming constant external
conditions and disregarding possible mutations one is led to a model in which there
is no interaction between the genes. Mathematically the nature of the genes is
then irrelevant and in effect we are dealing with a composite (mixed) population
consisting of two Malthusian components. To fix ideas, denote fertilities in the
two components (or the fitnesses of the A- and A '-genes) by fi and /x', so that the
ratio

^- = l-k (3.1)

represents the relative fitness of A'. The sizes Nn and N^ of the two components
in the nth generation are given by the geometric progressions

Nn = N<>nn, N; = N^'n (3.2)

and the total population size equals Nn + N^ As usual we denote the relative
frequencies of A and A' by pn and qn, so that

N +N'' q" = N +N

Since A and A' are representative in the proportion pn:qn the average rate of
increase* fi,n of the nth generation is given by

M» = PnP + qnp' = /*(!-*?») (3.4)

This rate of increase varies from generation to generation except in the trite case
k = 0 when A and A' have the same fertility. Accordingly, a mixture of two
Malthusian populations is not Malthusian, and the expected population size
remains constant only in the trite case fi = JX = 1. On the other hand, if h is positive,
the frequency qn tends to zero, and from (3-4) it is seen that the effective fertility
/xn tends to /x.. This means that after a sufficiently long time the population will
be practically Malthusian with a rate of increase //,. It should be noticed, however,
that it may take an exceedingly long time to complete this process.

Example. In his calculations of the cost of natural selection Haldane assumes
that prior to a sudden change in the environment the A genes had been at a dis-
advantage, and hence their frequency po in the parental generation is exceedingly

* That is, the ratio of the expected sizes of two successive generations.
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small. The following calculations are based on the value of po = 10~4 which Haldane
quotes repeatedly as relatively large. It is assumed that k is positive, but small.
The A '-genes are then at a disadvantage and their relative frequency qn decreases
steadily from the initial value qo = 0-9999 to 0. Table 1 shows how many generations
it takes to reduce the frequency qn to 0-99, 0-9, and so on. The values are calculated
from (3.5) and do not depend on the absolute fitness /x. When k = 0-01 it takes
some 460 generations to reduce the frequency qn to 0-99 and some 1000 generations
to reduce it to 0-3. The average fitness of the whole population equals initially
0-99001 ju,; eventually the population is homozygous with fitness /x. Natural
selection increases the fitness by 1%, but after 460 generations it is still only
0-9901 /x and after 1000 generations only 0-997 /x. In other words, 1000 generations
cover only seven-tenths of the whole selection process. It is true that for k = 0-1
the process is slightly more than 10 times faster, but for smaller k it is incredibly
slow. In the extreme example, k=\Q-z, 1000 generations will reduce qn only to
0-99973 and the total fitness is increased only by 0-0000003 p.

Table 1. Number n of generations required to reduce the initial frequency
q0 = 0-9999 of the A'-gene to the given value q

q= 0-99 0-9 07 0-5 0-3 0-1

Assuming:
k = 00l 459 698 832 917 1000 1135
k = 0-l 44 67 79 87 95 109

Returning to the general situation note that the sizes of the A- and ^.'-com-
ponents are given by (3.2) whence

When Jc > 0 one has qn ->• 0. This means that the relative size of the .4'-component
tends to zero, but this is not necessarily true of the absolute size. Several situations
are possible.

Case (i). If/x >/x' > 1 each of the two components increases at a geometric rate.
(Biologically this model ultimately breaks down for the reasons discussed in the
preceding section.)

Case (ii). If fx> 1 >/x' the expected size of the ^'-component decreases geo-
metrically, but the total population size exhibits in the long run a geometric increase.

Case (Hi). If JX = 1 > /x' the A '-component dies out geometrically. The expected
size of the .4-eomponent remains constant (namely No), but because of chance
fluctuations even the vl-component is bound to die out ultimately (see footnote,
page 3). Within the deterministic approximation which equates actual popula-
tion size with its expected value one would say that the ultimate population size
equals NQ: the ^-component remains constant while the >4'-component dies out.
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4. HALDANE'S SELECTIVE DEATHS

Haldane calculated the cost of natural selection for various Mendelian popula-
tions, but the simplest case appears under the heading 'selection in haploid, clonal,
or self-fertilizing organisms' (Haldane, 1957, 1960). The other cases present greater
biological interest, but require deeper mathematical techniques. The basic principle
being the same in all cases, we shall discuss in detail only the simplest case. As
Haldane remarks, low mutation rates do not affect the general picture and are
therefore disregarded. We are then concerned with the simple model of the preced-
ing section: there are two types of gene, A and A', with fertilities (absolute fitnesses)
ft and ft' = 1 — k. The genes do not interact in any way. In the nth generation their
expected numbers are Nn and N^, respectively, and they appear in the proportion
Pn'-1n t s e e (3-2) and (3.3)]. To comply with the general usage (and Haldane's
notation) we put* /u, = l and fi' = l — k. The expected size of the ^.-component
then remains for all times equal to No, while the number of A '-genes decreases
geometrically. The loss in the nth generation equals N^ — N^+i, and these losses
add up to

m [N;) + ... = No (4.1)

This is intuitively obvious seeing that the total population size decreases from

It may now be best to analyze Haldane's notion of selective deaths formally
before considering its biological background and motivation. Using the size
No + No of the parental generation as unit of measurement Haldane defines as
selective deaths in the nth generation the quantity dn = kqn; the sum D = do + di +...
then represents the total of selective deaths.f The qn are given by formula (3.5),
and from it Haldane obtains an approximation to the sum D using a subtle and
original approach.

I t will be noticed that (using the original population size No + N$ as unit) one
has No = qo, and so kqo = (l—fj.')No = NQ — N{. For the parental population there-
fore the selective deaths do ai>e the same as the decrement in population size
NQ — N{, and this interpretation agrees with Haldane's general explanations. But
since every generation can be taken as parental it follows that the number of
selective deaths in the nth generation should equal N^ — N^+i which is not the same
as Haldane's dn = kqn because the population size has decreased from No + NQ = 1
to Nn + N^< 1. Now Haldane was interested only in approximations, and since
k is small, the effective population size does remain approximately constant over
rather long periods of time. I t seems therefore obvious that conceptually Haldane's
selective deaths are identical with the true decrements N^ — N^+l, but that in his

* There is no serious restriction in this convention. With an arbitrary /j, it suffices to
measure the size of the wth generation in units /u." to reduce the general model to fj. — 1. I t must
be noted, however, that p is the fertility of the A -component and not of the whole population.
As was remarked above, the fertility of the latter varies from generation to generation.

f Kimura's substitutional (or evolutional) load differs from Haldane's dn by an adjustment
factor a" to which the remark of the preceding footnote applies.
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On fitness and the cost of natural selection 7

calculation he used the standard mathematical approximation familiar to geneticists
and applicable as long as the population size remains nearly unchanged.*

In other words, Haldane actually defines the selective deaths in a given genera-
tion as the loss N'n — N'n+1 in population size. The total selective deaths then
amount to the number of A '-genes originally present, in accordance with the fact
that the ^'-component is ultimately lost. The formula dn = kqn expresses the
number of selective deaths in units of the population size of the rath generation,
and the calculations neglect the effect of the changes in this size. The cumulative
effect of this approximation is disastrous. In fact, Haldane concluded that (as
long as k is small) the total of selective deaths is practically independent of k and
given by

D = l o g l (4.2)

(in units of the size of the parental population). For reasons discussed in the next
section we are interested only in situations where po is small, and hence D large.
Indeed, Haldane considers po = 10~4 as rather large, and with it D = 9-2. Haldane's
general conclusion is that the selective deaths involve 'a number of deaths equal
to about 10 or 20 times the number in a generation, always exceeding this number,
and perhaps rarely being 100 times this number. To allow for occasional high
values I take 30 as a mean'.

To appreciate the magnitude of this estimate it should be remembered that the
deaths are due solely to the disability of the A '-genes and that the total of A '-genes
ever to be born equals

In extreme cases the number D of presumed selective deaths may exceed the
number of A '-genes ever to be born.

5. DISCUSSION OF THE MODEL

As we have seen, assuming strictly constant conditions, the expected total
population size cannot remain constant except when /*=/*' = 1. Given a fixed
relative fitness (/i'/ju.) = 1 — k < 1 it is possible to obtain a constant population size
either by postulating that the fertility fi is an appropriate function of the population
size, or else by assuming the existence of external forces ensuring the desired
stability. One may suspect that Haldane had some such model in mind, in par-
ticular since the quoted sentence refers to the number ' in a generation' rather than
in the parental generation. It seems to me that Haldane's discussion leaves no
doubt that he was thinking in terms of our model with constant environment and
constant fertilities, and that notions of steady state and constant populations enter

* The reader may wonder why Haldane should have resorted to subtle approximations
when the exact result can be written down in the simple form (4.1). The answer is that Haldane
was interested in more general situations which admit of no simple solution. In other words,
the general problem did require a new approach, and no general method is universally the
best in every special case.
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the discussion merely as an unintended byproduct of the routine mathematical
formulas to which geneticists are used. It is my i mpression that similar unwarranted
extrapolations in evolutionary theory are accepted as unavoidable mathematical
truths and render biological thinking more difficult. It may therefore be useful to
discuss the alternative models in some detail. However, the following discussion
has no bearing on the subsequent sections. Let us consider the following extreme
possibilities:

(a) The absolute fitnesses are constant, but the environmental conditions are
such as to maintain a constant population size (say by immigration or emigration).
It suffices to consider the simple case /x = 1, /x' = 1 — k<l. The loss caused by the
disadvantage of the A '-genes must be replaced by immigration or some other
method. The cost of natural selection is not borne by the population as such, but
by the assumed mechanism of replacement. This cost depends on the method of
replacement. The most economical method consists in replacing each A '-gene that
is lost by a superior A -gene. The replacements may occur at various times, but
each A '-gene in the parental population will ultimately cost exactly one replacement,
and the total number of replacements equals the number NQ of ^.'-genes originally
present. The least economical way consists in replacing each A'-gene lost by
another .A'-gene. With this system the composition of the population remains
unchanged, and each generation requires the same number of replacements (namely
qoNg). Among the infinity of intermediate procedures there is one whose total
cost is given by Haldane's expression D = lc(qo + q% + ...). It consists in adding to
the nth generation A- and .A'-genes in the proportion pn :<?„ so as not to upset the
proportions observed. Under no conditions does the population itself bear any
load, and the number of replacements is a measure of the efficiency of the mechanism
of replacements rather than of the cost of selection.

(b) At the other extreme one may assume a constant environment and a fertility
JX depending on the actual population size so as to ensure a steady state. In other
words, it is assumed that the population size will change from the original size, say
unity, to a steady-state level Nm ^ 1. If Nx = 1 there is no drop in population size,
and hence no cost of natural selection. Otherwise the variable size of the initial
generations must be taken into account, and our argument is not affected by the
new model. Furthermore, the cost of selection now depends on the manner in
which fj. depends on the population size; this presents a biological rather than a
mathematical problem.

The biologist may think of a variety of conditions producing a nearly constant
population size, but mathematically it will lead to a combination of our two extreme
situations.* The question of the cost of natural selection appears in a new light in
each case.

Finally a word concerning the biological background of the problem which may

* This conclusion may conflict with biological facts and intuition. If it is untenable, so is
the basic assumption of the model that the gene pair (A,a) may be treated independently
of others. (It must be borne in mind that two strongly interacting species cannot be treated
separately as Malthusian populations.)
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On fitness and the cost of natural selection 9

be described very roughly as follows. It is supposed that originally the population
was in a near equilibrium with fertility rates a and a'. At a time when the population
size is NQ and the two genes stand in the proportion po'-qo the external conditions
are changed with the effect that from now on the fertilities are p and p'. It is
assumed that the change has a negative effect on the population size and the
problem is to find the anticipated new level of equilibrium. Before the change the
A '-genes had been at an advantage, and hence the A -genes were maintained at a
low level by mutation. This explains the assumed low values for po- Note that
the development of our population is independent of the fertilities a and a before
the change to the new fertility rates ft and JX', but without keeping the original
situation in mind one would obviously never speak of selective deaths. Haldane
had, of course, good reasons to assume an actual depression in the fertility of the
A' type. This does not change the fact that his arguments in no way depend on
this assumption; and the results should apply for all past fitnesses a. and a', and
hence both fertilities have increased. To give an extreme example, the change from
a. = o<! = \ to £i = l and /x' = 0-99 would be called a 'depression' merely because a
relative fitness is decreased. But how can a doubling of fertilities in Malthusian
populations lead to deaths? The whole problem is affected by the habitual reliance
on relative fitnesses as if they had an objective meaning.

6. DIPLOID POPULATIONS

Haldane's theory applies to arbitrary Mendelian populations, and although the
calculations are more intricate, the principle is the same. We shall therefore be
satisfied with an indication of the solution of his problem when absolute population
sizes and fitnesses are taken into account.

Consider then a random-mating population with non-overlapping generations
and an autosomal pair of alleles A and a not subject to mutations. We wish to
study the development of the absolute population size and associate with the
three genotypes AA, Aa, aa fixed absolute fitnesses w\, wi, wz. In other words, w\
is the expected number of offspring (counted at an appropriate stage of development)
resulting from a pairing of two A -genes. As usual we denote the two gene frequencies
in the wth generation by pn and qn. We have then the familiar relations

Pn(ipn + 2qn)
Pn+1 = MP~) ' 9n+1 =

where
w(Pn) = wipl + 2w2pnqn + w^ql (6.2)

is the average fitness of the nth generation. If No is the size of the parental popula-
tion then the expected sizes Nn of the successive generations can be calculated
recursively from the relation

-Nn (6.3)

Our problem is to find out how the choice of the initial frequencies (po,qo) affects
the ultimate population size. The principle of the calculations may be illustrated
by an example.
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Example. Let w\ = 0-36, wt =1-16, and wz = 0-96. For convenience we take the
initial population size as unit, that is, we put No = 1. For the initial gene frequencies
we take po = O-8 and qo = O-2. From (6.2) one gets w(po) = O-64:. The frequencies
pi and qi in the first generation can now be calculated from (6.1), and the population
size Ni is obtained from (6.3). Proceeding in this manner we get the development
summarized in Table 2.

Table 2

Generation
0
1
2
3
4
5

Frequency
Pn

0-80
0-65
0-52
0-43
0-37

Fitness
MPn)
0-64
0-80
0-90
0-95
0-97

Population
size

1
0-64
0-51
0-46
0-44
0-42

The fitness w(pn) of the nth generation tends to 1, and the absolute population
size Nn tends to a limit Nm which equals about 0-4. The true fitness varies from
generation to generation, and our population is not Malthusian. Nevertheless,
after a sufficient number of generations the fitness and the expected population
size remain practically constant. The gene frequencies pn and qn converge to the
stable equilibrium (p,q) given by p = 0-2, q = 0-8. If the population had started
at this state of equilibrium all the gene frequencies pn would have remained un-
changed, and the population would have been maintained at the original level.
The loss of some 60% of the original population is therefore attributable to the
rather unfavourable initial gene frequencies po = 0-8 and qo = 0-2. In this sense it
represents the cost of natural selection (although Haldane preferred to exclude the
case of a stable equilibrium).

The general case of a stable equilibrium can be treated in like manner, and the
calculations will not be spelled out because the result is not exciting. Note, however,
that the use of absolute fitness permits us to formulate various conclusions. For
example, mutations do not affect the fitnesses w\, wz, w% but do change gene fre-
quencies p, q in the state of equilibrium. Now the limit value p is such that
w(p) >w(p) for all p near p. It follows unequivocally that small mutation rates
always depress the ultimate fitness, and hence also the ultimate population size.
As in Table 2 the fitnesses w(pn) and the population sizes Nn converge much faster
than do the gene frequencies pn.

7. THE SO-CALLED UNSTABLE EQUILIBRIUM

A more interesting situation is encountered when v>\ > w% < W3, that is, when the
heterozygotes are least fit. In this case there exists a critical point defined by the
frequencies

= W1-W2 _ = W3-W2 _

W1 + W3 — 2w%' W1 + W3 — 2w
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As is well known (and. easily verified from (6.1)), the development now depends
essentially on the initial gene frequencies po and qo in the following way:

If q0<l then ^ ( 7 2 )

If <Zo=<7 then, theoretically, <?o = <7i = #2 = • • • and for this reason (7.1) is called a
point of unstable equilibrium, but this term is apt to give an erroneous impression.
Indeed, the chance fluctuations inherent in the Mendelian model are bound to
bring the system off balance in the first generation with the effect that qi will not
exactly equal q. This means that an unstable equilibrium cannot be maintained
but that always either qn -> 0 or qn ->• 1. This result appears in a new light if the
population size is taken into account. Only two essentially different cases are
possible.

(a) Assume wi = W3 = l, but W2<1. The so-called unstable equilibrium is
represented by p=q = \. With any other initial frequencies (po,qo) one has a
tendency to homozygosity, but before this state is reached the total population
size may have dwindled to a negligible fraction of its original size. Indeed, it can
be shown that the expected size of the nth generation is given by*

" v - q ( 7 - 3 )

provided, of course, that po > qo and the original population size No is taken as
unit. But then pn ->• 1 and qn -> 0 so that the expected ultimate population size
in the homozygous state equals Nx =po — q0. Thus if the initial gene distribution
(po, qo) is close to the so-called equilibrium (\, J) the expected population size dwindles
to the small fraction po — qo. This is not quite what one expects from an equilibrium.
In this special case the cost of natural selection is indeed exorbitant.

(6) Assume wi > 1 but w% < w$ < 1. In the homozygous state aa the population
decreases at the geometric rate w$, and hence it is bound to die out whenever qn —> 1,
that is, whenever the initial frequency qo exceeds the critical value q. I t is interest-
ing that the elimination of the total population could have been avoided by making
the homozygotes aa less fit than the heterozygote Aa, for in this case one would
have pn -> 1 and qn ->• 0. For our population with the initial gene distribution po,
qo it would be preferable to have wz = 0 than wz>wz: with a lethal in double dose
the population would survive and, indeed, increase at the geometric rate w\.

* See Feller, 1966. The assertion can be proved by checking that

and hence

(see (6.1) and (6.3)). Use this relation with n replaced by n— 1, n — 2, ..., 0 and multiply the
resulting n equations. Most terms cancel, and one obtains (7.3).
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8. SURVIVAL

So far we have considered diploid populations (without mutations) with fitnesses
w\, w%, w3 such that.there exists a state of stable or unstable equilibrium. In all
other cases the population will be ultimately homozygous, and we may suppose
that the final state is A A. Then q^ -»• 0, but this does not imply that the a-genes
die out. Indeed, the total number N^ of a-genes depends ultimately only on w^,
but not on w\ or W3. When w% > 1 the numbers Nn will ultimately increase at a
geometric rate even though qn -> 0.

To see this in detail we use the basic relations of section 6. Since we assume
that pn->\ and qn ->• 0 the (absolute) fitness w(pn) of the nth generation tends
to the fitness W\ of the A A type (see (6.2)). I t follows that after a sufficiently large
number of generations the population fitness is practically fixed at w\, which means
that, as far as size is concerned, the population ultimately behaves like a Malthusian
population with fertility w\. As we saw, the population is bound to extinction unless
W\>\.

The expected number N^ of a-genes in the nth generation is given by N^ = Nnqn,
where Nn is the expected population size. Thus

K Nnqn
 W(PJ qn

 (8>1)

by the very definition of the fitness w(pn) (or by (6.3)). From the second relation
in (6.1) it is seen that the right side in (8.1) equals w%pn-\-wzqn, which quantity
tends to w% because pn -> 1 and qn -*• 0. This means that after a sufficiently large
number of generations the ratio N'n+1/N^ will be practically indistinguishable from
w%. If w<i < 1 the a-genes are doomed for extinction, but if w% > 1 this number will
ultimately increase at a geometric rate. Of course, the total population size Nn

increases at an even faster rate.
We have thus reached the interesting conclusion that when the absolute fitness

W<L of the heterozygotes Aa exceeds 1, the number N^ of &-genes will increase approxi-
mately as a geometric sequence with ratio u>2 even though qn -»- 0.

I t is surprising that the ultimate rate of increase of N^ depends only on w^, but
not on the fitnesses of the homozygotes.* In particular, even when a is lethal in double
dose the ultimate number of a-genes is the same as when the relative fitnesses of
Aa and aa are the same.

I t follows that a gene whose frequency qn tends to 0 is not necessarily lost for the
evolutionary process. We can go a step further. If w2 < 1 the a-genes will be
ultimately eliminated, but the process may be so slow that the genes survive for
a period long enough to encounter changes of the environment which may modify
the fitnesses. To judge the effect of the selection process we must solve two
problems:

(a) Estimate the speed of the. selection process, (b) estimate its cost, that is, the
ratio of the ultimate population size in terms of what this size would be if the

* Under the present conditions, of course, wi > wi and wz «S w%.
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population had been homozygous from the beginning. Such estimates are given
in Feller, 1966, and we shall be satisfied here to give two instructive examples.

9. FIRST EXAMPLE

Assume u>i=W2>W3, that is, only the homozygotes aa have a disadvantage.
As is well known, under these circumstances pn ->• 1 and qn -> 0. It can be shown*
that the expected size Nn of the nth generation tends to Nopo- In other words, the
ultimate population size is the same as if all a-genes had been removed from the
parental population. The selection process in this case causes a loss of a fraction
go of the initial population as could be expected from the circumstance that in this
example only a-genes are being eliminated.

This elimination process is exceedingly slow. Indeed, ifw1=wz=l and w% = 1 — k
the gene frequency qn is given approximately^ by

at least when n is large. (Under all circumstances the right side underestimates
the true value of qn). The expected number N^ of a-genes is therefore approximately

N , = NQPQ

" l+kqon

It seems that k = 0-1 would be generally considered a serious disadvantage, and
yet it would take 1000 generations to reduce the initial frequency <7o = O'Ol to
half its value, that is, to eliminate one-half the a-genes. A 1000 generations should
suffice for many changes in the environment but even if the assumption of constant
conditions and fixed fitnesses is taken at face value it must be remembered that a
population is spread over a great number of biological niches and that during a
very slow process chance fluctuations are likely to produce a variety of results in
different niches,

Anyhow, this discussion over-emphasizes one side of the picture in that we
attributed fitness w\ = 1 to the homozygotes A A, even though we saw in section 2
that a finite population with fitness 1 is bound for extinction. It is therefore
necessary to assume that actually w\>\, though the difference w\ — 1 may be
small. But then the number of a-genes will increase from generation to generation
irrespective of the degree of disability of the oa-homozygotes. Assuming a rate
of increase of 1 % per generation, the size of the nth generation will be, approxi-
mately, Nopoiin, where /* = 1-01. The actual number of a-genes in the nth genera-

* From (6.1) one sees that w(pn) =pjpn+1, and hence Nn+1 = Nnpjpn+1. It follows by induc-
tion that Nn = NoPo/pn> and since £>„-»• 1 the ultimate population size equals NoPo-

t From the second relation in (6.1) we get

If the inequality > were replaced by an equality sign formula (9.1) would represent the exact
solution of the recurrence relation.
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tion increases at a rate which is practically indistinguishable from an increase at
the same rate /x. Even in the extreme case where a is lethal in double dose the
actual number of a-genes in the nth. generation increases steadily (and exceeds

10. SECOND EXAMPLE

The preceding example is extreme in that the heterozygotes Aa have no dis-
advantage. As a fairly representative example we take w\ = \, w%=$, M>3=)92

where j3 < 1. For it exact formulas can be supplied.
The expected population size now tends* to Nopl, which means that a fraction

-ZVo?o(l +2?o) of the original population is eliminated. In other words, each a-gene
lost causes a loss of poqo genes of the A -type, and so the process of selection is
costlier than in the preceding example. The process itself proceeds faster, but for
small 1—j3 it is still exceedingly slow; the exacts expression for qn is

SUMMARY

A Mendelian population without artificial external constraints does in general
not increase at a constant rate. Formulas neglecting the changes in population size
introduce an error which is negligible under ordinary circumstances but whose
cumulative effect over long periods may be disastrous. Questions relating to the
cost of natural selection, the nature of an unstable equilibrium, the survival of
genes, etc. cannot be treated without regard to absolute population sizes. The
limitation of the notion of relative fitnesses is illustrated by the fact that in some
typical situations the survival of the a-gene depends only on the absolute fitness
of the J.a-heterozygote, but not on the fitnesses of the homozygotes. Furthermore,
a decrease of the (absolute or relative) fitness of one genotype may actually
increase the viability of the population and its ultimate size.

Even when the relative frequency qn of the a-gene tends to zero the absolute
number of such genes may increase from generation to generation at a geometric
rate. Therefore the circumstance that qn -» 0 may be insignificant as compared
to the fact that the earth cannot sustain an infinitely increasing population.
Ultimately the population size is bound to influence the environment and so the
fitnesses will change. Thus we must consider density-dependent fitnesses and then
observed fitnesses cannot be used to predict the ultimate fate of a population. It is
now known (Dobzhansky, 1965) that relative fitnesses are sometimes very sensitive

* The exact formula is now Nn = Nopllp* as can be seen by induction from the fact that

t This can be verified from (6.1), but it is difficult to describe the method used to obtain
the result.
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to small changes in environment and that the same species may occupy a great
variety of environmental niches. It is therefore quite likely that at least part of
a population will find itself in a modified environment before too many generations
have passed. For the evolution of a species and the development of new forms it is
then not important that under fixed conditions the relative frequency qn of the
o-gene would tend to zero. The problem is whether the actual number of such
genes will increase for a period sufficiently long to encounter changed conditions
or to establish itself in new combinations. This question is significant because the
convergence of the frequencies qn to zero may be extremely slow. Thus even in a
population of fixed size a disappearing gene could exist long enough to contribute
to evolutionary processes.

Speaking generally, the thinking in terms of an assumed steady state and relative
fitnesses seems to aggravate the problem of applying the wonderful results of
modern genetics to the theory of evolution. For example, various mechanisms
which are often considered as eliminating genetic variability may sometimes
produce the opposite effect. The theory of evolution should distinguish between
what the physicist would call macroscopic and microscopic equilibrium. Even if
the world as we see it were in a perfect equilibrium this would not imply an approxi-
mate steady state for individual species, not to speak of genes. It is clear that an
evolution to higher forms depends on a frequent decrease in fertility rates. If one
considers slow changes rather than an unattainable steady state then a loss of
fitness may be beneficial in the long run and contribute to genetic variety.

I am indebted to Th. Dobzhansky for drawing my attention to Haldane's theory as well
as for many stimulating discussions. Thanks are due also to other members of his laboratory
for hospitality and instruction.
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