CORRESPONDENCE.

ON A METHOD OF ADJUSTING TABLES OF MORTALITY.

To the Editor of the Assurance Magazine.

Sir-It is one of the properties of a table of mortality constructed upon Mr. Gompertz' celebrated formula, that the logarithms of the probability of living one year at successive ages form a series in geometrical progression. These logarithms are necessarily negative; but if their numerical values be denoted by p_{x}, then it follows, from the property in question, that log. p_{x} will form a series in arithmetical progression, i.e., a series with constant differences of the first order.

Mr. Gompertz' formula, it is well known, cannot be applied, for all ages, to any data which has yet been obtained from actual observation, without first dividing such data into two or more portions (each comprising a certain number of consecutive ages), and dealing with each portion separately. These several divisions, in fact, form so many independent tables, in each of which the series denoted by log. p_{x} is in arithmetical progression, but in which the constant differences in the several series are not the same throughout.

The only objection to this mode of proceeding is, that a table so constructed must form a series more or less discontinuous at the points of junction of the several divisions-an objection, however, which may be obviated if we can (without too great a departure from the original data) so modify the several differences that they shall gradually merge into each other, instead of abruptly changing in passing from one division to the following. Now, let y_{x} denote the logarithm of the logarithm of the unadjusted probability of living one year, $-\Sigma y_{x}$ the sum of all the terms from x upwards, then, in the following table-
the symbols $\Delta \Sigma y_{0}, \Delta \Sigma y_{n}$, and $\Delta \Sigma y_{2 n}$, will severally denote the sum of n successive terms of y_{x}; and if we insert $n-1$ interpolations between each of the terms $\Sigma y_{0}, \Sigma y_{n}$, \&c., using differences as far as the third order, it is clear that we shall have a perfect series consisting of $3 n+1$ terms, the third differences of which are constant throughout. Again: the first order of differences thus obtained is itself a series with constant second differences, and moreover bears this relation to the original series y_{x}, viz., that the sum of each consecutive n terms of the former (commencing with the first) is equal to the sum of the corresponding n terms of the latter. We have thus obtained a series, without the slightest discontinuity, which in its general features must more or less resemble the original series y_{x}.

The labour required in adjusting a table by this method is not, I think, greater than with the methods commonly used. The arithmetical values of
the logarithms of the probabilities are of course easily obtained by subtracting the logarithm of the number surviving the year from the logarithm of the number exposed to risk. If the two last-mentioned logarithms be carried to five decimal places, we shall generally have at least three significant figures in the logarithms of the probabilities; and, retaining only that number, the logarithms of these may be rapidly run off by the table for three figures prefixed to Babbage's Logarithms, in which operation it will be sufficient to take out the logarithms to three decimal places only. Again: in interpolating the series Σy_{x}, it will be necessary to compute three terms only, as these will suffice to determine the first term of each of the three orders of differences-by the aid of which the remaining terms of the first order of differences (which is the series with which we are concerned) may be obtained by two additions only, as will appear by the following example.

In order to exhibit the results of the method here proposed, and to enable your readers to compare them with the results obtained by a method suggested by one of the latest and ablest writers on the subject, I annex an adjusted table of the Eagle experience, as given in vol. iv., page 214, of The Assurance Magazine. Neglecting the original data for the age of 80 and upwards, as being founded upon numbers too small to render it of any great utility, and dividing the remainder into three parts, the first comprising the ages 20 to 39 , the second, ages 40 to 59 , and the third, the ages 60 to 79 , the preparatory table will stand thus:-

x.	Σy_{x}.	$\Delta \Sigma y_{x}$.	$\Delta^{2} \mathbf{\Sigma} y_{x}$.	$\Delta^{3} \Sigma y_{x}$.
20	62003			
40 60	48133	-13870 -18962	-5092 -10209	-5117
60 80	${ }_{0}^{29171}$	-29171	-10209	

Interpolating in the ordinary way three terms between the ages 20 and 40, we have :-

x.	Σy_{x}.	y_{x}.	Δy_{x}.	$\Delta^{2} y_{x}$.
20	$62003 \cdot 0000$			
21	$61351 \cdot 4413$ 60699.3055	$\begin{aligned} & -651 \cdot 5587 \\ & -652 \cdot 1358 \end{aligned}$	- 5781	
$\stackrel{22}{23}$	$60699 \cdot 3055$ $60045 \cdot 9530$	$\begin{aligned} & -652.1308 \\ & -653.3525 \end{aligned}$	-1.2167	-6396
	- .			-

Which series, it is evident, may be continued to any extent required, by continually adding the constant second difference, 6396 , to the last term of the first order Δy_{x}, and then adding the several terms of the latter to the corresponding terms of y_{x}. Thus, as before stated, each term of the adjusted series required is obtained by two additions only, it being useless
to continue the series Σy_{x}, which is introduced merely for the parpose of explaining the process.

The next step consists in taking out the numbers corresponding to the logarithms in the column y_{x}, by which we obtain the logarithm of the probability of living one year, at all ages, in its negative form, and the logarithms of the numbers living at each age may then be found by the continued subtraction of these from the logarithm of the number fixed for the radix of the table.

The following table contains the numbers living, the decrements, and also the expectation of life, at every age from 20 upwards. By comparing the expectation with that deduced by Mr. Jellicoe's method, it will be found that, upon the whole, the former adheres rather more closely to the original data than the latter. It may also be remarked, that although from the age of 80 upwards the decrements are deduced entirely by a continuation of the law according to which the preceding portion of the table is formed, and are consequently entirely independent of the original observations, yet even at these extreme ages a very close connection is observable between them.

> I am, Sir,
M.

London, 28th November, 1856.

Adjusted Mortality Table.-EEagle Experience.

Age.	Living.	Decrements.	Expectation of Life.	Age.	Living.	Decrements.	Expectation of Life.	Age.	Living.	Decrements.	Expectation of Life.
20	$9215 \cdot 0$	94.6	$38 \cdot 447$	47	6578.9	117.0	$21 \cdot 256$	74	$2230 \cdot 2$	194.5	6.859
21	9120.4	93.8	37.842	48	$6461 \cdot 9$	$119 \cdot 7$	$20 \cdot 631$	75	20357	191.8	$6 \cdot 466$
22	$9026 \cdot 6$	$93 \cdot 1$	$37 \cdot 230$	49	$6342 \cdot 2$	122.5	20.012	76	18439	1878	6.087
23	$8933 \cdot 5$	$92 \cdot 5$	36.612	50	$6219 \cdot 7$	$125 \cdot 5$	19.395	77	16561	$182 \cdot 6$	5720
24	8841.0	$92 \cdot 1$	35.991	51	6094'2	$128 \cdot 6$	18.784	78	1473.5	$176 \cdot 0$	$5 \cdot 367$
25	$8748 \cdot 9$	$91 \cdot 8$	35.364	52	$5965 \cdot 6$	$132 \cdot 0$	18.179	79	$1297 \cdot 5$	$168 \cdot 1$	5.027
26	$8657 \cdot 1$	91.6	$34 \cdot 734$	53	$5833 \cdot 6$	$135 \cdot 3$	17-578	80	1129.4	158.8	4701
27	8565.5	91.5	34.099	54	$5698 \cdot 3$	$188 \cdot 9$	16.984	81	$970 \cdot 6$	$148 \cdot 3$	4.388
28	8474*0	91.6	$33 \cdot 462$	55	$5559 \cdot 4$	$142 \cdot 5$	16.396	82	$822 \cdot 3$	1365	$4 \cdot 089$
29	$8382 \cdot 4$	91.9	$32 \cdot 822$	56	5416.9	146.3	$15 \cdot 814$	83	$685 \cdot 8$	$123 \cdot 9$	$3 \cdot 804$
30	8290.5	$92 \cdot 1$	$32 \cdot 181$	57	$5270 \cdot 6$	1503	15.239	84	561.9	110.5	3-532
31	$8198 \cdot 4$	92.6	31 537	58	$5120 \cdot 3$	$154 \cdot 1$	14.672	85	$451 \cdot 4$	$96 \cdot 6$	$3 \cdot 274$
32	$8105 \cdot 8$	$93 \cdot 2$	30.891	59	$4966 \cdot 2$	158.3	14-112	86	$354 \cdot 8$	82.7	3.029
33	$8012 \cdot 6$	$93 \cdot 8$	$30 \cdot 243$	60	4807.9	$162 \cdot 2$	13.560	87	$272 \cdot 1$	$69 \cdot 1$	2.798
34	7918.8	$94 \cdot 6$	$29 \cdot 597$	61	46457	$166 \cdot 4$	13.016	88	203.0	56.1	2.580
35	7824.2	$95 \cdot 6$	28.948	62	4479-3	$170 \cdot 4$	12.481	89	146.9	$44 \cdot 2$	$2 \cdot 375$
36	7728.6	96.7	$28 \cdot 301$	63	$4308 \cdot 9$	$174 \cdot 5$	11.955	90	$102 \cdot 7$	33.7	$2 \cdot 183$
37	$7631 \cdot 9$	$97 \cdot 8$	$27 \cdot 653$	64	$4134 \cdot 4$	178.3	$11 \cdot 438$	91	$69 \cdot 0$	$24 \cdot 6$	$2 \cdot 003$
38	$7534 \cdot 1$	$99 \cdot 1$	$27 \cdot 006$	65	$3956 \cdot 1$	$182 \cdot 0$	10.931	92	$44 \cdot 4$	$17 \cdot 2$	$1 \cdot 836$
39	$7435 \cdot 0$	1006	$26 \cdot 358$	66	3774•1	185.4	$10 \cdot 434$	93	27.2	11.4	$1 \cdot 680$
40	$7334 \cdot 4$	$102 \cdot 1$	$25 \cdot 713$	67	$3588 \cdot 7$	188.6	$9 \cdot 947$	94	$15 \cdot 8$	$7 \cdot 2$	$1 \cdot 536$
41	$7232 \cdot 3$	103.8	25.068	68	$3400 \cdot 1$	$191 \cdot 4$	$9 \cdot 471$	95	$8 \cdot 6$	$4 \cdot 2$	$1 \cdot 403$
42	7128.5	105.7	$24 \cdot 426$	69	32087	$193 \cdot 7$	$9 \cdot 006$	96	$4 \cdot 4$	$2 \cdot 4$	1.281
43	70228	$107 \cdot 7$	23.787	70	$3015 \cdot 0$	195.5	8.553	97	$2 \cdot 0$	$1 \cdot 1$	$1 \cdot 170$
44	$6915 \cdot 1$	1097	$23 \cdot 149$	71	$2819 \cdot 5$	196.4	$8 \cdot 111$	98	$\cdot 9$	$\cdot 6$	$1 \cdot 069$
45	$6805 \cdot 4$	$112 \cdot 1$	$22 \cdot 514$	72	$2623 \cdot 1$	196.8	$7 \cdot 681$	99	$\cdot 3$	$\cdot 2$	$\cdot 978$
46	66933	114.4	21.884	73	$2426 \cdot 3$	196.1	7.264	100	$\cdot 1$	$\cdot 1$	-897

