BULL. AUSTRAL. MATH. SOC. VOL. 33 (1986), 59-65.

TRANSCENDENCE MEASURES BY MAHI FR'S TRANSCENDENCE METHOD

PAUL-GEORG BECKER-LANDECK

Let f(z) be an analytic function in the unit circle satisfying the functional equation $f(z) = a(z) f(z^{\rho}) + b(z)$, where ρ is a natural number and a(z), b(z) are polynomials. If α is an algebraic number, we give a transcendence measure for $f(\alpha)$. This improves earlier results of Galochkin and Miller.

1. Introduction and statement of the Theorem

Let $T: \mathfrak{C} \longrightarrow \mathfrak{C}$ be the transformation defined by $Tz = z^{\rho}$, where $\rho \in \mathbb{N}$, $\rho \neq 1$. Let f(z) be a transcendental function which is holomorphic in the unit circle and which satisfies the functional equation

(1) $f(z) = \alpha(z) f(Tz) + b(z)$,

where a(z) and b(z) are polynomials with algebraic coefficients and f(0) is algebraic.

For these functions and for a wider class of functions satisfying functional equations similar to (1), K. Mahler [5] has shown the following result:

Received 19 April, 1985.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 \$A2.00 + 0.00.

If α is an algebraic number, $0 < |\alpha| < 1$, and if $\alpha(T^k \alpha) \neq 0$ for any $k \in \mathbf{I}_{\Omega}$, then $F(\alpha)$ is transcendental.

The paper intends to prove a quantitative version of Mahler's result.

THEOREM. Let f(z) and α be as above. There exists a constant C > 0, such that for all polynomials $Q(X) \in \mathbb{Z}[X]$ with degree d and height H the following estimate holds

 $|Q(f(\alpha))| > \exp(-Cd(\log H + d^2 \log d))$.

In the special case of the functions considered here the Theorem is an improvement of earlier results of A.I. Galochkin [3] and W. Miller [6]. Galochkin has shown

 $|Q(f(\alpha))| > \exp(-Cd \log H)$

under the additional hypothesis $H > H_{0}(d)$, whereas Miller proved

 $|Q(f(\alpha))| > \exp(-Cd^2(\log H + d^2))$.

The transcendence type (see [8], p.100) of $f(\alpha)$ which can be bounded by 4 using Miller's result is now shown to be smaller than 3 + ϵ for arbitrary $\epsilon > 0$.

Notation and preliminary results

The height H(P), $H(\alpha)$ and the degree deg P, deg α of polynomials P and algebraic numbers α have their usual meaning. If α is an algebraic number, then $\lceil \alpha \rceil$, the house of α , denotes the maximum over the absolute values of all conjugates of α . We define the length $\Lambda(P)$ of a polynomial P with algebraic coefficients to be the sum of the houses of the coefficients.

Let *K* be the algebraic number field containing the coefficients of a(z) and b(z) and the number f(0). I_K denotes the ring of algebraic integers in *K*. The positive constants C_1, C_2, \ldots are explicitly computable and will depend only on a(z), b(z), f(z), ρ and α .

Without loss of generality we can assume in the proof: (i) f(0) = 0 and (ii) the coefficients of b(z) are algebraic integers. Substituting f(z) by $\lambda f(z) + \mu$ with appropriate algebraic

https://doi.org/10.1017/S0004972700002860 Published online by Cambridge University Press

numbers λ and μ we can show this easily. The Theorem is proved in an equivalent form as a statement concerning approximations $|\xi - f(\alpha)|$ for algebraic numbers ξ (see [4], p.61).

In the proof, ideas of Galochkin and Miller are combined with an improvement in the estimates for the houses and denominators of the power series coefficients of f(z).

3. Proof of the Theorem

LEMMA 1. For $j \in \mathbb{N}_0$, $h \in \mathbb{N}$, let us denote by $f_{j,h}$ the power series coefficients of z^h in the expansion for $f(z)^j$. There is a natural number D_1 with $D_1^{j[\log h]+1} f_{j,h} \in I_K$ for all $j \in \mathbb{N}_0$, $h \in \mathbb{N}$. Furthermore the following estimate holds

$$\overline{|f_{j,h}|} \leq C_1 \exp(C_2 j \log h)$$
.

Proof. Iterating the functional equation (k-1) times we write

(2)
$$f(z) = a^{(k)}(z) f(T^{k}z) + b^{(k)}(z)$$

where

$$a^{(i)}(z) = a(z) \dots a(T^{i-1}z)$$

and

$$b^{(k)}(z) = \sum_{i=0}^{k-1} a^{(i)}(z) b(T^{i}z)$$
.

All $f_{1,h}$ with $h < \rho^k$ are determined by the second part of the right hand side in (2). Hence, we get

$$\begin{split} \overline{|f_{1,h}|} &\leq \sum_{i=0}^{k-1} \Lambda(b(T^{i}z)) \prod_{j=0}^{i-1} \Lambda(a(T^{j}z)) \\ &\leq C_{3}^{k} \leq C_{1} \exp(C_{2}\log h) \end{split}$$

The last inequality follows by choosing k with $\rho^{k-1} \leq h < \rho^k$. From the recursion formula

(3)
$$f_{j,h} = \sum_{\ell=1}^{h-1} f_{j-1,\ell} f_{1,h-\ell},$$

the estimate of the lemma can now be deduced easily. Using (2) and (3) the second part of the lemma follows by a similar argument.

For a power series $g(z) = \sum_{\ell=0}^{\infty} \beta_{\ell} z^{\ell}$, we denote by ord g(z) the first index ℓ with $\beta_{\varrho} \neq 0$.

LEMMA 2. Let $m (\geq C_4)$ and $n (\geq C_5m)$ be natural numbers. Then exists a polynomial $P(w,z) \in \mathbb{Z}[w,z]$ with the following properties: (a) $1 \leq \deg_m P \leq m$, $\deg_z P \leq n$;

- (b) $H(P) \leq \exp(C_{6}m \log nm)$;
- (c) ord $P(f(z), z) \ge C_{\eta} nm$;
- (d) ord $P(f(z), z) \leq C_{0} nm$.

Proof. Using Siegel's Lemma (see [7], p.141) we can construct a polynomial satisfying (a), (b) and (c). The estimate (d) is a consequence of Lemma 4 in [3]. The hypothesis $n \ge C(m)$ required there can be specified to $n \ge m$, if we restrict Galochkin's proof to the functions considered here.

We introduce the auxiliary parameter k and obtain the following lemma, which describes the growth of $\log |P(f(T^k\alpha), T^k\alpha)|$, $k \longrightarrow \infty$, for a polynomial P constructed according to Lemma 2.

LEMMA 3. Let m,n and k be natural numbers satisfying $m \geq C_4$, $n \geq C_5 m \text{ and } \rho^k \geq C_0 m \log nm \text{ . Then}$

$$\exp(-C_{10}nm\rho^k) < |P(f(T^k\alpha), T^k\alpha)| < \exp(-C_{11}nm\rho^k)$$

Proof. Let β_{ℓ} denote the coefficients of the power series expansion of P(f(z),z) at 0. As a consequence of Lemma 2 we obtain

(4)
$$\log |\overline{\beta_{\ell}}| \leq C_{12} m \log \ell$$
,

$$D_2^{m[\log l]} \beta_l \in I_K$$

with an appropriate $D_2 \in I$. Assuming $|z| \leq \frac{1}{2}$ we easily deduce

(6)
$$\left|\sum_{\ell=\lambda+1}^{\infty} \beta_{\ell} z^{\ell}\right| \leq |z|^{\lambda+1} \exp(C_{13} m \log \lambda) ,$$

where $\lambda = \text{ord } P(f(z), z)$. Liouville estimates combined with (4) and (5) yield

(7)
$$\log |\beta_{\lambda}| \ge -C_{14}m \log \lambda$$

Combining (6) and (7) we get

(8)
$$(\frac{1}{2}) |\beta_{\lambda} z^{\lambda}| < |P(f(z), z)| < (\frac{3}{2}) |\beta_{\lambda} z^{\lambda}|,$$

if $|z| \leq \exp(-C_{15}m \log nm)$ is assumed. Supposing $z = T^k \alpha$, $\alpha \in \mathcal{C}, 0 < |\alpha| < 1$, we see that this assumption is equivalent to $\rho^k \geq C_9m \log nm$. Lemma 3 follows now directly from (8).

Let ξ be an algebraic number of degree d and height H. Guided by the functional equation (2) we define ξ_k by

$$\xi_{k} = (\xi - b^{(k)}(\alpha)) / a^{(k)}(\alpha)$$

and similar to Lemma 4 from [6] the following lemma can be proved.

LEMMA 4. Let m,n and k be natural numbers satisfying m, $k \ge C_{16}$ and $n \ge C_{17}m$. There is a positive number C_{18} with the following property. If

$$|\xi - f(\alpha)| \leq \exp(-C_{18} nm \rho^k)$$

then

$$|P(\xi_k, T^k \alpha) - P(f(T^k \alpha), T^k \alpha)| < \exp(-C_{10} nm \rho^k)$$

with the constant C_{10} of Lemma 3.

The next lemma yields a lower bound for $|P(\xi_k, T^k \alpha)|$.

LEMMA 5. Let m, n and k be natural numbers satisfying

$$m \ge C_{19}$$
, $n \ge C_{20}$ and $\rho^k \ge C_{21}\log mn$. If $P(\xi_k, T^k\alpha) \neq 0$, then
 $|P(\xi_k, T^k\alpha)| > H^{-C_{22}m} \exp(-C_{23}dn\rho^k)$.

Proof. For each non-negative integer k, we define $P_k(w,z) = a^{(k)}(z)^m P((w-b^{(k)}(z))/a^{(k)}(z), T^k z) \in K[w,z]$. From the definition of ξ_k it is obvious that $P(\xi_k, T^k \alpha) = P_k(\xi, \alpha) a^{(k)}(\alpha)^{-m}$. By straightforward calculation we get $\deg_w P \le m$, $\deg_z P \le C_{24}(m+n)\rho^k$, $\Lambda(P_k) \le \Lambda(P) C_{25}$ and with a number D_3 chosen appropriately by $D_3^{mk} P_k(w,z) \in I_K[w,z]$. Liouville estimates (see [3], Lemma 5) applied to $P_k(\xi, \alpha)$ and $a^{(k)}(\alpha)$ lead to the inequality of the lemma.

Proof of the Theorem. With constants large enough to satisfy the hypotheses of all lemmas we assume

(9)
$$m \ge C_{26}, n \ge C_{27}m, \rho^k \ge C_{28}m \log mn$$

Using Lemma 3 and the triangle inequality we get

(10)
$$\exp(-C_{11}nm\rho^{k}) > |P(f(T^{k}\alpha), T^{k}\alpha)| \ge |P(\xi_{k}, T^{k}\alpha)| - |P(\xi_{k}, T^{k}\alpha) - P(f(T^{k}\alpha), T^{k}\alpha)|.$$

Under the additional assumption $|\xi - f(\alpha)| \le \exp(-C_{18} nm\rho^k)$ we infer by combining (10), Lemma 3, Lemma 4 and Lemma 5:

(11)
$$\exp(-C_{11}nm\rho^k) > H^{-C_{22}m} \exp(-C_{23}nd\rho^k) - \exp(-C_{10}nm\rho^k)$$
.

With the choice

(12)
$$m \ge 2C_{23}C_{11}^{-1}d$$

it is an immediate consequence of (11) that $H > \exp(C_{29}n\rho^{k})$ which is false, whenever

$$n\rho^k \ge C_{30} \log H$$
.

Hence, the contrary of the assumption in Lemma 3 is true, and we have

(14)
$$|\xi - f(\alpha)| > \exp(-C_{18} nm \rho^k)$$

if the parameters m, n and k are chosen with respect to the conditions (9), (12), and (13). From (14), the Theorem can be derived in the usual way.

4. Remarks

In the case $\alpha(z) = \eta$ with η a root of unity the estimate of the theorem can be sharpened to

$$|Q(f(\alpha))| > \exp(-Cd(\log H + d^2\log\log d))$$
.

The proof is quite similar to the above one, and therefore it is omitted. We note that we can also give a quantitative version of some of Mahler's results on algebraic independence (see [2]). Both that and the theorem proved here are parts of the author's thesis [1].

The author is grateful to P. Bundschuh for introducing him to this problem and for giving much advice.

References

- [1] P.-G. Becker-Landeck, Quantitative Resultate im Zusammenhang mit der Mahlerschen Transzendenzmethode (Dissertation, Universität zu Köln, 1984).
- [2] P.-G. Becker-Landeck, "Maße für algebraische Unabhängigkeit", (to appear).
- [3] A.I. Galochkin, "Transcendence measure of values of functions satisfying certain functional equation", Math. Notes 27 (1980), 83-88.
- [4] S. Lang, Introduction to transcendental numbers, (Addison-Wesley, Reading, 1966).
- [5] K. Mahler, "Arithmetische Eigenschaften der Lösungan einer Klasse von Funktionalgleichungen", Math. Ann. 101 (1929), 342-366.
- [6] W. Miller, "Transcendence measures by a method of Mahler", J. Austral. Math. Soc. Ser. A 32 (1982), 68-78.
- [7] T. Schneider, Einführung in die transzendenten Zahlen (Springer, Berlin, 1957).
- [8] M. Waldschmidt, Nombres transcendants, (Lecture notes in mathematics 402, Springer, Berlin, 1974).

Remigiusstrasse 37, D-5000 KÖLN 41, West Germany.