TRANSCENDENCE MEASURES BY

MAHLER'S TRANSCENDENCE METHOD

Paul-Georg Becker-Landeck

```
Let f(z) be an analytic function in the unit circle
satisfying the functional equation }f(z)=a(z)f(\mp@subsup{z}{}{\rho})+b(z)
where \rho is a natural number and }a(z),b(z) ar
polynomials. If }\alpha\mathrm{ is an algebraic number, we give a
transcendence measure for f(\alpha). This improves earlier
results of Galochkin and Miller.
```

1. Introduction and statement of the Theorem

Let $T: \Phi \longrightarrow \$$ be the transformation defined by $T z=z^{\rho}$, where $\rho \in \mathbb{N}, \rho \neq 1$. Let $f(z)$ be a transcendental function which is holomorphic in the unit circle and which satisfies the functional equation

$$
\begin{equation*}
f(z)=a(z) f(T z)+b(z) \tag{1}
\end{equation*}
$$

where $\alpha(z)$ and $b(z)$ are polynomials with algebraic coefficients and $f(0)$ is algebraic.

For these functions and for a wider class of functions satisfying functional equations similar to (1), K. Mahler [5] has shown the following result:

Received 19 April, 1985.

[^0]If α is an algebraic number, $0<|\alpha|<1$, and if $a\left(T^{k} \alpha\right) \neq 0$ for any $k \in \mathbb{N}_{0}$, then $F(\alpha)$ is transcendental.

The paper intends to prove a quantitative version of Mahler's result.
THEOREM. Let $f(z)$ and a be as above. There exists a constant $C>0$, such that for all polynomials $Q(X) \in \mathbb{Z}[X]$ with degree d and height H the following estimate holds

$$
|Q(f(\alpha))|>\exp \left(-C d\left(\log H+d^{2} \log d\right) \mid\right.
$$

In the special case of the functions considered here the Theorem is an improvement of earlier results of A.I. Galochkin [3] and W. Miller [6]. Galochkin has shown

$$
|Q(f(\alpha))|>\exp (-C d \log H)
$$

under the additional hypothesis $H>H_{0}(d)$, whereas Miller proved

$$
|Q(f(\alpha))|>\exp \left(-C d^{2}\left(\log H+d^{2}\right)\right)
$$

The transcendence type (see [8], p.100) of $f(\alpha)$ which can be bounded by 4 using Miller's result is now shown to be smaller than $3+\varepsilon$ for arbitrary $\varepsilon>0$.
2. Notation and preliminary results

The height $H(P), H(\alpha)$ and the degree $\operatorname{deg} P, \operatorname{deg} \alpha$ of polynomials P and algebraic numbers α have their usual meaning. If α is an algebraic number, then $\lceil\bar{\alpha} \mid$, the house of α, denotes the maximum over the absolute values of all conjugates of α. We define the length $\Lambda(P)$ of a polynomial P with algebraic coefficients to be the sum of the houses of the coefficients.

Let K be the algebraic number field containing the coefficients of $a(z)$ and $b(z)$ and the number $f(0) \cdot I_{K}$ denotes the ring of algebraic integers in K. The positive constants C_{1}, C_{2}, \ldots are explicitly computable and will depend only on $a(z), b(z), f(z), \rho$ and α.

Without loss of generality we can assume in the proof:
(i) $f(0)=0$ and (ii) the coefficients of $b(z)$ are algebraic integers. Substituting $f(z)$ by $\lambda f(z)+\mu$ with appropriate algebraic
numbers λ and μ we can show this easily. The Theorem is proved in an equivalent form as a statement concerning approximations $|\xi-f(\alpha)|$ for algebraic numbers ξ (see [4], p.61).

In the proof, ideas of Galochkin and Miller are combined with an improvement in the estimates for the houses and denominators of the power series coefficients of $f(z)$.

3. Proof of the Theorem

LEMMA 1. For $j \in \mathbb{N}_{0}, h \in \mathbb{N}$, let us denote by $f_{j, h}$ the power series coefficients of z^{h} in the exponsion for $f(z)^{j}$. There is a natural number D_{1} with $D_{1}^{j[\log h]+1} f_{j, h} \in I_{K}$ for all $j \in \mathbb{N}_{0}$, $h \in I N$. Furthermore the following estimate holds

$$
\overline{f_{j, h}} \leq C_{1} \exp \left(C_{2} j \log h\right)
$$

Proof. Iterating the functional equation $(k-1)$ times we write

$$
\begin{equation*}
f(z)=a^{(k)}(z) f\left(T^{k} z\right)+b^{(k)}(z) \tag{2}
\end{equation*}
$$

where

$$
a^{(i)}(z)=a(z) \ldots a\left(T^{i-1} z\right)
$$

and

$$
b^{(k)}(z)=\sum_{i=0}^{k-1} a^{(i)}(z) b\left(T^{i} z\right)
$$

All $f_{1, h}$ with $h<\rho^{k}$ are determined by the second part of the right hand side in (2). Hence, we get

$$
\begin{aligned}
\mid f_{1, h} & \leq \sum_{i=0}^{k-1} \Lambda\left(b\left(T^{i} z\right)\right) \prod_{j=0}^{i-1} \Lambda\left(a\left(T^{j} z\right)\right) \\
& \leq C_{3}^{k} \leq C_{1} \exp \left(C_{2} \log h\right) .
\end{aligned}
$$

The last inequality follows by choosing k with $\rho^{k-1} \leq h<\rho^{k}$. From the recursion formula

$$
\begin{equation*}
f_{j, h}=\sum_{\ell=1}^{h-1} f_{j-1, \ell} f_{1, h-\ell}, \tag{3}
\end{equation*}
$$

the estimate of the lemma can now be deduced easily. Using (2) and (3) the second part of the lemma follows by a similar argument.

For a power series $g(z)=\sum_{\ell=0}^{\infty} \beta_{\ell} z^{\ell}$, we denote by ord $g(z)$ the first index ℓ with $\beta_{\ell} \neq 0$.

LEMMA 2. Let $m\left(\geq C_{4}\right)$ and $n\left(\geq C_{5} m\right)$ be natural numbers. Then exists a polynomial $P(w, z) \in \mathbb{Z}[w, z]$ with the following properties:
(a) $I \leq \operatorname{deg}_{w} P \leq m, \operatorname{deg}_{z} P \leq n ;$
(b) $H(P) \leq \exp \left(C_{6} m \log n m\right)$;
(c) ord $P(f(z), z) \geq C_{7} n m$;
(d) ord $P(f(z), z) \leq C_{8} r m$.

Proof. Using Siegel's Lemma (see [7], p.141) we can construct a polynomial satisfying (a), (b) and (c). The estimate (d) is a consequence of Lemma 4 in [3]. The hypothesis $n \geq C(m)$ required there can be specified to $n \geq m$, if we restrict Galochkin's proof to the functions considered here.

We introduce the auxiliary parameter k and obtain the following lemma, which describes the growth of $\log \left|P\left(f\left(T_{\alpha}^{k}\right), T_{\alpha}^{k}\right)\right|, k \longrightarrow \infty$, for a polynomial P constructed according to Lemma 2.

LEMMA 3. Let m, n and k be natural numbers satisfying $m \geq C_{4}$, $n \geq C_{5} m$ and $\rho^{k} \geq C_{9} m \log n m$. Then

$$
\exp \left(-C_{10} n m \rho^{k}\right)<\mid P\left(f\left(T_{\alpha}^{k}, T_{\alpha}^{k}\right) \mid<\exp \left(-C_{11} n m \rho^{k}\right)\right.
$$

Proof. Let β_{ℓ} denote the coefficients of the power series expansion of $P(f(z), z)$ at 0 . As a consequence of Lemma 2 we obtain

$$
\begin{gather*}
\log \left|\overline{\beta_{\ell}}\right| \leq C_{12} m \log \ell \tag{4}\\
D_{2}^{m[\log \ell]} \beta_{\ell} \in I_{K} \tag{5}
\end{gather*}
$$

with an appropriate $D_{2} \in \boldsymbol{N}$. Assuming $|z| \leq \frac{1}{2}$ we easily deduce

$$
\begin{equation*}
\left|\sum_{\ell=\lambda+1}^{\infty} \beta_{\ell} z^{\ell}\right| \leq|z|^{\lambda+1} \exp \left(C_{13} m \log \lambda\right) \tag{6}
\end{equation*}
$$

where $\lambda=$ ord $P(f(z), z)$. Liouville estimates combined with (4) and (5) yield

$$
\begin{equation*}
\log \left|B_{\lambda}\right| \geq-C_{14} m \log \lambda \tag{7}
\end{equation*}
$$

Combining (6) and (7) we get

$$
\begin{equation*}
\left(\frac{1}{2}\right)\left|\beta_{\lambda} z^{\lambda}\right|<|P(f(z), z)|<\left(\frac{3}{2}\right)\left|\beta_{\lambda} z^{\lambda}\right| \tag{8}
\end{equation*}
$$

if $|z| \leq \exp \left(-C_{15} m \log n m\right)$ is assumed. Supposing $z=T^{k} \alpha$, $\alpha \in \mathbb{Q}, 0<|\alpha|<1$, we see that this assumption is equivalent to $\rho^{k} \geq C_{9} m \log r m$. Lemma 3 follows now directly from (8).

Let ξ be an algebraic number of degree d and height H. Guided by the functional equation (2) we define ξ_{k} by

$$
\xi_{k}=\left(\xi-b^{(k)}(\alpha)\right) / a^{(k)}(\alpha)
$$

and similar to Lemma 4 from [6] the following lemma can be proved.
LEMMA 4. Let m, n and k be natural numbers satisfying $m, k \geq C_{16}$ and $n \geq C_{17} m$. There is a positive number C_{18} with the following property. If

$$
|\xi-f(\alpha)| \leq \exp \left(-C_{18} n m \rho{ }^{k}\right)
$$

then

$$
\left|P\left(\xi_{k^{\prime}}, T^{k} \alpha\right)-P\left(f\left(T^{k} \alpha\right), T^{k} \alpha\right)\right|<\exp \left(-C_{10} n m \rho^{k}\right)
$$

with the constant C_{10} of Lemma 3.
The next lemma yields a lower bound for $\left|P\left(\xi_{k}, r^{k} \alpha\right)\right|$.
LEMMA 5. Let m, n and k be natural numbers satisfying $m \geq C_{19}, n \geq C_{20}$ and $\rho^{k} \geq C_{21} \log m n$. If $P\left(\xi_{k}, T^{k} \alpha\right) \neq 0$, then

$$
\left|P\left(\xi_{k}, T^{k} \alpha\right)\right|>H^{-C_{22}^{m}} \exp \left(-C_{23} d n \rho{ }^{k}\right)
$$

Proof. For each non-negative integer k, we define $P_{k}(w, z)=a^{(k)}(z)^{m} P\left(\left(w-b^{(k)}(z)\right) / a^{(k)}(z), T^{k} z\right) \in K[w, z]$. From the definition of ξ_{k} it is obvious that $P\left(\xi_{k}, T_{\alpha}{ }_{\alpha}=P_{k}(\xi, \alpha) a^{(k)}(\alpha)^{-m}\right.$. By straightforward calculation we get $\operatorname{deg}_{w} P \leq m, \operatorname{deg}_{Z} P \leq C_{24}(m+n) \rho^{k}$, $\Lambda\left(P_{k}\right) \leq \Lambda(P) \quad C_{25}$ and with a number D_{3} chosen appropriately by $D_{3}^{m k} P_{k}(w, z) \in I_{K}[w, z]$. Liouville estimates (see [3], Lerma 5) applied to $P_{k}(\xi, \alpha)$ and $a^{(k)}(\alpha)$ lead to the inequality of the lemma.

Proof of the Theorem. With constants large enough to satisfy the hypotheses of all lemmas we assume

$$
\begin{equation*}
m \geq C_{26}, n \geq C_{27} m, p^{k} \geq C_{28^{\prime}} m \log m n \tag{9}
\end{equation*}
$$

Using Lemma 3 and the triangle inequality we get

$$
\begin{align*}
& \exp \left(-C_{11} n m \rho^{k}\right)>\left|P\left(f\left(T^{k}\right), T^{k} \alpha\right)\right| \geq \tag{10}\\
&\left|P\left(\xi_{k}, T^{k} \alpha\right)\right|-\mid P\left(\xi_{k}, T_{\alpha}^{k_{\alpha}}-P\left(f\left(T^{k} \alpha\right), T_{\alpha}^{k^{k}}\right) \mid\right.
\end{align*}
$$

Under the additional assumption $|\xi-f(\alpha)| \leq \exp \left(-C_{18} n m \rho^{k}\right)$ we infer by combining (10), Lemma 3, Lemma 4 and Lemma 5:

$$
\begin{equation*}
\exp \left(-C_{11} n m \rho{ }^{k}\right)>H^{-C_{22}^{m}} \exp \left(-C_{23^{2}}^{n d \rho}{ }^{k}\right)-\exp \left(-C_{10^{n m \rho}}^{k}\right) . \tag{11}
\end{equation*}
$$

With the choice

$$
\begin{equation*}
m \geq 2 C_{23} C_{11}^{-1} d \tag{12}
\end{equation*}
$$

it is an immediate consequence of (11) that $H>\exp \left(C_{29} n^{k}\right)$ which is false, whenever

$$
n \rho^{k} \geq c_{30} \log H
$$

Hence, the contrary of the assumption in Lemma 3 is true, and we have

$$
\begin{equation*}
|\xi-f(\alpha)|>\exp \left(-C_{18} n m \rho^{k}\right) \tag{14}
\end{equation*}
$$

if the parameters m, n and k are chosen with respect to the conditions (9), (12), and (13). From (14), the Theorem can be derived in the usual way.

4. Remarks

In the case $a(z)=\eta$ with η a root of unity the estimate of the theorem can be sharpened to

$$
|Q(f(\alpha))|>\exp \left(-C d\left(\log H+d^{2} \log \log d\right)\right.
$$

The proof is quite similar to the above one, and therefore it is omitted. We note that we can also give a quantitative version of some of Mahler's results on algebraic independence (see [2]). Both that and the theorem proved here are parts of the author's thesis [1].

The author is grateful to P. Bundschuh for introducing him to this problem and for giving much advice.

References

[1] P.-G. Becker-Landeck, Quantitative Resultate im Zuscmmenhang mit der Mahlerschen Transzendenzmethode (Dissertation, Universität zu Köln, 1984).
[2] P.-G. Becker-Landeck, "Maße für algebraische Unabhängigkeit", (to appearl.
[3] A.I. Galochkin, "Transcendence measure of values of functions satisfying certain functional equation", Math. Notes 27 (1980), 83-88.
[4] S. Lang, Introduction to transcendental numbers, (Addison-Wesley, Reading, 1966).
[5] K. Mahler, "Arithmetische Eigenschaften der Lösungan einer Klasse von Funktionalgleichungen", Math. Ann. 101 (1929), 342-366.
[6] W. Miller, "Transcendence measures by a method of Mahler", J. Austral. Math. Soc. Ser. A 32 (1982), 68-78.
[7] T. Schneider, Einfuhrung in die transzendenten Zahlen (Springer, Berlin, 1957).
[8] M. Waldschmidt, Nombres transcendants, (Lecture notes in mathematics 402, Springer, Berlin, 1974).

Remigiusstrasse 37, D-5000 KÖLN 41, West Germany.

[^0]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 $\$ \mathrm{~A} 2.00+0.00$.

