
11

Realistic supersymmetric models

It should be clear that, without further assumptions, the MSSM is not a tractable

framework for SUSY phenomenology: there are just too many free parameters.

This is not to say that we cannot do any phenomenology with the MSSM. First,

assuming only R-parity conservation, we know that all sparticles must decay into

other sparticles, until the decay chain terminates in the stable LSP. We have already

seen that cosmological considerations require that the LSP cannot have electromag-

netic or strong interactions. Since it couples to quarks and electrons only via weak
interactions, it behaves like a neutrino in that it escapes the experimental apparatus

undetected. As a result, the production of SUSY particles in high energy collisions

is generically signaled by events with apparent “missing energy and momentum”

(carried off by the undetected LSPs). With some mild assumptions of sparticle mass

ordering, other relatively robust inferences may also be possible. For instance, if we

assume that μ̃R is the only charged sparticle that is accessible at an e+e− collider,

and that the lightest neutralino is the LSP, we can conclude that

� smuons will be pair produced in e+e− collisions with cross sections that are fixed

in terms of mμ̃R
by known couplings to the photon and the Z -boson;

� both smuons will dominantly decay via μ̃R → μZ̃1.

Smuon pair production will thus be signaled by a calculable rate for missing energy

events with acolinear muon pairs. We will see later that this is the way that the

current bound on mμ̃R
is obtained from experiments at LEP2.

If instead W̃1 is the lightest charged sparticle, there are additional complica-

tions from the fact that it is a model-dependent mixture of charged gauginos and

higgsinos. The decays of other heavier sparticles are sensitively dependent on the

sparticle (and Higgs boson) mass ordering, as well as on the sparticle mixing

matrices discussed in Chapter 8. The size of the parameter space makes a gen-

eral analysis of heavy sparticle decay patterns quite intractable. The analysis of
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262 Realistic supersymmetric models

SUSY loop-induced contributions to low energy processes is also complicated

for the same reason. Indeed, as we saw in Chapter 9, phenomenologically well-

motivated, but theoretically ad hoc, universality assumptions are invoked for these

analyses.

Clearly, the problem is that we do not have any theoretical principle for deter-

mining the soft SUSY breaking parameters of the MSSM. We speculate that the

MSSM is the low energy approximation to an underlying fundamental theory in

which SUSY is spontaneously broken by some as yet unknown dynamics. We hope

that experimental data on sparticle properties will guide us to this dynamics once

these are discovered. In the absence of such guidance, we adopt a “top-down” ap-

proach based on theoretical assumptions about how superpartners of SM particles

acquire masses, resulting in different models of supersymmetry.

The first attempts to construct supersymmetric theories of particle physics were

based on global supersymmetry, with the supersymmetry broken at the weak scale.

As we saw in Chapter 7 these attempts typically run into problems with the tree-level

mass sum rule (7.35). These problems can be avoided if

1. supersymmetry is promoted to a local symmetry, in which case the sum rule is

modified to (10.66); the term proportional to m3/2 on the right-hand side means

that the scalar masses can all be shifted up, thereby evading the phenomenolog-

ically unacceptable existence of scalars lighter than the fermions.

2. Alternatively, the tree-level sum rule of global supersymmetry can be evaded if

superpartners of SM particles get their masses only at the loop level.

Models that exploit both these alternatives have been constructed. A common

feature of all realistic supersymmetric models of particle physics is the necessity of

assuming a “hidden sector” whose dynamics somehow breaks supersymmetry. This

sector is dubbed hidden because it couples only indirectly (and very weakly) to the

“observable sector” of SM particles and their superpartners. The details of how su-

persymmetry is broken in this sector are, as we will see, unimportant for the physics

of the observable sector. What is important is “the agent” that couples the hidden and

observable sectors, and communicates the effects of SUSY breaking to the super-

partners of SM particles, which then acquire soft SUSY breaking masses and cou-

plings. The idea is that supersymmetry is broken at a scale F = M2
SUSY � M2

W in the

hidden sector where the goldstino resides. This sector is assumed to interact with the

observable sector only via the exchange of superheavy particles X . The couplings of

the goldstino to the observable particles are suppressed by (a power of) MSUSY/MX ,

and the effective mass gap in the observable sector is Meff ∼ M2
SUSY/MX (or, more

generally, Mn+1
SUSY/Mn

X , n = 1, 2, . . .). It is this gap that is required to be comparable
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Realistic supersymmetric models 263

to the weak scale, even though the fundamental SUSY breaking scale may be much

larger.1

The reason that this approach makes any sense at all is that the radiative correc-

tions in the observable sector correspond to the scale Meff. The effective potential

of the low energy theory (the observable sector) does not contain any terms of

O(M4
SUSY, M3

SUSY Meff, M2
SUSY M2

eff, MSUSY M3
eff) which would render the whole ap-

proach inconsistent. This was first analyzed by Polchinski and Susskind in a toy

model, and later by others in more realistic scenarios.2

Supersymmetric models are characterized by the agent that communicates super-

symmetry breaking effects in the hidden SUSY breaking sector to the observable

world. Since gravity couples universally to energy, gravitational interactions are

one obvious choice for mediating SUSY breaking effects. Indeed in a truly su-

persymmetric world, gravity mediation must be present. Whether its effects are

swamped by other things is the relevant issue. Of course, gravity-mediated SUSY

breaking requires that supersymmetry is local (as it must be if all interactions are

supersymmmetric), so that these models are based on supergravity. Supersymmetry

breaking effects may also be communicated by the usual SM gauge interactions. In

these so-called gauge-mediated supersymmetry breaking (GMSB) scenarios, new

“messenger fields” that couple directly to the hidden sector, but which also have

SM gauge couplings, act as mediators of SUSY breaking effects: MSSM gaugi-

nos and sfermions get supersymmetry breaking masses and couplings only at the

loop level, thereby evading the tree-level mass sum rule. We will see that both

supergravity models as well as GMSB models have the general structure of geo-

metric hierarchy models discussed above: since gravity is the mediator of SUSY

breaking in supergravity models, the scale MX is identified with the Planck scale,

and MSUSY ∼ 1010 GeV. In GMSB scenarios, MSUSY is identified with the mass

of messenger fields; if these are relatively light, the underlying SUSY breaking scale

can be much smaller than in gravity-mediated scenarios. More recently other me-

diation mechanisms, which could most naturally occur if the world had additional

(compactified) spatial dimensions, have also been considered.

In this chapter, we will introduce the physical ideas behind these various models,

focussing on the differences in their phenomenological implications. We emphasize

that each of these models is based on untested assumptions about physics at scales

well above the weak scale. It may be that these assumptions will prove to be

incorrect. The important thing, however, is that the models make characteristic

predictions which will be subject to test in experiments at high energy colliders. A

1 Indeed there were attempts to make realistic globally supersymmetric models based on this idea, with MX �
MW and n = 2. These models were dubbed geometric hierarchy models for obvious reasons.

2 J. Polchinski and L. Susskind, Phys. Rev. D26, 3661 (1982); L. Hall, J. Lykken and S. Weinberg, Phys. Rev.
D27, 2359 (1983), and references therein.
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264 Realistic supersymmetric models

common feature of all these scenarios is that sfermions with the same SU (3)C ×
SU (2)L × U (1)Y quantum numbers will turn out to have the same mass parameters

and the same A-parameters, renormalized at some high scale, so that unwanted

flavor-violating effects discussed in Chapter 9 are absent. The reader should keep

an eye open for how this comes about in each of these cases.

11.1 Gravity-mediated supersymmetry breaking

We begin our discussion of models by considering the case where gravitational

interactions mediate the effects of supersymmetry breaking in the hidden super-

symmetry breaking sector to the superpartners of SM particles. We will concentrate

on the form of the Lagrangian for the low energy theory that is obtained as a result

of coupling the hidden and SM sectors via supergravity, but will not write down

the most general formulae for the coefficients of the various terms in the resulting

low energy theory. These formulae are cumbersome and, in the absence of a com-

pelling high energy theory, not particularly useful for the abstraction of the low

energy phenomenology.

11.1.1 Hidden sector origin of soft supersymmetry breaking terms

We begin our construction of supergravity models by grouping the left-chiral su-

permultiplets of the model {Ŝi } into observable sector fields Ĉi (these include all

the MSSM fields) and the “hidden sector” fields ĥm . The ĥm fields are assumed

to be gauge singlets under the observable sector gauge symmetry group, which

may be taken to be GSM or a grand unifying group. The observable sector gauge

superfields are correspondingly chosen. The superpotential is chosen to be a sum

of two independent parts, with no “superpotential couplings” between them:3

f̂ (Ŝi ) = f̂ o(Ĉn) + f̂ h(ĥm). (11.1)

New gauge interactions (under which the SM particles are singlets), and the asso-

ciated degrees of freedom may also be present in the hidden sector.

The locally supersymmetric Lagrangian corresponding to these sets of fields

can be worked out using the general results of the previous chapter. With our as-

sumptions, (super)gravity is the only coupling between the hidden sector and the

observable sector. We assume that the dynamics of the hidden sector somehow

breaks supersymmetry. This could be by any of the mechanisms discussed in Chap-

ter 7. The goldstino degrees of freedom are absorbed by the gravitino which obtains

3 We may imagine that a symmetry forbids superpotential couplings between the hidden and observable sectors
if the superpotential is restricted to be polynomial in the fields. Since supergravity is not renormalizable, the
division into the two sectors appears to require an alternative explanation.
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11.1 Gravity-mediated supersymmetry breaking 265

a mass m3/2. The low energy effective field theory valid below the Planck scale is

obtained by taking the limit as MP → ∞, keeping m3/2 fixed. This will turn out to be

a renormalizable supersymmetric Yang–Mills theory based on the low energy gauge

group together with a slew of soft SUSY breaking (SSB) masses and couplings,

with magnitudes ∼ m3/2. It should be kept in mind that in this framework, higher di-

mensional, non-renormalizable operators (consistent with low energy symmetries)

suppressed by appropriate powers of MP will also be present. These operators are

referred to as “Planck slop” in the literature.

To illustrate this procedure, we will adopt a simple model wherein the ob-

servable sector consists of the fields of the MSSM, and the gauge symmetry is

SU (3)C × SU (2)L × U (1)Y. We take the hidden sector to consist of a single left-

chiral superfield ĥ whose dynamics breaks local supersymmetry. The hidden sector

superpotential f̂ h might be the Polonyi superpotential, although we will be some-

what more general than that.

We first work out the scalar potential for the case of the flat Kähler metric, with

K (Ŝ, Ŝ†) = ĥ†ĥ +
∑

n

Ĉ†nĈn.

We will return to the more general case later. This potential is given by,

V = e(S i∗Si )/M2
P

⎡

⎣

∣
∣
∣
∣
∣

∂ f̂

∂Si
+ S i∗ f̂

M2
P

∣
∣
∣
∣
∣

2

− 3

M2
P

| f̂ |2
⎤

⎦

= e(h∗h+Cn∗Cn)/M2
P

⎡

⎣

∣
∣
∣
∣
∣

∂ f̂ h

∂h
+ h∗ f̂

M2
P

∣
∣
∣
∣
∣

2

+
∣
∣
∣
∣
∣

∂ f̂ o

∂Cn
+ Cn∗ f̂

M2
P

∣
∣
∣
∣
∣

2

− 3

M2
P

| f̂ |2
⎤

⎦ ,

(11.2)

where a sum over fields is implied. We assume that the F-component of the hidden

sector field ĥ develops a VEV ∼ m2 which breaks local SUSY and, further, that its

scalar component h develops a VEV of order MP as well. The VEVs of the scalar

components of the observable sector fields are assumed to be negligible compared

to MP. Accordingly, we parametrize these VEVs by,

〈h〉 = aMP, (11.3a)

and

〈 f̂ h〉 = bm2 MP and 〈∂ f̂ h

∂h
〉 = m2, (11.3b)

with a and b being dimensionless coefficients of order 1. For the specific

choice of the Polonyi model, a = √
3 − 1 and b = 1. The gravitino mass is
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266 Realistic supersymmetric models

given by,

m3/2 = bm2

MP

ea2/2. (11.3c)

The ratio m/MP is arbitrary at this point.

The next step in the calculation of the effective scalar potential of the “light”

observable sector fields valid at an energy scale Q 
 MP is to evaluate the scalar

potential with the “heavy” hidden sector field (whose quanta cannot be excited at

this low energy scale) set to its VEV. Finally, we take the flat space limit, MP → ∞
while keeping m3/2 fixed. The effective scalar potential reduces to,

Veff = m4ea2 [
(1 + ab)2 − 3b2

] +
∣
∣
∣
∣

∂ f̃ o

∂Cn

∣
∣
∣
∣

2

+ Vssb, (11.4a)

where f̃ o is the rescaled scalar superpotential f̃ o = ea2/2 f̂ o,

Vssb =
∑

n

[

1 +
(

a + 1

b

)2

− 3

]

m2
3/2|Cn|2

+ m3/2

∑

n

[
∂ f̃ o

∂Cn
Cn + A f̃ o + h.c.

]

, (11.4b)

and A = a
(

1
b + a

) − 3.

The first term of Veff in (11.4a) is the cosmological constant, which may be fine-

tuned to zero by adopting (1 + ab)2 = 3b2. The second term of Veff is the “usual”

superpotential contribution to the scalar potential, as in theories with global SUSY,

where f̃ o is now identified as the superpotential of the effective theory. The term Vssb

evidently contains various soft SUSY breaking terms. The first of these are mass

terms for the scalar components of the visible sector superfields: if the cosmological

constant is fine-tuned to zero, they are all given by mscalar = m3/2 in this simple case,

and the desired universality is obtained. We can choose m2 so that m3/2 ∼ Mweak,

the size required for low energy supersymmetry to stabilize the electroweak scale.

The smallness of the ratio m/MP still needs to be explained. The remaining terms

in Vssb correspond to bilinear and trilinear soft SUSY breaking terms, and are also

of order m3/2. These correspond to the b and a terms in (8.10) of Chapter 8. Notice

that the c terms discussed in Chapter 8 are absent; this is because of our simple

choice of the Kähler potential.

Before turning to the case of the general Kähler metric, we note that SUSY

breaking in the hidden sector may also lead to soft SUSY breaking gaugino masses

in the observable sector. This can clearly be seen from the first term in LG
F,Int in

(10.58b):

LG
F � 1

4
eG/2 ∂ f ∗

AB

∂S j∗ (G−1)
j
k Gk λ̄AλB . (11.5)
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11.1 Gravity-mediated supersymmetry breaking 267

In order to obtain non-zero gaugino masses, the gauge kinetic function must be

a non-trivial function of hidden sector fields, and SUSY must be broken; i.e.

〈Gk〉 �= 0. Since 〈Gk〉 ∼ m2, and ∂ f ∗
AB/∂S j∗ ∼ 1/MP, we expect that the resulting

gaugino mass m1/2 ∼ m2/MP ∼ m3/2, and is also of order the weak scale. Clearly,

without any assumptions about unification of gauge interactions, we will obtain

independent masses for SU (3)C, SU (2)L, and U (1)Y gauginos.

We should keep in mind that the soft SUSY breaking effective Lagrangian for the

low energy theory that we have just obtained will still obtain radiative corrections

from the interactions in this low energy theory. Although this low energy theory

may be weakly coupled, these radiative corrections would be expected to depend

on k = g2

8π2 ln(MP/m3/2), where g is a typical coupling in the low energy theory (it

could be one of the gauge couplings.) Since k is not small, it is important to sum

these logarithms. This is done by using “running parameters” obtained by solving

the renormalization group equations discussed in Chapter 9. In other words, the

parameters in the “low energy theory” should be regarded as renormalized at some

high scale ∼ MP.

The careful reader will have traced the reason for universal masses in (11.4b) to

our assumption of a flat Kähler metric. More general forms of the Kähler potential

lead to non-universal SSB masses and couplings as can be seen from the exercise

at the end of this section. This was first pointed out by Soni and Weldon.4 Rather

than list the rather complicated expressions for these parameters, we will just note

several important features:

1. Although universality is not a generic feature of supergravity models, the scale

of SSB masses and couplings is generally still set by m3/2.

2. The trilinear a terms, in general, are not proportional to the corresponding su-

perpotential Yukawa couplings.

3. Trilinear c terms are possible, but are suppressed by higher powers of MP.

Regarding the first point, we should mention that even if we do arrange for a model

with universal scalar masses at tree level (for instance, by the minimal choice for

the Kähler potential), loop corrections will in general spoil the degeneracy. Indeed,

assuming universal scalar masses is tantamount to assuming a U (n) symmetry

amongst the n observable sector superfields. However, this symmetry is explicitly

broken by superpotential Yukawa couplings in the observable sector. Moreover,

there is no theoretical argument for such a symmetry. Thus, while it might be possi-

ble to accommodate universality by making technical assumptions of the underlying

physics, it seems fair to say that universality is not a generic feature of supergravity

4 S. Soni and H. A. Weldon, Phys. Lett. 126B, 215 (1983). Convenient general expressions for the soft SUSY
breaking parameters are given by A. Brignole et al. in Perspectives on Supersymmetry, edited by G. Kane,
World Scientific (1998).
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models. This has provided motivation for the construction of alternative scenarios

where the scalar mass degeneracies needed for solving the SUSY flavor and C P
problems occur for different reasons.

Exercise (Non-universal scalar masses) Show that the low energy effective po-
tential leads to non-universal scalar mass terms if the Kähler potential has the
form,

K (Ŝ, Ŝ†) = ĥ†ĥ +
∑

n

K̃n

(

ĥĥ†

M2
P

)

Ĉ†nĈn,

where K̃n are dimensionless functions of the hidden sector field. Remember that
for this Kähler potential the kinetic energy terms of the scalar components of Ĉn

do not have the canonical form, so that these fields have to be rescaled to obtain
canonical kinetic energies. Notice that this redefinition implies that we would have
obtained universal mass terms if Kn had just been some constants rather than
field-dependent functions.

Check also the form of supersymmetry breaking trilinear interactions in the low
energy theory. Are the A terms universal?

Exercise We found that c-type trilinears were absent in the minimal model. Con-
vince yourself that this type of SUSY trilinears can arise if one allows trilinear terms
in the Kähler potential. Remember that these terms will always be suppressed by
powers of MP.

Although the details of the hidden sector are unimportant for low energy phe-

nomenology, it is gratifying to see such a hidden sector is present in many theoretical

frameworks. For instance, in heterotic string models, there is a natural, built-in hid-

den sector comprised of the dilaton field S, arising from the gravitational sector of

the theory, and the moduli fields Ti , which parametrize the size and shape of the

compactification. If the auxiliary fields of these multiplets provide the seeds for

SUSY breaking, then the resulting effective theory below the Planck scale may be

just a four-dimensional supersymmetric gauge theory with weak scale soft SUSY

breaking terms.

11.1.2 Why is the μ parameter small?

We have just seen that supergravity models provide a rationale for why the scale of

SUSY breaking parameters of the MSSM is much smaller than MP. On dimensional

grounds we would expect though that the supersymmetry conserving μ parameter
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to be of order MP rather than m3/2, which would destroy the mechanism for elec-

troweak symmetry breaking in SUSY models. This is known as the μ problem.

Supergravity models provide an elegant mechanism for generating the μ term

with the right magnitude, provided that we assume thatμ is forbidden by a symmetry

that is violated only by interactions with the hidden sector.5 Although it would then

be absent in the tree-level superpotential of the observable sector, an effective μ

term would develop via the gravitational interactions with the hidden sector. To see

this, we note that there is nothing to forbid a (non-renormalizable) term,

K (ĥ, Ĥu, Ĥd) � λĥ† Ĥu Ĥd

MP

, (11.6a)

in the Kähler potential, where ĥ is a hidden sector left-chiral superfield and Ĥu and

Ĥd the Higgs superfields of the MSSM. Since the F-component of ĥ develops a

VEV ∼ m2, the action of the low energy effective theory includes a term,
∫

d4xL � −1

4

∫

d4xd4θ K (ĥ, Ĥu, Ĥd) + h.c.

∼ m2λ

MP

∫

d4xd2θ Ĥu Ĥd + h.c. (11.6b)

The reader will recognize this as the superpotential μ term of the MSSM, with a

magnitude |μ| ∼ m3/2 as phenomenologically required.

11.1.3 Supergravity Grand Unification (SUGRA GUTs)

Minimal supergravity (mSUGRA) model

We have already encountered the minimal supergravity (mSUGRA) model in Chap-

ter 9 where we adopted the universality hypothesis for gaugino masses, scalar

masses and the various A-parameters at a high scale Q ∼ MGUT. This scenario

can be obtained within the framework with gravity mediated SUSY breaking.6

The choice of a flat Kähler metric leads to a common mass for all scalars of

m2
0 = m2

3/2 + V0/M2
P, where V0 is the minimum of the scalar potential. It is this

technical assumption of the “minimal” choice of the Kähler potential that the “min-

imal” in minimal supergravity refers to. In this case though universality is likely

to hold closer to Q ∼ MP. Common gaugino masses at Q = MGUT may arise be-

cause of grand unification of gauge interactions. But these may also be obtained

by assuming that the gauge kinetic function has the same field dependence on the

5 G. F. Giudice and A. Masiero, Phys. Lett. 206B, 480 (1988).
6 A. Chamseddine, R. Arnowitt and P. Nath, Phys. Rev. Lett. 49, 970 (1982); R. Barbieri, S. Ferrara and C. Savoy,

Phys. Lett. B 119, 343 (1982); N. Ohta, Prog. Theor. Phys. 70, 542 (1983); L. Hall, J. Lykken and S. Weinberg,
Phys. Rev. D27, 2359 (1983).
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hidden sector fields, for each factor of gauge symmetry: e.g. f a
AB = caδAB f (hm),

where a labels the different factors of the gauge group, and ca are real numbers.

The constants ca disappear from the mass term upon canonical normalization of

the gaugino kinetic energy terms.

The fundamental parameters of the model are the set (9.22). We have already

seen that radiative EWSB (discussed in Chapter 9) allows us to trade the bilinear

SSB parameter B (equivalently B0) in favor of tan β, and also to fix the value of

μ2 to reproduce the experimental value of MZ . Then, the parameter space of the

model is given by

m0, m1/2, A0, tan β, sign (μ). (11.7)

It is common to assume that the universality of SSB parameters holds at MGUT

rather than MP.

SU (5) supergravity GUT model

We will assume that the reader is familiar with the motivations for grand unification.

Grand unified theories are especially attractive when combined with supergravity.

The simplest model, based on SU (5) gauge symmetry,

� allows for unification of the gauge symmetries of the SM into a single Lie group,
� provides a group theoretic explanation for the ad hoc hypercharge assignments

of the SM or MSSM fields.

It is usually assumed that supersymmetric SU (5) grand unification is valid at mass

scales Q > MGUT 
 2 × 1016 GeV, extending at most to the reduced Planck scale

MP where gravitational effects become sizable. Below Q = MGUT, the SU (5) model

(with a minimal matter content) breaks down to the MSSM with the usual SU (3)C ×
SU (2)L × U (1)Y gauge symmetry.

In the SU (5) model, the D̂c and L̂ superfields are members of a 5̄ superfield

φ̂, while the Q̂, Û c, and Êc superfields occur in the 10 representation ψ̂ . There

is a replication of generations. The Higgs sector of the minimal SU (5) model

is comprised of three super-multiplets: 
̂(24) which is responsible for breaking

SU (5), together with Ĥ1(5) and Ĥ2(5) which contain the MSSM Higgs doublet

superfields Ĥd and Ĥu respectively.7 The superpotential is given by,

f̂ = μ
Tr
̂2 + 1

6
λ
Tr
̂3 + μHĤ1Ĥ2 + λĤ1
̂Ĥ2

+1

4
ftεi jklmψ̂ i j ψ̂klĤm

2 +
√

2 fbψ̂
i j φ̂iĤ1 j + · · · , (11.8a)

7 This is the primary reason why we assigned Ĥd to transform as the 2∗ representation of SU (2)L.
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where we neglect the Yukawa couplings of the first two generations, and retain just

ft and fb, the top and bottom quark Yukawa couplings. The couplings λ and λ
 are

GUT Higgs sector self-couplings, and μ
 and μH are superpotential Higgs mass

terms. Note that in this model fb = fτ when the SU (5) symmetry is unbroken.

Proton decay is the smoking gun signature of grand unification. In non-

supersymmetric GUTs, this occurs via dimension 6 operators involving X and

Y gauge bosons. In supersymmetric GUTs, proton decay can also be mediated by

color-triplet higgsinos which, being fermions, lead to dimension 5 baryon-number-

violating operators which are potentially much more dangerous.8 Furthermore,

higgsino-mediated proton decay depends on Yukawa couplings. As a result, in

SUSY GUTs, the proton preferentially decays to kaons rather than to pions as in

standard GUTs.

Soft supersymmetry breaking terms are induced by hidden sector local SUSY

breaking, and are parametrized by:

Lsoft = −m2
H1

|H1|2 − m2
H2

|H2|2 − m2

Tr{
†
} − m2

5|φ|2 − m2
10Tr{ψ†ψ}

−1

2
M5λ̄αλα

+
[

B
μ
Tr
2 + 1

6
Aλ


λ
Tr
3 + BHμHH1H2 + AλλH1
H2

+ 1

4
At ftεi jklmψ i jψklHm

2 +
√

2Ab fbψ
i jφiH1 j + h.c.

]

. (11.8b)

The various SSB parameters and the gauge and Yukawa couplings evolve with

energy scale according to 15 renormalization group equations (the first two gener-

ations are degenerate). Assuming universality at MP, one imposes

m10 = m5 = mH1
= mH2

= m
 ≡ m0

At = Ab = Aλ = Aλ

≡ A0, (11.9a)

and evolves all the soft masses from MP to MGUT. Although there are no large

logarithms or couplings, there is substantial evolution due to large group theory

factors arising from the fact that the representations contain many particles. The

MSSM soft breaking masses at MGUT are specified via

m2
Q = m2

U = m2
E ≡ m2

10, m2
D = m2

L ≡ m2
5,

m2
Hd

= m2
H1

, m2
Hu

= m2
H2

. (11.10)

8 Indeed, if λ <∼ 0.7, triplet higgsinos are too light and one runs into trouble with constraints from proton decay.
Some authors have argued that these constraints, in fact, rule out minimal SUSY SU (5). It is clear, however, that
the proton decay rate depends on the unknown details of GUT scale physics, and can be altered by complicating
the GUT sector. For this reason, we will not consider such constraints here.
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Figure 11.1 Evolution of SSB masses for a typical case study in SUSY SU (5)
GUT model with tan β = 35, which allows for b-τ Yukawa unification. We choose
λ = 0.7 and λ
 = 0.1. Although not shown, At and Ab evolve to −88 GeV and
−78 GeV at Q = MGUT. Reprinted from H. Baer, M. Diáz, P. Quintana and X.
Tata, JHEP 04, 016 (2000).

The evolution of SSB masses in SUSY SU (5) is shown in Fig. 11.1. A striking

feature is the sizable GUT scale splitting between the Higgs and matter scalar mass

parameters, arising from the large λ Yukawa coupling contribution to the running

of Higgs boson mass parameters. The masses of the 10 and 5∗ multiplets evolve

differently, as do those of multiplets of the different generations. In particular, third

generation multiplet masses are somewhat suppressed compared to their counter-

parts of the first two generations owing to Yukawa coupling contributions to the

RGE running. Thus, even in an SU (5) SUGRA GUT model, we would expect non-

universality. However, scalar masses for multiplets in the first two generations are

still highly degenerate, so that FCNCs are suppressed. We have also checked that

even if we start with A0 = 0 at Q = MP, sizable values of At and Ab are generated

at Q = MGUT. This could have a significant effect on the phenomenology of third

generation sparticles.

Exercise Draw a Feynman diagram involving triplet higgsino exchange for the
baryon number violating process,

d̃ũ → s̄ν̄μ.

Notice that the squarks in the initial state can be obtained from u and d quarks by
exchanging a chargino. This “dressed” diagram mediates the process du → s̄ν̄μ
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which in turn can cause p → K +ν̄μ. Convince yourself that the amplitude for this
process is suppressed only by a single power of MGUT and, hence, is much larger
than that of the baryon number violating amplitude mediated by exchange of GUT
gauge bosons.

Non-universal gaugino masses

Since there is no reason to expect the gauge kinetic function to be field independent,

gaugino masses are a generic prediction of supergravity models (or for that mat-

ter any non-renormalizable theory with broken supersymmetry). Moreover, (11.5)

shows that the gaugino mass scale in the effective low energy theory is expected to

be ∼ m3/2. Gauge invariance dictates that the gauge kinetic function must transform

as the symmetric product of two adjoints under the gauge symmetry. If any of the

auxiliary fields that break supersymmetry transform non-trivially under the grand

unifying gauge group (but of course as an MSSM gauge singlet), non-universal

MSSM gaugino masses are obtained. These may then be parametrized by,

L ⊃ 〈Fh〉AB

MP

λAλB + · · · (11.11)

where the λA are the gaugino fields, and Fh is the auxiliary field component of ĥ
that acquires a SUSY, and possibly GUT symmetry, breaking VEV. It is only in the

special case where the fields Fh which break supersymmetry are GUT singlets that

universal gaugino masses are obtained.

In the context of SU (5) grand unification, Fh belongs to an SU (5) representation

which appears in the symmetric product of two adjoints:

(24×24)symmetric = 1 ⊕ 24 ⊕ 75 ⊕ 200 , (11.12)

where only 1 yields universal masses. If instead Fh transforms as any other irre-

ducible representation that appears in (11.12), the MSSM gaugino mass parameters

at Q = MGUT, though different, are related by group theory. The weak scale gaugino

masses are then obtained by renormalization group evolution, starting from these

non-universal values, as discussed in Chapter 9. The relative GUT scale SU (3),

SU (2), and U (1) gaugino masses M3, M2, and M1 are listed in Table 11.1 along

with the approximate masses after RGE evolution to Q ∼ MZ . These scenarios

represent the predictive subset of the more general (and less predictive) case of

an arbitrary superposition of these representations. The model parameters may be

chosen to be,

m0, M0
3 , A0, tan β, and sign (μ), (11.13)

where M0
i is the SU (i) gaugino mass at scale Q = MGUT. M0

2 and M0
1 can be

obtained in terms of M0
3 via Table 11.1. Notice that the nature of the neutralino LSP
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Table 11.1 Relative gaugino mass parameters at
Q = MGUT and their relative values evolved to Q = MZ in
the four possible Fh irreducible representations in SU (5)

SUSY GUTS.

MGUT MZ

Fh M3 M2 M1 M3 M2 M1

1 1 1 1 ∼6 ∼2 ∼1
24 2 −3 −1 ∼12 ∼ − 6 ∼ − 1
75 1 3 −5 ∼6 ∼6 ∼ − 5

200 1 2 10 ∼6 ∼4 ∼10

as well as the mass gap between the LSP and Z̃2 depend on the gauge transformation

properties of Fh: as a result, SUSY phenomenology changes significantly in the

different scenarios.9

SO(10) supergravity GUT models

We saw in Section 9.7 that it is necessary to introduce right-handed neutrino su-

perfields in order to give neutrinos a mass without spoiling the conservation of

R-parity. Within the MSSM, or within the SU (5) GUT framework just discussed,

these gauge singlet superfields had to be introduced ad hoc. The body of evidence

in support of neutrino mass, however, makes the grand unified group SO(10) espe-

cially appealing because the minimal SO(10) model contains three generations of

matter superfields, with each generation together with a singlet neutrino superfield

N̂ c included in the 16-dimensional spinorial representation ψ̂16. Thus, SO(10) al-

lows not only for gauge group unification, but also for unification of matter in each

generation into a single irreducible representation. Morover, singlet neutrinos es-

sential for the implementation of the see-saw mechanism occur automatically in this

framework. The Higgs bosons Ĥu and Ĥd lie within a 10-dimensional fundamental

representation φ̂10. The superpotential for the model includes the term

f̂ � f ψ̂16ψ̂16φ̂10 + · · · , (11.14)

responsible for quark and lepton masses, with f being the single Yukawa coupling

per generation in the GUT scale theory. The ellipsis represents terms including for

instance higher dimensional Higgs representations and interactions responsible for

the breaking of SO(10).

9 G. Anderson et al., Phys. Rev. D61, 095005 (2000).
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The unification of Yukawa couplings of each generation means that the third

generation neutrino Yukawa coupling fν is large: fν = ft . The third generation

neutrino Yukawa coupling fν splits τ̃L and ν̃τ masses from their first and second

generation cousins, in the same way that tau Yukawa couplings split the staus from

other slepton masses. In some models, this splitting is potentially measurable in

linear collider experiments.

The soft SUSY breaking terms will include a common mass m16 for all matter

scalars and a mass m10 for the Higgs scalars, along with a universal gaugino mass

m1/2, and common trilinear and bilinear SSB masses A0 and B. Motivated by

apparent gauge coupling unification in the MSSM, it is common to assume that

SO(10) breaks directly to the gauge group SU (3)C × SU (2)L × U (1)Y at Q =
MGUT = 2 × 1016 GeV, though SO(10) could well have broken to SU (5) at a yet

higher scale.

A novel feature arises because the rank of SO(10) (the rank is the largest number

of mutually commuting generators) is one higher than that of the MSSM gauge

group. This effectively means that SO(10) includes a (broken) U (1)X factor that is

not a low energy symmetry. Naively, one would suppose that if the U (1)X breaking

scale MX is sufficiently large, U (1)X would be negligible for TeV scale physics.

To see that this is not the case, let us consider a simple toy model, where U (1)X

is broken by VEVs of a pair of MSSM gauge singlet fields � and �̄ with U (1)X

charges +1 and −1, respectively. If we denote the scalar components of the MSSM

fields by Si and their U (1)X charges by xi , we can write the scalar potential that

determines 〈�〉 and 〈�̄〉 as,

V = Vsymm(�, �̄) + m2|�|2 + m2|�̄|2 + g2
X

2

[|�|2 − |�̄|2 + xi |Si |2
]2

. (11.15)

The term Vsymm comes from the superpotential for the heavy fields and is chosen

to be symmetric under � ↔ �̄. The next two terms are SSB masses for the heavy

fields � and �̄: they are of order of the weak scale, but otherwise unrelated. The

last term, which is the usual U (1)X D-term contribution to the potential, forces the

minimum to be along the nearly D-flat direction 〈�〉 ≈ 〈�̄〉. However, if m �= m,

the minimum of the potential deviates from the D-flat direction by,

〈�〉2 − 〈�̄〉2 
 m2 − m2

2g2
X

. (11.16)

The last term in (11.15) then shows that the MSSM scalars Si receive an additional

contribution to the mass proportional to their U (1)X charge,

�m2
i = xi

2
× (m2 − m2), (11.17)
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which by (11.16) is of order the weak scale. Thus U (1)X leaves its imprint on the

MSSM sfermion mass spectrum even if MX is very large.

Returning to the SO(10) model, the scalar field squared mass parameters at

Q = MGUT are then given by

m2
Q = m2

E = m2
U = m2

16 + M2
D

m2
D = m2

L = m2
16 − 3M2

D

m2
Hu,d

= m2
10 ∓ 2M2

D

m2
N = m2

16 + 5M2
D, (11.18)

where M2
D parametrizes the magnitude of the U (1)X D-terms just discussed, and

can, owing to our ignorance of the gauge symmetry breaking mechanism, be taken

as a free parameter of order of the weak scale, with either positive or negative

values. Thus, the model is characterized by the following free parameters

m16, m10, M2
D, m1/2, A0, sign (μ). (11.19)

Since

mt

mb
∼ ftvu

fbvd
,

solutions with unification of Yukawa couplings are possible only for large values

of tan β. This argument is only qualitative because radiative corrections to mb are

very important. In practice, the value of tan β is restricted by the requirement of

Yukawa coupling unification, and so is tightly constrained to a narrow range around

tan β ∼ 50–55.

Inverted hierarchy models

A phenomenologically interesting class of models referred to as inverted mass hi-
erarchy (IMH) models, have the matter sfermion mass order inverted from the

order of the corresponding fermions. Specifically, scalars of the first and second

generation are expected to have masses at the multi-TeV scale so that a decoupling

solution to the SUSY flavor and C P problems may be invoked. Because these spar-

ticles have very tiny couplings to the Higgs sector, they do not lead to unnaturally

large fine-tuning. On the other hand, third generation sfermions (which have large

couplings to the Higgs sector) are expected to be in the sub-TeV mass range to

accommodate constraints from naturalness.

One class of IMH models has the inverted mass hierarchy generated radiatively.

In this case, all the scalars begin with multi-TeV masses at the GUT scale, while

gaugino masses are in the sub-TeV range. In models with Yukawa unification and
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SO(10)-like GUT scale boundary conditions of

4A2
0 = 2m2

10 = m2
16, (11.20)

the large third generation Yukawa coupling acts to drive third generation and Higgs

scalars to sub-TeV values, while leaving multi-TeV first and second generation

scalars. A positive D-term contribution with MD ∼ m16/3 is needed for radiative

symmetry breaking.10 When fully implemented, including constraints from radia-

tive EWSB, it turns out that first and second generation scalars as heavy as 2–3 TeV

can be allowed. This is sufficient to suppress many C P-violating processes, but is

not enough to fully suppress FCNCs. Such a model might be viable if it is coupled

with a partial degeneracy solution for first and second generation scalars. Yukawa

coupling unification is also possible for first and second generation scalar masses

∼8–10 TeV, but third generation sfermions then have masses around 3–5 TeV.

A second class of IMH models arises if one assumes an IMH already in place at

the GUT scale. This may be possible in non-minimal gravity-mediated models. In

evaluating sparticle mass spectra from these GUT scale IMH models, it is crucial

to use two-loop RGEs. The form of the two-loop RGEs for SSB masses is given by

dm2
i

dt
= 1

16π2
β

(1)

m2
i
+ 1

(16π2)2
β

(2)

m2
i
, (11.21)

where t = ln Q, i = Q j , U j , D j , L j , and E j , and j = 1–3 is a generation index.

The one-loop β-function for the evolution of (the initially sub-TeV) third generation

scalar masses depends only on these scalar masses and the (also sub-TeV) gaugino

masses. Two-loop terms are formally suppressed relative to one-loop terms by the

square of a coupling constant as well as an additional loop factor of 16π2. However,

these two-loop terms include contributions from all scalars. Specifically, the two-

loop β functions include,

β
(2)

m2
i

� ai g
2
3σ3 + bi g

2
2σ2 + ci g

2
1σ1, (11.22)

where

σ1 = 1

5
g2

1

{
3(m2

Hu
+ m2

Hd
) + T r [m2

Q + 3m2
L + 8m2

U + 2m2
D + 6m2

E ]
}
,

σ2 = g2
2

{
m2

Hu
+ m2

Hd
+ T r [3m2

Q + m2
L ]

}
, and

σ3 = g2
3 T r [2m2

Q + m2
U + m2

D],

and the m2
i are squared mass matrices in generation space. The numerical coeffi-

cients ai , bi , and ci are related to the quantum numbers of the scalar fields, but are

10 Such a D-term reduces m2
Hu

relative to m2
Hd

, which facilitates EWSB. Indeed, slightly better Yukawa coupling

unification is obtained if the D-term splitting is applied to just the Higgs scalars rather than to all the sparticles,
but a qualitatively similar hierarchy is obtained.
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all positive quantities. Thus, incorporation of multi-TeV masses for the first and

second generation scalars leads to an overall positive, possibly dominant, contribu-

tion to the slope of SSB mass trajectories versus energy scale. Although formally a

two-loop effect, the smallness of the couplings is compensated by the much larger

values of masses of the first two generations of scalars. In running from MGUT to

Mweak, this results in an overall reduction of scalar masses, and is most important

for the sub-TeV third generation scalar masses which may be driven tachyonic.

That this not occur then constrains the size of the hierarchy. For values of SSB

masses which fall short of these constraints, a sort of see-saw effect amongst scalar

masses occurs: the higher the value of first and second generation scalar masses,

the larger will be the two-loop suppression of third generation and Higgs scalar

masses. In this class of models, first and second generation scalars with masses of

order 10–15 TeV may co-exist with sub-TeV third generation scalars, thus giving

a very large suppression to both FCNC and C P-violating processes.

11.2 Anomaly-mediated SUSY breaking

In supergravity models, MSSM soft SUSY breaking parameters are thought to

arise from tree-level gravitational interactions of observable sector superfields with

gauge singlet hidden sector fields that can acquire a Planck scale VEV. It was

subsequently recognized that there is an additional one-loop contribution to SSB

parameters that is always present when SUSY is broken.11 Usually this latter con-

tribution, which originates in the super-Weyl anomaly (and is, therefore, called the

anomaly-mediated supersymmetry breaking (AMSB) contribution), only makes a

loop suppressed correction to the leading tree-level SSB parameters, so that the pat-

tern of sparticle masses is qualitatively unchanged from what we have described in

the last section. However, in models without SM gauge singlet superfields that can

acquire a Planck scale VEV, the usual supergravity contribution to gaugino masses

is suppressed by an additional factor MSUSY/MP relative to m 3
2

= M2
SUSY/MP, and

the anomaly-mediated contribution can dominate. Extra dimensional theories po-

tentially offer an alternative way to suppress supergravity couplings between the

observable sector and the hidden sector (goldstino) field which lead to tree-level

MSSM SSB parameters ∼ m 3
2
: these supergravity contributions may be exponen-

tially suppressed if the SUSY breaking and visible sectors reside on different branes

that are “sufficiently separated” in a higher dimensional space.12 In this case, the

suppression is the result of geometry and not a symmetry, though then one has to

wonder about the dynamics that results in such a geometry. Moreover, it has been

11 L. Randall and R. Sundrum, Nucl. Phys. B557, 79 (1999); G. Giudice et al., JHEP 12, 027 (1998).
12 The term brane means a lower dimensional spatial slice of the entire space.
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argued that while it is possible to find models where AMSB terms may dominate,

their construction appears to require more than just spatial separation between the

observable sector and SUSY breaking branes.13

A derivation of the AMSB contribution to SSB parameters would require tech-

niques beyond those that we have developed. We will, therefore, simply list the

relevant results and proceed to discuss their implications. Before doing so, we note

that these contributions are determined just by the super-conformal anomaly. Since

anomalies depend only on the low energy theory, the AMSB contributions to SSB

parameters are insensitive to (unknown) physics at the high scale. These contribu-

tions, which can be written in terms of the β-functions and anomalous dimensions

of the theory with unbroken supersymmetry, can be explicitly checked to be in-

variant under renormalization group evolution, consistent with their insensitivity

to ultra-violet physics.14

The AMSB contribution to the gaugino mass is given by,

Mi = βgi

gi
m 3

2
, (11.23)

where βgi is the corresponding beta function, defined by βgi ≡ dgi/d ln μ. The

gaugino masses are not universal, but given by the ratios of the respective β-

functions.

The anomaly-mediated contribution to the scalar mass parameter is given by,

m2
f̃ = −1

4

{
dγ

dg
βg + dγ

d f
β f

}

m2
3
2

, (11.24)

where β f is the β-function for the corresponding superpotential Yukawa coupling,

and γ = ∂ ln Z/∂ ln μ, with Z the wave function renormalization constant. Finally,

the anomaly-mediated contribution to the trilinear SUSY breaking scalar coupling

is given by,

A f = β f

f
m 3

2
. (11.25)

The following features of the AMSB contributions to the SSB parameters are

worth noting.

1. AMSB contributions to gaugino and sfermion masses as well as A-parameters

are all of the same scale, m3/2/16π2. Requiring this to be the weak scale puts

the gravitino mass in a cosmologically safe range.15

13 See A. Anisimov, M. Dine, M. Graesser and S. Thomas, Phys. Rev. D65, 105011 (2002).
14 Indeed the AMSB expressions for scalar masses and A-parameters were first obtained via this route. See I. Jack,

D.R.T. Jones and A. Pickering, Phys. Lett. B426, 73 (1998); L. Avdeev, D. Kazakov and I. Kondrashuk, Nucl.
Phys. B510, 289 (1998).

15 See e.g. S. Weinberg, The Quantum Theory of Fields, Vol. III, p 198, Cambridge University Press (2000).
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2. Since Yukawa interactions are negligible for the first two generations, the

anomaly-mediated contributions to the masses of the corresponding matter

scalars with the same gauge quantum numbers are essentially equal. This

solves the SUSY flavor problem if the AMSB contribution is dominant. In-

deed the ultra-violet insensitivity of the AMSB scenario guarantees that no fla-

vor violation results from high scale physics as long as AMSB contributions

dominate.

3. The anomaly contribution turns out to be negative for sleptons, necessitating

additional sources for the squared masses of scalars. Since the masses are in-

sensitive to high scale physics, we cannot ameliorate this within this framework

by adding new fields at the high scale. There are several proposals in the lit-

erature, but phenomenologically it suffices to add a universal contribution m2
0

(which, of course, preserves the desired degeneracy between the first two gen-

erations of scalars) to Eq. (11.24), and regard m0 as an additional parameter. It

is assumed that the ad hoc introduction of m2
0 in Eq. (11.24) does not affect the

other parameters. This is referred to as the minimal AMSB model which we now

examine.

11.2.1 The minimal AMSB (mAMSB) model

As we have just mentioned, the mAMSB model is defined by assuming that gaugino

masses and A-parameters are given by (11.23) and (11.25), respectively while the

expression for SSB scalar masses is amended by the addition of a (sufficiently

large) universal mass parameter m2
0 to make slepton masses positive. It is assumed

that the AMSB mass relations hold at Q = MGUT, and weak scale parameters are

obtained from these via RGE evolution.

At one-loop level, with the field content of the MSSM at low energy, gaugino

masses are given by,

M1 = 33

5

g2
1

16π2
m3/2, (11.26a)

M2 = g2
2

16π2
m3/2, and (11.26b)

M3 = −3
g2

3

16π2
m3/2. (11.26c)

Notice the differing sign on the gluino mass term. This has implications for the sign

of the SUSY contribution to the anomalous magnetic moment of the muon. Third
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generation scalar masses are given by

m2
U3

=
(

−88

25
g4

1 + 8g4
3 + 2 ft β̂ ft

)
m2

3/2

(16π2)2
+ m2

0, (11.27a)

m2
D3

=
(

−22

25
g4

1 + 8g4
3 + 2 fbβ̂ fb

)
m2

3/2

(16π2)2
+ m2

0, (11.27b)

m2
Q3

=
(

−11

50
g4

1 − 3

2
g4

2 + 8g4
3 + ft β̂ ft + fbβ̂ fb

)
m2

3/2

(16π2)2
+ m2

0, (11.27c)

m2
L3

=
(

−99

50
g4

1 − 3

2
g4

2 + fτ β̂ fτ

)
m2

3/2

(16π2)2
+ m2

0, (11.27d)

m2
E3

=
(

−198

25
g4

1 + 2 fτ β̂ fτ

)
m2

3/2

(16π2)2
+ m2

0, (11.27e)

m2
Hu

=
(

−99

50
g4

1 − 3

2
g4

2 + 3 ft β̂ ft

)
m2

3/2

(16π2)2
+ m2

0, (11.27f)

m2
Hd

=
(

−99

50
g4

1 − 3

2
g4

2 + 3 fbβ̂ fb + fτ β̂ fτ

)
m2

3/2

(16π2)2
+ m2

0. (11.27g)

The A-parameters are given by,

At = β̂ ft

ft

m3/2

16π2
, (11.28a)

Ab = β̂ fb

fb

m3/2

16π2
, and (11.28b)

Aτ = β̂ fτ

fτ

m3/2

16π2
. (11.28c)

The quantities β̂ fi that enter the expressions for scalar masses and A-parameters

are given by,

β̂ ft = 16π2βt = ft

(

−13

15
g2

1 − 3g2
2 − 16

3
g2

3 + 6 f 2
t + f 2

b

)

, (11.29a)

β̂ fb = 16π2βb

= fb

(

− 7

15
g2

1 − 3g2
2 − 16

3
g2

3 + f 2
t + 6 f 2

b + f 2
τ

)

, (11.29b)

β̂ fτ = 16π2βτ = fτ

(

−9

5
g2

1 − 3g2
2 + 3 f 2

b + 4 f 2
τ

)

. (11.29c)

The first two generations of squark and slepton masses are given by the correspond-

ing formulae above with the Yukawa couplings set to zero. Eq. (11.26a)–(11.28c)
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serve as RGE boundary conditions at Q = MGUT. We evolve the MSSM parameters

to the weak scale and, as usual obtain B and μ2 in accord with the constraint from

radiative electroweak symmetry breaking. The model is, therefore, characterized

by the parameter set,

m0, m3/2, tan β, and sign (μ). (11.30)

The most notable feature of this framework is the hierarchy of gaugino masses.

The gluino is (as in models with unified gaugino mass parameters) much heavier

than the electroweak gauginos, but the novel feature is that M1/M2 ∼ 3, so that the

wino is lighter than the bino. Ignoring gaugino–higgsino mixing, the charged and

neutral components of the SU (2) gauginos would be degenerate: it is important to

include radiative corrections to decide which of these is the LSP. Happily, these

make the neutralino lighter than the chargino (else the model would be in trouble

with cosmology). The near degeneracy of the chargino and the wino LSP have

implications for particle phenomenology as well as cosmology. In particular, for

the evaluation of the relic neutralino density, charginos and neutralinos coexist at the

neutralino decoupling temperature, and co-annihilation effects are very important.

In Table 11.2, we show sparticle masses in the minimal AMSB model for two

values of m0, with other parameters being the same. Note that the parameter m3/2

should be selected typically above 30–35 TeV to evade constraints from LEP ex-

periments. From the spectra in the table, we see that for the smaller value of m0,

sleptons can be very light, though for very large values of m0 they will be degener-

ate with squarks. We observe several characteristics of the AMSB spectrum. Most

notable is that the W̃1 and Z̃1 are nearly degenerate in mass, so that in addition to

the usual leptonic decay modes W̃1 → Z̃1�ν, the only other kinematically allowed

(and in these cases dominant) decay of the chargino is W̃ ±
1 → Z̃1π

±. The chargino

has a very small width, corresponding to a lifetime ∼1.5 × 10−9 s, so that it would

be expected to travel a significant fraction of a meter before decaying. We also

see that the �̃L and �̃R are nearly mass degenerate. This degeneracy, which seems

fortuitous, is much tighter than expected in the mSUGRA framework.

In the minimal AMSB framework, mW̃1
− m Z̃1

is typically bigger than 160 MeV,

so that W̃1 → Z̃1π is always allowed and the chargino decays within the detector.

The chargino would then manifest itself only as missing energy, unless the decay

length is a few tens of centimeters, so that the chargino track can be established in the

detector. The track would then seem to disappear since the presence of the soft pion

would be very difficult to detect. Some parameter regions with mW̃1
− m Z̃1

< mπ±

may be possible; in this case, the chargino would mainly decay via W̃1 → Z̃1eν
and its decay length (depending on the mass difference) may then be larger than

several meters. It would then show up via a search for long-lived charged exotics.
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Table 11.2 Model parameters and weak scale
sparticle masses in GeV for two minimal

anomaly-mediated SUSY breaking case studies.

parameter AMSB(200) AMSB(500)

m0 200 500
m3/2 35,000 35,000
tan β 5 5
μ > 0 > 0
mg̃ 804 818
mũL

775 894
mt̃1 542 611
mb̃1

683 774
m �̃L

149 481
m �̃R

136 477
m τ̃1

118 471
m τ̃2

160 484
mW̃1

109 110
m Z̃2

313 316
mW̃1

− m Z̃1
0.171 0.172

mh 114 113
m A 658 813
μ 634 643
θτ 0.96 0.98
θb 0.08 0.05

Exercise Verify by explicit computation that the one-loop expressions for the gaug-
ino masses and A-parameters are scale invariant. For the hypercharge gaugino
mass, for example, this means that

M1(Q) = 33

5

g1(Q)2

16π2
m3/2

is true at all scales, not just as a boundary condition. Thus you need to verify that,

Q
dM1

dQ
= 33

5

m3/2

16π2
Q

dg2
1

dQ
,

etc. are consistent with the RGEs of the MSSM listed in Section 9.2.2 together with
the RGEs for gauge and Yukawa couplings.

Verify also that the expressions (11.27a)–(11.27g) for scalar masses are similarly
scale invariant only if m2

0 = 0.
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11.2.2 D-term improved AMSB model

While the addition of a common term m2
0 to all scalar squared masses solves the

tachyonic slepton mass problem, it destroys the scale invariance of the soft parame-

ters with respect to renormalization group evolution, which renders the predictions

of AMSB models insensitive to high scale physics. Indeed a variety of ways have

been suggested to solve the tachyon mass problem, many of which do not main-

tain the scale invariance of the AMSB soft SUSY breaking parameters. Instead

of studying all these various alternatives, we will focus on a modification of the

AMSB relation that preserves this scale invariance.

The key observation is that additional contributions to soft SUSY breaking scalar

masses that arise from Fayet–Iliopoulos D-terms, introduced in Section 6.5.1,

automatically preserve this scale invariance property, as long as the charges of

the corresponding U (1) symmetries have no mixed anomalies with the MSSM

gauge group.16 In other words, as long as the extra contributions to scalar mass

squared parameters take the form,

δm2
i = m2

0

∑

a

kaYai ,

where Ya are the generators of (mixed anomaly-free) U (1) symmetries, and ka are

constants (one ka for each such U (1) factor), the scale invariance of AMSB scalar

masses is maintained.17 Moreover, since this invariance holds for arbitrarily small

values of the corresponding “gauge coupling”, it is not necessary for these U (1)s

to survive as gauge symmetries of the low energy theory for this mechanism to

work: i.e. global U (1) symmetries of the low energy superpotential are sufficient.

Notice that these D-term contributions to scalar mass parameters are the same for

all sparticles with the same gauge quantum numbers so that flavor-changing neutral

current constraints are satisfied.

The MSSM symmetries already include the hypercharge U (1). Unfortunately,

the corresponding D-term contributions cannot solve the slepton mass problem

since the superfields L̂ and Êc have opposite signs of hypercharge: the hypercharge

D-term can make only one of m2(�̃L) or m2(�̃R) positive, but not both. We need at

least one other D-term. Assuming that lepton flavor is not separately conserved by

the superpotential (i.e neutrinos mix), there are only two independent anomaly-free

U (1) symmetries in the MSSM. These are the usual hypercharge symmetry, and

U (1)B−L (or combinations thereof). Their D-term contributions to sparticle masses

(at the weak scale) can thus be parametrized in terms of two parameters, DY and

16 See I. Jack and D. R. T. Jones, Phys. Lett. B482, 167 (2000).
17 Another possibility that also preserves the scale invariance has been proposed by I. Jack and D. R. T. Jones,

Phys. Lett. B491, 151 (2000).
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DB−L , as18

δm2
U = −4

3
DY − 1

3
DB−L , (11.31a)

δm2
D = 2

3
DY − 1

3
DB−L , (11.31b)

δm2
Q = 1

3
DY + 1

3
DB−L , (11.31c)

δm2
E = 2DY + DB−L , (11.31d)

δm2
L = −DY − DB−L , (11.31e)

δm2
Hu

= DY , (11.31f)

δm2
Hd

= −DY . (11.31g)

The values of DY and DB−L must be of order of the weak scale squared. The value

of DB−L may possibly be the only imprint of the additional U (1) symmetry. A

necessary (but not sufficient) condition for a viable spectrum is,

0 < DY < −DB−L < 2DY .

To summarize, the negative slepton mass problem can be solved maintaining the

attractive ultra-violet insensitivity characteristic of the AMSB framework if there is

an additional source of SUSY breaking that results in non-vanishing D-terms of a

U (1) symmetry with charges that are free of any mixed anomalies with the MSSM

gauge group factors.19

11.3 Gauge-mediated SUSY breaking

As the name indicates, in gauge-mediated SUSY breaking (GMSB), SM gauge

interactions communicate the effects of SUSY breaking to the superpartners of

SM particles.20 In addition to the fields of the SUSY breaking and the observ-

able sectors that we have already discussed, there is a third set of fields that has

both SM gauge interactions, as well as couplings to the hidden sector: these cou-

plings may originate in the superpotential, or in new gauge interactions with the

hidden sector (under which SM particles are neutral). Through these couplings,

SUSY breaking effects are first felt by the fields in the new sector, and then

18 The reader can easily check that this parametrization is equivalent to that in the original paper of I. Jack and

D. R. T. Jones, with their parameters ζ1 and ζ2 given by ζ1 = 2DY + 8
11 DB−L and ζ2 = 1

11 DB−L .
19 For an explicit model that realizes this scenario, see N. Arkani-Hamed, D. E. Kaplan, H. Murayama and Y.

Nomura, JHEP 0102, 041 (2001).
20 Interest in this picture was rekindled by M. Dine and A. Nelson, Phys. Rev. D48, 1277 (1993) and M. Dine,

A. Nelson, Y. Nir and Y. Shirman, Phys. Rev. D53, 2658 (1996); see also references therein.
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communicated to the observable sector by SM gauge interactions. The third sector

that links the SUSY breaking and observable fields is referred to as the “messenger

sector”.

At tree level, SUSY is unbroken in the MSSM sector. MSSM sparticles feel

SUSY breaking effects only via their couplings to messenger particles in loops, and

so evade the fatal tree-level mass sum rule. These loop effects, which involve the

usual SM gauge couplings, again lead to SSB masses of the geometric hierarchy

form,

mi ∝ g2
i

16π2

〈FS〉
M

where 〈FS〉 is the induced SUSY breaking VEV of some (elementary or composite)

gauge singlet superfield in the messenger sector, M is the messenger sector mass

scale, gi is the SM gauge coupling constant for the corresponding sparticle, and

16π2 is a loop factor.21 We thus conclude that colored superpartners are heavier

than their uncolored counterparts and, likewise, uncolored particles that have just

hypercharge gauge interactions are lighter than their cousins which also couple to

SU (2)L. Such a spectrum is the hallmark of the GMSB scenario.

The induced SUSY breaking scale in the messenger sector should be distin-

guished from the corresponding scale 〈F〉 in the SUSY breaking sector. If the

sectors are perturbatively coupled, we would expect 〈FS〉 < 〈F〉, while if they are

strongly coupled, 〈FS〉 ∼ 〈F〉. The gravitino mass, however, is determined by the

fundamental SUSY breaking scale 〈F〉, and by (10.67a) is,

m3/2 = 〈F〉√
3MP

.

We note that the SSB masses of MSSM superpartners are suppressed by just

the messenger mass scale M , and not MP as in gravity-mediated scenarios. If

M 
 MP, the underlying scale of SUSY breaking can be much lower in GMSB

models as compared to gravity-mediated scenarios.22 In this case of low energy

SUSY breaking the gravitino mass, which is suppressed relative to other sparticle

masses by a factor ∼ M/MP, may be very small. Indeed, the gravitino may be

the LSP. Since the lightest MSSM particle can now decay to the gravitino, the

phenomenological implications of such a scenario may differ dramatically from

corresponding expectations in mSUGRA.

21 If the sparticle has coupling to more than one factor of SU (3)C × SU (2)L × U (1)Y, there will be one such
contribution for each coupling.

22 If SUSY is local, there will be a gravity mediated contribution also, but this is negligible compared to the
corresponding gauge-mediated contribution.
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11.3.1 The minimal GMSB model

The messenger sector is assumed to consist of n5 vector-like multiplets of messenger

lepton and messenger quark superfields that carry the SU (3)C × SU (2)L × U (1)Y

quantum numbers,

�̂ ∼ (1, 2, 1) �̂′ ∼ (1, 2∗, −1)

q̂ ∼ (3, 1, −2

3
) q̂ ′ ∼ (3∗, 1,

2

3
), (11.32a)

coupled via the superpotential,

f̂ M = λ�Ŝ �̂′�̂ + λq Ŝq̂ ′q̂. (11.32b)

Here Ŝ is a gauge singlet field that also couples to the SUSY breaking sector.

We assume that this coupling induces a VEV for both its scalar and its auxiliary

component. Notice that the messenger sector forms complete vector multiplets of

SU (5). This ensures that the apparent unification of gauge couplings is not altered

by their inclusion.

It is straightforward to see that the messenger quarks (and likewise, messenger

leptons) combine to form a Dirac quark (SU (2) doublet lepton) with a mass mqM =
λq〈S〉 (m�M = λ�〈S〉) where 〈S〉 is the VEV of the scalar component of the singlet

field Ŝ. In addition to this supersymmetric mass contribution, the scalar partners of

the messenger quarks (leptons) acquire a SUSY breaking mass from the VEV 〈FS〉
of the auxiliary component of Ŝ that mix scalar components of q̂ and q̂ ′ (�̂ and �̂′).
Diagonalizing the messenger squark and slepton mass matrices, we find that these

acquire masses,

m2
�̃M

= |λ�〈S〉|2 ± |λ�〈FS〉|, (11.33a)

m2
q̃M

= |λq〈S〉|2 ± |λq〈FS〉|. (11.33b)

Notice that 〈FS〉/λi 〈S〉2 cannot be arbitrarily large – otherwise the messengers

will be too light or even tachyonic. We will denote the messenger mass scale

by M ≡ λ〈S〉, where λ 
 λ� 
 λq . If 〈FS〉 → 0, we recover a supersymmetric

spectrum in the messenger sector.

Exercise Using the master formula, compute the mass spectrum of the messenger
quarks. Note that the supersymmetry breaking contribution to messenger squark
masses comes from the F-term of the superpotential,

λq Ŝq̂q̂ ′∣∣
F

� (λq q̃q̃ ′ + h.c.)〈Fs〉.
Combine this with the supersymmetric contribution to messenger squark masses to
obtain their masses.
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Figure 11.2 Diagram leading to gluino and hypercharge gaugino masses in GMSB
models. A similar diagram with messenger leptons and messenger sleptons in the
loop will also contribute to the SU (2) gaugino mass. Messenger leptons and slep-
tons also contribute to the hypercharge gaugino mass. The dashed line denotes
messenger sfermions while the solid line denotes the messenger fermion. A con-
tribution arises only from the messenger fermion mass term indicated by the cross
on the fermion line. The cross on the sfermion line indicates the SSB mixing term
between the sfermions.

It is now possible to compute the SSB mass parameters induced in the vis-

ible sector via gauge interactions with messenger sector fields. Gauginos ob-

tain masses from one-loop diagrams including messenger fields as indicated in

Fig. 11.2. In the approximation 〈FS〉 
 λ〈S〉2 (i.e. the SUSY breaking scale is

smaller than the messenger mass scale), the gaugino for gauge group i gets a

mass

Mi = αi

4π
n5� (11.34)

where

� = 〈FS〉
〈S〉 . (11.35)

The factor n5 arises because each messenger generation makes the same contribu-

tion to the gaugino mass.

MSSM scalars do not couple directly to the messenger sector, so that their

squared masses are induced only via two-loop diagrams such as the ones depicted

in Fig. 11.3. Now, the squared mass scales with the number of messenger multiplets,

and in the same approximation as in (11.34) we obtain,

m2
i = 2n5�

2[Ci
1(

α1

4π
)2 + Ci

2(
α2

4π
)2 + Ci

3(
α3

4π
)2]. (11.36a)
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Figure 11.3 Examples of two-loop Feynman diagrams leading to scalar masses in
GMSB models.

Here, Ci are quadratic Casimirs given by,

Ci
1 = 3

5
Y 2

i ,

Ci
2 =

{
3/4 for doublets

0 for singlets
(11.36b)

Ci
3 =

{
4/3 for triplets

0 for singlets.

Note that the unknown messenger sector Yukawa couplings drop out from (11.34)

and (11.36a). These formulae are rather general, in that if the messengers can be

grouped into a 10 or 10∗ of SU (5), then n5 → n10 where n10 = 3 for each set of

10 and 10∗ messenger fields. The value of n5 (and hence n10) cannot be too large

since the gauge couplings will then diverge in their running from the weak to the

GUT scale, and perturbative unification will be spoiled. Typically, n5 ≤ 4 is a valid

choice, though if the messenger scale is large higher values of n5 are allowed. As

the parameter n5 increases, the gaugino masses increase at a greater rate than the

scalars, since Mi ∝ n5, while mi ∝ √
n5.

We note that these formulae for gaugino and scalar masses are simply modified

by multiplication by threshold functions if our approximation x ≡ 〈FS〉/λ〈S〉2 
 1

in which we have written them ceases to be valid.23 Our formulae for the gaugino

(scalar) masses are good approximations for x as large as 0.9 (0.5).

We see from (11.36a) that scalars with the same gauge quantum numbers will

receive identical masses. This gives a natural explanation for the scalar mass de-

generacy needed to solve the SUSY flavor problem, and provides strong motivation

for this class of models.24 We see also the characteristic pattern of sparticle masses

23 S. Martin, Phys. Rev. D55, 3177 (1997).
24 We remark, however, that since messenger field �̂ and Ĥu carry the same gauge quantum numbers, in any

Yukawa coupling involving hu , we can replace the Higgs field by a messenger slepton. This would lead to
flavor violation unless such couplings are forbidden by a global symmetry, or the messenger scale is sufficiently
large. Thus it is really the squark loop contributions to FCNC effects that are naturally suppressed in these
scenarios.
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noted earlier. Squark and gluino mass parameters are much larger than those for

sleptons and Higgs scalars, and �̃L are considerably heavier than �̃R. Notice also

that (11.34) leads to the one-loop GUT relation between gaugino masses, but for

very different reasons.

Exercise (The gravitino mass) Explore the range of the gravitino mass in this
framework. To do so, write

m3/2 = 〈F〉
λ〈FS〉 × �M√

3MP

≡ Cgrav

�M√
3MP

, (11.37)

where λ is the messenger sector Yukawa coupling, taken to be common for mes-
senger quarks and leptons. Since we want sparticles at the weak scale ∼ 100 GeV,
we must have � to be few tens of TeV. For given values of � and M, the grav-
itino is lightest when 〈FS〉 is close to the fundamental SUSY breaking scale and
when the messenger scale is not very different from �. Show that for reasonable
values of parameters the gravitino mass may be in the eV range. How heavy can
it be?

Like scalar masses, the a-terms only arise via two-loop diagrams. Remember,

however, that it is the squared scalar masses that arise at two loops, so that scalar

mass parameters have the same order of magnitude as gaugino masses. In compar-

ison to this, a-terms which are suppressed by an extra loop factor, are small. As an

approximation, they are frequently taken to be

au = ad = ae = 0. (11.38)

It should be remembered that the formulae (11.34), (11.36a), and (11.38) for the

MSSM parameters in GMSB models hold at the scale Q ∼ M where the heavy

messenger fields are integrated out. As for SUGRA models, these parameters must

be evolved to the weak scale for the extraction of phenomenology using the MSSM.

The bilinear b term is also generated at two loops and so is tiny. In principle, this

means that the requirement of radiative EWSB should fix tan β since the weak scale

Bμ is fixed by the condition b0 = 0. This is not what is usually done in practice.

The reason is that it is difficult to generate μ in these scenarios. The rationale then

is any modification to the model that allows for μ affects the Higgs sector and so

will presumably also affect the b term. In practice, therefore, μ and b are treated as

free weak scale parameters: as usual μ2 is fixed to reproduce M2
Z , and b0 is traded

in for tan β. There is one difference in the radiative symmetry breaking mecha-

nism from gravity-mediated models that seems worth mentioning. In mSUGRA,

m2
Hu

turns negative because of the large logarithm that arises due to the disparity
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between the GUT and weak scales. In the GMSB scenario m2
Hu

turns negative even

if the messenger scale is close to the weak scale because the colored squarks are

much heavier than Higgs scalars, i.e. large t-squark masses drive m2
Hu

to negative

values.

We have already noted that if the messenger scale M 
 MP, the gravitino may be

very light. But if gravitinos couple with gravitational strength, why do we care? The

point is that since gravitinos get masses via the super-Higgs mechanism the cou-

plings of their longitudinal components (essentially the goldstinos) are enhanced

by a factor E/m3/2 in exactly the same way that longitudinal W couplings are

enhanced by a factor of E/MW . In other words, “the effective dimensionless cou-

pling” of longitudinal gravitinos to a particle–sparticle pair is ∼ E/MP × E/m3/2,

where the first factor is the usual coupling of gravity to energy and the second fac-

tor the enhancement just discussed. It is easy to check that for E ∼ 100 GeV and

m3/2 ∼ 1 eV, this coupling is ∼ 10−6. Dimensional analysis gives the lifetime of a

100 GeV particle decaying via this coupling as ∼ 10−12 seconds! Thus interactions
of very light longitudinal gravitinos may be relevant for particle physics, and even
for collider phenomenology. We will return to this in later chapters.

If gravitinos are light, sparticles can decay via p̃ → pG̃ with a decay rate that

depends on the gravitino mass. It is more convenient to use Cgrav introduced in

(11.37) to parametrize this decay rate. Notice that, by construction, Cgrav ≥ 1. The

parameter space of GMSB models can thus be specified by,

�, M, n5, tan β, sign (μ), Cgrav. (11.39)

For a given number n5 of messenger multiplets, the mass scale of MSSM superpart-

ners is set by �. The second entry, M (M > �) is the mass scale associated with

the messenger fields, and specifies the scale at which the mass formulae (11.34)

and (11.36a) as well as a = 0, hold. The SSB parameters relevant for phenomenol-

ogy are then obtained by evolving these from M to the weak scale where radiative

EWSB determines the magnitude but not the sign of μ. MSSM sparticle masses

are, therefore, only logarithmically sensitive to M , and, of course, independent of

Cgrav. Increasing Cgrav only increases the lifetime of sparticles which decay mainly

to the gravitino, but does not affect MSSM sparticle masses.

An example of the renormalization group evolution that fixes the sparticle spec-

trum is shown in Fig. 11.4. While the gaugino masses are related as in mSUGRA,

sfermion masses are very different. In particular, we have mq̃ � mẽL
∼ mẽR

.

For GMSB models, the parameter � should be ∼ 10–150 TeV in order for

sparticles to obtain masses of order of the weak scale. The messenger scale M ≥
�. If the SUSY breaking scale is small so that the gravitino is the LSP, GMSB

phenomenology may differ dramatically from phenomenology of models with a

weak scale gravitino and a neutralino LSP. If the gravitino is the LSP and other
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Figure 11.4 Renormalization group trajectories for the soft SUSY breaking masses
versus renormalization scale Q from the messenger scale (M = 500 TeV) to the
weak scale. In this example, we take � = 40 TeV, n5 = 1, tan β = 2, μ < 0, and
mt = 175 GeV. We will see later that this scenario is excluded by lower bounds on
both the selectron as well as h masses. The point of this figure is only to illustrate
the RG evolution, for which the LEP exclusion is not relevant. Reprinted with
permission from H. Baer, M. Brhlik, C.-H. Chen and X. Tata, Phys. Rev D55,
4463 (1997), copyright (1997) by the American Physical Society.

sparticles can decay to it in a lifetime short compared to the age of the Universe,

then the cosmological considerations that require the lightest MSSM sparticle to

be only weakly interacting no longer apply, and this next-to-lightest SUSY particle

(NLSP) may be charged. Typically, the NLSP is the lightest neutralino or the lighter

stau (which would be very close in mass to ẽR and μ̃R for small to moderate values

of tan β).

In the case of a neutralino NLSP, collider phenomenology is most different

when the gravitino is very light, so that the NLSP decays inside the experimental
apparatus.25 The main decay modes for a neutralino NLSP are Z̃1 → γ G̃, ZG̃
or hG̃. For a stau NLSP, the decay mode would be τ̃1 → τ G̃. Heavier sparticles

cascade decay to the NLSP which subsequently decays into the gravitino LSP, and

SUSY event topologies are very sensitive to the nature of the NLSP.

Since sparticle masses are only weakly dependent on the messenger scale M ,

the � − tan β plane provides a convenient panorama for displaying the various

phenomenological possibilities. These are illustrated in Fig. 11.5 where we show

25 Of course, heavier sparticles can then also decay into gravitinos but, as we will see in Chapter 13, the branching
fractions for these decays are negligible.

https://doi.org/10.1017/9781009289801.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289801.012


11.3 Gauge-mediated SUSY breaking 293

this plane for values of n5 ranging from 1–4. The gray region is excluded because

electroweak symmetry is not correctly broken, while the various shaded regions

are excluded by constraints from LEP experiments. In the region labeled 1, the

neutralino is the NLSP and decays into the gravitino. In region 2, m τ̃1
< m Z̃1

, with all

other sleptons heavier than Z̃1, so that cascade decays terminate in τ̃1 (which decays

via τ̃1 → τ G̃), except very close to the boundary between regions 1 and 2 where

Z̃1 → τ̃1τ is forbidden. In regions 3 and 4, in addition to Z̃1 → τ̃1τ , the decays

Z̃1 → �̃R� (� = e, μ) are also allowed. In region 3, however, m �̃1
< m τ̃1

+ mτ ,

while just the opposite is the case in region 4. We will discuss the implications of

this in Chapter 13.

The lifetimes for NLSP decay depend on Cgrav and range from essentially instan-

taneous to very long. NLSPs produced in collider detectors may have a long lifetime,

and decay with a displaced vertex, or possibly even decay outside the detector. In

the latter case, a neutralino NLSP would escape undetected as in gravity-mediated

models. A stau (or charged slepton) NLSP would behave as a stable charged par-

ticle in the apparatus, and leave an ionizing track which may be detectable. NLSP

decays will be considered in more detail in Chapter 13.

11.3.2 Non-minimal GMSB models

While the minimal GMSB framework leads to strong correlations between various

sparticle masses, it is possible to conceive of extensions where the correlations are

relaxed. Examples of things that have been considered include:

� Additional interactions needed to generate μ and b parameters may split the SSB

mass parameters of the Higgs and lepton doublets at Q = M , even though these

have the same gauge quantum numbers.
� Allowing incomplete messenger representations can effectively result in different

numbers of messengers n5i for each factor of the low energy gauge group.
� If the hypercharge D-term has a non-vanishing VEV in the messenger sector, there

would be additional contributions to the scalar masses that may be parametrized

by δm2
f̃
= Y f̃ KY, where KY is the D-term VEV with the gauge coupling absorbed

into it.

We mention these variations to make the reader aware that although the minimal

GMSB framework is well motivated and constrained, the implications that we have

drawn from it are based on a number of unstated assumptions about physics at the

messenger scale and beyond.
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Figure 11.5 The four regions of the � − tan β parameter plane of the mGMSB
model discussed in the text. The heavy solid lines denote the boundaries between
these regions. The gray region is excluded because electroweak symmetry is not
correctly broken. The shaded regions are excluded by various constraints from
LEP experiments: m τ̃ > 76 GeV (vertical shading), m Z̃1

> 95 GeV (horizontal
shading), and mh > 110 GeV (diagonal shading). The dot-dashed contours are
where the chargino mass is 100, 200 or 350 GeV, while the dotted line is the
contour of mẽR

= 100 GeV. We thank Dr. Yili Wang for supplying this figure
which appears in her doctoral dissertation.

11.4 Gaugino-mediated SUSY breaking

Gaugino-mediated SUSY breaking is a model based on extra dimensions that pro-

vides a novel solution to the SUSY flavor problem.26 Within this framework, chiral

supermultiplets of the observable sector reside on one brane whereas the SUSY

breaking sector is confined to a different, spatially separated brane. Gravity and

gauge superfields, which propagate in the bulk, directly couple to fields on both

the branes. As a result of their direct coupling to the SUSY breaking sector, gaug-

inos acquire a mass. Direct couplings between the observable and SUSY breaking

26 D. E. Kaplan, G. D. Kribs and M. Schmaltz, Phys. Rev. D62, 035010 (2000); Z. Chacko et al., JHEP 01, 003
(2000); M. Schmaltz and W. Skiba, Phys. Rev. D62, 095004 (2000) and D62, 095005 (2000).
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sectors are exponentially suppressed, and MSSM scalars dominantly acquire SUSY

breaking masses via their interactions with gauginos (or gravity) which directly feel

the effects of SUSY breaking. As a result, scalar SSB mass parameters are sup-

pressed relative to gaugino masses, and may be neglected in the first approximation.

The same is true for the A- and B-parameters.

In a specific realization, to preserve the success of the unification of gauge

couplings, it is assumed that there is grand unification (either SU (5) or SO(10)) and,

further, that the compactification scale Mc, below which there are no Kaluza–Klein

excitations, is larger than MGUT. Furthermore, since the construction ensures flavor-

blind interactions for just light bulk fields, we require that the scale Mc
<∼ MPlanck/10

in order to sufficiently suppress other flavor-violating scalar couplings from heavy

bulk fields that would be generically present. Based on the discussion in the last

paragraph, the boundary conditions for the soft SUSY breaking parameters of the

MSSM are taken to be m0 = A0 = B0 = 0 at the scale Mc. The condition B0 = 0

fixes tan β. In both SU (5) and SO(10) models, this value of tan β is found to be too

small to be compatible with the unification of bottom and tau Yukawa couplings

in the MSSM, which requires tan β ≥ 30. For this reason, and because the value

of B0μ0 may also depend on how the μ problem is solved, we will ignore the

B0 = 0 constraint and, as usual, choose tan β instead of B0 as a free parameter.27

The MSSM parameters can then be obtained from the parameter set,

m1/2, Mc, tan β, and sign (μ) (11.40)

where it is the grand unification assumption that leads to a universal gaugino mass

above Q = MGUT, and |μ| is fixed assuming radiative EWSB. The gravitino can be

made heavier than gauginos and, as in the mSUGRA framework, is irrelevant for

collider phenomenology. The LSP may be the stau or the lightest neutralino, though

cosmological considerations exclude the former (unless R-parity is not conserved).

For illustration we choose the GUT group to be SU (5). This model is then a

special case of our earlier discussion of SU (5), except that the SSB parameters

now “unify” at the scale Mc (rather than MP) where they take on values specific to

the model. The unification of the τ and b Yukawa couplings constrain tan β ∼ 30–

50. In Fig. 11.6, we show the evolution of the various SSB parameters of the MSSM,

starting with the inoMSB boundary conditions. Here, the unified gaugino mass is

taken to be 300 GeV at Q = MGUT. The compactification scale is taken to be

Mc = 1018 GeV. We see that although these start from zero, RG evolution results in

GUT scale scalar masses and A-parameters that are not negligible compared to m1/2:

although there is no large logarithm, large group theory coefficients are the cause

27 It is also possible that Higgs fields reside in the bulk, in which case they would directly feel SUSY breaking
effects, resulting in a non-vanishing value for B0 as well as other SSB parameters in the Higgs sector. Such
scenarios are, of course, less predictive than the minimal one that we consider here.
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Figure 11.6 Renormalization group evolution of soft SUSY breaking SU (5)
masses versus scale in the minimal gaugino mediation model. We take tan β = 35
and μ < 0 to achieve b − τ Yukawa coupling unification. Reprinted from H. Baer,
M. Diáz, P. Quintana and X. Tata, JHEP 04, 016 (2000).

of this sizable renormalization group evolution. While the inter-generation splitting

is small, the splittings between the 5 and the 10 dimensional matter multiplets, as

well as between these and the Higgs multiplets, is substantial.

In Table 11.3 we show a sample spectrum for this model. We choose m1/2 =
300 GeV, tan β = 35, and other parameters as in Fig. 11.6. The spectrum is not

unlike that in the mSUGRA framework with small m0, so that sleptons are relatively

light and squarks are lighter than the gluino.

11.5 An afterword

The reader will have noticed that we have not constructed a complete supersymmet-

ric model in the sense of the SM. Instead, we have assumed that SUSY is broken

in some sector, and discussed several mechanisms for how this is communicated

to MSSM superpartners. As mentioned at the start of this chapter, MSSM phe-

nomenology depends more upon this messenger mechanism and not so much upon

the dynamics of SUSY breaking.

This is not to say that the question of SUSY breaking is not important. Indeed, a

complete model must address the μ problem, and at the same time generate b ≡ Bμ

and other SSB parameters so that (8.19b), with radiative corrections included, yields

the correct value of MZ , and a sparticle spectrum consistent with experimental

constraints. The value of tan β as given by (8.19a) would then be a prediction.

We stress that these EWSB conditions (8.19a) and (8.19b) only depend on our

assumption of the MSSM field content of the low energy theory, and therefore
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Table 11.3 Input and output parameters for
the Minimal Gaugino Mediation model
case study described in the text. Mass

parameters are in GeV units.

parameter scale value

m0 Mc 0
A0 Mc 0
m1/2 MGUT 300
g5 MGUT 0.717
ft MGUT 0.534
fb = fτ MGUT 0.271
λ MGUT 1
λ′ MGUT 0.1
tan β Mweak 35
μ Mweak < 0

mg̃ Mweak 737.2
mũL

Mweak 668.5
md̃R

Mweak 633.1
mt̃1 Mweak 482.8
mb̃1

Mweak 541.5
m �̃L

Mweak 258.6
m �̃R

Mweak 210.0
m τ̃1

Mweak 143.3
mW̃1

Mweak 240.2
m Z̃2

Mweak 240.0
m Z̃1

Mweak 124.8
mh Mweak 115.6
m A Mweak 311.2
μ Mweak -411.5

should be valid as long as the underlying fundamental theory reduces to the MSSM

at low energy. This is not to say that every high energy theory will necessarily

lead to an acceptable model. For instance, while there is an elegant mechanism

for generating μ in gravity-mediated SUSY breaking scenarios (where the SUSY

breaking scale is large), it is not straightforward (see Section 11.3.2) to generate

acceptable values for both μ and b in GMSB scenarios with a low SUSY breaking

scale. We circumvent the complications associated with the underlying mechanism

of SUSY breaking and the associated μ problem because whatever the underlying

physics is, it must be consistent with the EWSB conditions (8.19a) and (8.19b) as

long as the low energy theory is the MSSM. Fortunately, TeV scale phenomenology

depends more on how SUSY breaking is felt by weak scale superpartners and not

so much on the underlying dynamics of SUSY breaking.
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