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We present the results of a theoretical investigation into the existence, evolution and
excitation of resonant triads of nonlinear free-surface gravity waves confined to a cylinder
of finite depth. It is well known that resonant triads are impossible for gravity waves in
laterally unbounded domains; we demonstrate, however, that horizontal confinement of
the fluid may induce resonant triads for particular fluid depths. For any three correlated
wave modes arising in a cylinder of arbitrary cross-section, we prove necessary and
sufficient conditions for the existence of a depth at which nonlinear resonance may arise,
and show that the resultant critical depth is unique. We enumerate the low-frequency
triads for circular cylinders, including a new class of resonances between standing and
counter-propagating waves, and also briefly discuss annular and rectangular cylinders.
Upon deriving the triad amplitude equations for a finite-depth cylinder of arbitrary
cross-section, we deduce that the triad evolution is always periodic, and determine
parameters controlling the efficiency of energy exchange. In order to excite a particular
triad, we explore the influence of external forcing; in this case, the triad evolution may
be periodic, quasi-periodic or chaotic. Finally, our results have potential implications on
resonant water waves in man-made and natural basins, such as industrial-scale fluid tanks,
harbours and bays.

Key words: surface gravity waves

1. Introduction

Nonlinear resonance is a mechanism by which energy is continuously transferred between
a small number of linear wave modes. This phenomenon, first observed in Wilton’s
analysis of gravity–capillary wave trains (Wilton 1915), has been the subject of frequent
investigation over the past century (McGoldrick 1965; Simmons 1969; McGoldrick
1970a,b; Schwartz & Vanden-Broeck 1979; Craik 1986; Hammack & Henderson 1993);
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indeed, nonlinear resonance has since been observed for wave trains in a growing number
of dispersive wave systems, including gravity waves (Phillips 1960; Hasselmann 1961;
Benney 1962; Longuet-Higgins 1962), acoustic–gravity waves (Kadri & Stiassnie 2013;
Kadri & Akylas 2016), flexural–gravity waves (Wang, Vanden-Broeck & Milewski 2013),
two-layer flows (Ball 1964; Joyce 1974; Segur 1980) and atmospheric flows (Raupp et al.
2008; Raupp & Silva Dias 2009). Whilst the aforementioned studies typically consider
nonlinear resonance for laterally unbounded domains, the purpose of this study is to
demonstrate that energy exchange between free-surface gravity waves may be induced
and accentuated by horizontal confinement.

We focus our study on the collective resonance of three linear wave modes, henceforth
referred to as a triad (Bretherton 1964). In laterally unbounded domains, the monotonic
and concave form of the dispersion curve precludes the existence of resonant triads
for gravity wave trains at finite depth (Phillips 1960; Hasselmann 1961), with resonant
quartets instead being the smallest possible collective resonant interaction (Benney 1962;
Longuet-Higgins 1962; Berger & Milewski 2003). However, confinement of the fluid to a
vertical cylinder results in linear wave modes that differ in form to sinusoidal plane waves
(except for a rectangular cylinder), so the preclusion of resonant triads no longer applies.
Indeed, our study demonstrates that, under certain conditions, resonant triads may arise
in cylinders of arbitrary cross-section for specific values of the fluid depth. As resonant
triads evolve over a much faster time scale than that of resonant quartets, the exchange of
energy in gravity waves is thus more efficient under the influence of lateral confinement
(Michel 2019), with potential implications for resonant sloshing in man-made and natural
basins (Bryant 1989).

Prior investigations of confined resonant free-surface gravity waves have predominantly
focused on the so-called 1:2 resonance, which arises when two of the three linear wave
modes comprising a triad coincide. For axisymmetric standing waves in a circular cylinder,
Mack (1962) determined a condition for the existence of critical depth-to-radius ratios
at which a 1:2 resonance may arise, a result later generalised to cylinders of arbitrary
cross-section (Miles 1984b). Miles (1976, 1984a) then characterised the weakly nonlinear
evolution of such internal resonances, demonstrating that a 1:2 resonance is impossible in a
rectangular cylinder (Miles 1976). Although Miles’ seminal results provide an informative
view of the weakly nonlinear dynamics, the influence of fully nonlinear effects was later
assessed by Bryant (1989) and Yang et al. (2021). For the case of a circular cylinder of
finite depth, Bryant (1989) and Yang et al. (2021) characterised new steadily propagating
nonlinear waves arising in the vicinity of a 1:2 resonance, and Yang et al. (2021)
also computed nonlinear near-resonant axisymmetric standing waves. Finally, broader
mathematical properties of water waves exhibiting O(2) symmetry (of which a circular
cylinder is one example) were analysed by Bridges & Dias (1990) and Chossat & Dias
(1995).

Given the restrictive set of critical depths at which a 1:2 resonance may arise (Bryant
1989; Yang et al. 2021), it is natural to explore the possibility of nonlinear resonance in
cylinders whose depth departs from the depths that trigger a 1:2 resonance. To the best of
our knowledge, the first and only such study was the seminal experimental investigation
performed by Michel (2019), who focused on resonant triads arising for free-surface
gravity waves confined to a finite-depth circular cylinder. Notably, the cylinder depth in
Michel’s experiment was judiciously chosen so as to isolate a specific triad. Michel utilised
bandlimited random horizontal vibration so as to excite two members of the triad, whose
nonlinear interaction led to the growth of the third mode. Significantly, the energy of the
third mode was, on average, the product of the energies of the remaining two modes,
thereby satisfying the quadratic energy exchange typical of resonant triads.
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Resonant triads of gravity waves

In order to exemplify the mechanism of nonlinear resonance, Michel (2019) also
calculated the response of a child mode due to the nonlinear interaction between two parent
modes (where all three wave modes comprise the triad). Notably, Michel’s calculation
is restricted to the early stages of growth and to particular relative phases of the wave
modes. In addition, Michel considered a fluid of infinite depth for all but the resonance
conditions, for which finite-depth corrections were included. In contrast, we consider
general resonances in arbitrary cylinders of finite depth and derive equations for the
triad evolution over long time scales. We also believe some nonlinear contributions to the
interactions were omitted from Michel’s calculation, resulting in quantitative differences
(see § 4.3).

The goal of our study is to unify the existence and evolution of 1:2 and triadic resonances
into a single mathematical framework, effectively characterising all triad interactions of
this type. Based on existing theory, it is unclear how the existence of resonant triads
depends on the form of the cylinder cross-section, and which combinations of wave modes
are permissible for judicious choice of the fluid depth. Furthermore, the range of depths
that may excite a particular triad is uncertain, with 1:2 resonances only excited in a very
narrow window about each critical depth (Mack 1962; Miles 1984b). Once a particular
triad is excited, one anticipates that the triad evolution will be governed by the canonical
triad equations (Bretherton 1964; Craik 1986); however, quantifying the triad evolution and
relative energy exchange requires computation of the triad coupling coefficients. Finally,
it is unclear how best to excite triads in arbitrary cylinders, both with and without external
forcing.

We here present a relatively comprehensive characterisation of the existence, evolution
and excitation of resonant triads for gravity waves confined to a cylinder of arbitrary
cross-section and finite depth. In order to reduce the problem to its key components, we
first truncate the Euler equations, recasting the fluid evolution in terms of a finite-depth
Benney–Luke equation (§ 2), incorporating only the nonlinear interactions necessary for
resonant triads. In § 3, we prove necessary and sufficient conditions for there to exist a
finite depth at which three linear wave modes may form a resonant triad. In particular,
we prove that resonant triads are impossible for rectangular cylinders, yet there is an
abundance of resonant triads for circular cylinders. We then use multiple-scale analysis to
determine the long-time evolution of a triad in a cylinder of arbitrary cross-section (§ 4),
from which we characterise the relative coupling of different triads. Finally, we explore
the excitation of resonant triads (§ 5), and discuss the potential extension of our theoretical
developments to the cases of applied forcing and two-layer flows (§ 6).

2. Formulation

We consider the irrotational flow of an inviscid, incompressible liquid that is bounded
above by a free surface, confined laterally by the vertical walls of a cylinder whose
horizontal cross-section, D, is enclosed by the curve ∂D and bounded below by a rigid
horizontal plane lying a distance H below the undisturbed free surface; see figure 1.
We consider the fluid evolution in dimensionless variables, taking the cylinder’s typical
horizontal extent, a, as the unit of length, and

√
ag−1 as the unit of time, where g is the

acceleration due to gravity. It follows that the dimensionless free-surface elevation, η(x, t),
and velocity potential, φ(x, z, t), evolve according to the equations

�φ + φzz = 0 for x ∈ D, −h < z < εη, (2.1a)
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z

H

D
∂D

Figure 1. Schematic diagram of the cylindrical tank (with cross-section D and boundary ∂D) partially filled
with liquid. The undisturbed free surface (dashed lines) lies on z = 0, a distance H above the rigid bottom plane
(grey). The disturbed free surface is sketched in dash-dotted lines.

φt + η + ε

2
(|∇φ|2 + φ2

z ) = 0 for x ∈ D, z = εη, (2.1b)

ηt + ε∇φ · ∇η = φz for x ∈ D, z = εη, (2.1c)

n · ∇φ = 0 for x ∈ ∂D, −h < z < εη, (2.1d)

φz = 0 for x ∈ D, z = −h, (2.1e)

corresponding to the continuity equation, dynamic and kinematic boundary conditions
and no flux through the vertical walls and horizontal base, respectively. In (2.1), the
dimensionless parameter ε is proportional to the typical wave slope, h = H/a is the ratio
of the fluid depth to the typical horizontal extent, n is a unit vector normal to the boundary
∂D and the operators ∇ and Δ denote the horizontal gradient and Laplacian, respectively.
Moreover, conservation of mass implies that the free surface satisfies

∫∫
D η dA = 0 for all

time. Finally, in dimensional variables, ax is the two-dimensional horizontal coordinate,
az is the upward-pointing vertical coordinate,

√
ag−1t denotes time, εaη is the free-surface

displacement and εa
√

agφ is the velocity potential.
We aim to develop a broad framework for understanding resonant triads in a cylinder

of finite depth; however, care must be taken when modelling fluid–boundary interactions
and determining the class of permissible cylinder cross-sections. From a modelling
perspective, we employ an assumption generally implicit to the water-wave problem in
bounded domains; specifically, we neglect the meniscus and dissipation arising near the
vertical walls (Miles 1967), thus determining that the free surface intersects the boundary
normally, i.e. n · ∇η = 0 for x ∈ ∂D (Miles & Henderson 1990). In order to maximise
the generality of our investigation, we allow the cylinder cross-section, D, to be fairly
arbitrary; however, the mathematical developments presented herein require D to be
bounded with a piecewise-smooth boundary, thereby allowing us to utilise the spectral
theorem for compact self-adjoint operators (Kreyszig 1989) and the divergence theorem.
As most cylinders of practical interest consist of a piecewise-smooth boundary, this
mathematical restriction fails to limit the breadth of our study.
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2.1. Derivation of the Benney–Luke equation
As our study is focused on the weakly nonlinear evolution of small-amplitude waves, we
proceed to simplify (2.1) in the case 0 < ε � 1 and h = O(1). We begin by expanding
the dynamic and kinematic boundary conditions (2.1b)–(2.1c) about z = 0 in powers of ε,
which, upon eliminating η, gives rise to the equation (Benney 1962; Milewski & Keller
1996)

φtt + φz = ε(∂t(φtzφt)+ φzzφt − ∂t(|∇φ|2)− φzφzt)+ O(ε2) for x ∈ D, z = 0.
(2.2)

To reduce the fluid evolution to the dynamics arising on the linearised free surface,
z = 0, we define the Dirichlet-to-Neumann operator, L , so that L φ|z=0 = φz|z=0.
Here, φ satisfies Laplace’s equation (2.1a) over the linearised domain −h < z < 0, with
∂zφ = 0 on z = −h (see (2.1e)) and n · ∇φ = 0 for x ∈ ∂D (see (2.1d)). Notably, the
Dirichlet-to-Neumann operator may be defined in terms of its spectral representation,
as detailed in § 2.2. By denoting u(x, t) = φ(x, 0, t), we finally obtain the finite-depth
Benney–Luke equation (Benney 1962; Benney & Luke 1964; Milewski & Keller 1996)

utt + L u + ε

(
ut(L

2 +Δ)u + ∂

∂t
[(L u)2 + |∇u|2]

)
= O(ε2) for x ∈ D, (2.3)

where we have simplified the nonlinear terms in (2.2) using φzz = −�φ and utt = −L u +
O(ε).

The remainder of our investigation will be focused on the evolution of resonant triads
governed by the Benney–Luke equation (2.3). As resonant triads arising in confined
geometries are governed primarily by quadratic nonlinearities, it is sufficient to neglect
terms of size O(ε2) in (2.3); however, higher-order corrections to the Benney–Luke
equation may be derived by following a similar expansion procedure (Benney 1962;
Milewski & Keller 1996; Berger & Milewski 2003). Although our investigation is mainly
focused on the evolution of the velocity potential, u, one may recover the leading-order
free-surface elevation from the dynamic boundary condition (2.1b), namely η = −ut +
O(ε).

2.2. Spectral representation of the Dirichlet-to-Neumann operator
The Dirichlet-to-Neumann operator, L , may be understood in terms of the discrete
set of orthogonal eigenfunctions of the horizontal Laplacian operator (Kreyszig 1989).
Specifically, we consider the set of real-valued eigenfunctions, Φn(x), satisfying

−�Φn = k2
nΦn for n = 0, 1, . . . , (2.4)

where the corresponding eigenvalues, k2
n, are ordered so that 0 = k0 < k1 ≤ k2 ≤ . . ..

Moreover, each eigenfunction satisfies the boundary condition n · ∇Φn = 0 on ∂D, as
motivated by the no-flux condition (2.1d). Finally, the orthogonal eigenfunctions are
normalised so that 〈Φm, Φn〉 = δmn, where

〈 f , g〉 = 1
S

∫∫
D

fg dA (2.5)

defines an inner product for real functions f and g, S is the area of D and δmn is the
Kronecker delta. Notably, Φ0(x) = 1 is the constant eigenfunction, with corresponding
eigenvalue k0 = 0.
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To determine the Dirichlet-to-Neumann operator for sufficiently smooth φ, we first
substitute the series expansion φ(x, z) = ∑∞

n=0 φn(z)Φn(x) into Laplace’s equation (2.1a),
where we have temporally omitted the time dependence. We then solve the resulting
equation for φn(z) over the linearised domain −h < z < 0, in conjunction with the no-flux
condition on z = −h (see (2.1e)). It follows that ∂zφn(0) = L̂nφn(0), where

L̂n = kn tanh(knh) (2.6)

is the spectral multiplier of the Dirichlet-to-Neumann operator, L . By expressing the
time-dependent free-surface velocity potential, u = φ|z=0, in terms of the basis expansion
u(x, t) = ∑∞

n=0 un(t)Φn(x), it follows that the Dirichlet-to-Neumann map has the spectral
representation L u = ∑∞

n=0 L̂nunΦn.

3. The existence of resonant triads

Resonant triads arise due to the exchange of energy between linear wave modes, an effect
induced by nonlinear wave interactions. In order to define resonant triads mathematically,
it is necessary to first determine the angular frequency associated with each linear wave
mode. In the limit ε → 0, the Benney–Luke equation (2.3) reduces to the linear equation
utt + L u = 0. By seeking a solution to the linearised Benney–Luke equation of the form
u(x, t) = Φn(x) exp(−iωnt), we conclude that the angular frequency, ωn, satisfies ω2

n =
L̂n, or the more familiar (Lamb 1932)

ω2
n = kn tanh(knh). (3.1)

As we will see, a crucial aspect of the following analysis is that the angular frequency
depends on the fluid depth, i.e. ωn(h). Finally, we note that the angular frequency is larger
for more oscillatory eigenfunctions (i.e. for larger values of kn); by analogy to the evolution
of plane gravity waves, we refer to kn as a ‘wavenumber’ henceforth.

We proceed by considering three linear wave modes, enumerated n1, n2 and n3, where
we denote

Ωj = ωnj, Kj = knj, and Ψj(x) = Φnj(x) for j = 1, 2, 3. (3.2a–c)

Notably, we exclude the wavenumber k0 = 0 from consideration as the corresponding
eigenmode, Φ0, simply reflects the invariance of the Benney–Luke equation (2.3) under
the mapping u 
→ u + constant; henceforth, we consider only wavenumbers Kj > 0. The
three linear wave modes form a resonant triad if there is a critical fluid depth, hc, satisfying

Ω1(hc)±Ω2(hc)±Ω3(hc) = 0, (3.3)

where all four sign combinations are permissible (we consider Ωj > 0 without loss of
generality). To simplify notation in the following arguments, we restrict our attention to
the particular case

Ω1(hc)+Ω2(hc) = Ω3(hc), (3.4)

where the other three sign combinations in (3.3) may be recovered by suitable re-indexing
of the Ωj terms. However, as we will see in § 4, an additional constraint necessary for
triads to exist is the eigenmode correlation condition,∫∫

D
Ψ1Ψ2Ψ3 dA /= 0, (3.5)

which implies that the product of any two eigenmodes is non-orthogonal to the remaining
eigenmode.

966 A25-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

44
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.441


Resonant triads of gravity waves

3.1. The existence of a critical depth
We proceed to determine necessary and sufficient conditions on the wavenumbers, Kj, for
there to exist a depth, hc, at which a resonant triad forms, where such a critical depth is
unique. We summarise our results in terms of the following theorem:

THEOREM 1. There exists a positive and finite value of h such that Ω1 +Ω2 = Ω3 if and
only if

K1 + K2 < K3 < (
√

K1 +
√

K2)
2. (3.6)

When this pair of inequalities is satisfied, the corresponding value of h is unique.

We briefly sketch the proof of Theorem 1, with full details presented in Appendix A. We
first demonstrate that no solutions toΩ1 +Ω2 = Ω3 are possible when the bounds in (3.6)
are violated, i.e. when K1 + K2 ≥ K3 or when

√
K1 + √

K2 ≤ √
K3. We then consider the

case where the inequalities (3.6) are satisfied and determine the existence of positive roots
to the function F(h) = (Ω1(h)+Ω2(h))/Ω3(h)− 1. In this case, we demonstrate that
limh→0 F(h) < 0 and limh→∞ F(h) > 0, from which we conclude that F(h) has at least
one root (by continuity of F). Finally, we deduce that this root is unique by proving that
F(h) is a strictly monotonically increasing function of h when the inequalities (3.6) are
satisfied.

Two important conclusions may be deduced from Theorem 1. First, it follows from
(3.6) that the wavenumber, K3, corresponding to the largest angular frequency, Ω3, is
larger than both the other two wavenumbers (K1 and K2), but it cannot be arbitrarily large
(as supplied by the upper bound). For a given pair of eigenmodes (say Ψ1 and Ψ2), we
conclude that there are likely to be only finitely many eigenmodes that can resonate with
this pair (indeed, that number might fairly small, or even zero). Second, when modes
1 and 2 coincide (a 1:2 resonance), one deduces that Ω1 = Ω2 and K1 = K2; as such,
the existence bounds (3.6) simplify to 2K1 < K3 < 4K1, or 2 < K3/K1 < 4 (Mack 1962;
Miles 1984b).

3.2. Determining the critical depth
Although Theorem 1 determines necessary and sufficient conditions on the wavenumbers,
Kj, for there to be a critical depth, hc, at which a resonant triad exists, the critical depth
remains to be determined. In general, the critical depth must be computed numerically
(being the unique root of the nonlinear function F(h)); however, we demonstrate that useful
quantitative and qualitative information may be obtained via asymptotic analysis. For the
remainder of this section, we consider the rescaled wavenumbers, ξ1 = K1/K3 and ξ2 =
K2/K3, and the rescaled depth, ζ = K3h; it remains to determine the root, ζc, of

F(ζ ) =
√
ξ1 tanh(ξ1ζ )

tanh(ζ )
+
√
ξ2 tanh(ξ2ζ )

tanh(ζ )
− 1, (3.7)

when ξ1, ξ2 > 0 satisfy

ξ1 + ξ2 < 1 <
√
ξ1 +

√
ξ2. (3.8)

In figure 2(a), we present contours of the critical rescaled depth, ζc, in the (ξ1, ξ2)-plane,
restricted to the region demarcated by (3.8). Consistent with the limits limζ→0 F(ζ ) =
ξ1 + ξ2 − 1 and limζ→∞ F(ζ ) = √

ξ1 + √
ξ2 − 1, we observe that the root, ζc, tends

to zero at the line ξ1 + ξ2 = 1, and approaches infinity at the curve
√
ξ1 + √

ξ2 = 1.
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Figure 2. Contours of the rescaled critical depth, ζc = hcK3, as a function of the rescaled wavenumbers,
ξ1 = K1/K3 and ξ2 = K2/K3. (a) The contours computed numerically from (3.7). The black lines indicate
the limiting cases of ζc → 0 (at ξ1 + ξ2 = 1) and ζc → ∞ (at

√
ξ1 + √

ξ2 = 1). (b) The contours are overlaid
by the leading-order approximation ((3.15); circles) and the higher-order correction ((3.16); diamonds) for ζc
equal to 0.5, 1, 1.5 and 2.

Furthermore, the uniqueness of the root of F for given (ξ1, ξ2) is reflected in the
observation that the contours of ζc do not cross. Finally, we note that the contours are
symmetric about the line ξ1 = ξ2, which is a direct consequence of the invariance of F(ζ )
under the mapping ξ1 ↔ ξ2 (see (3.7)).

Although we are primarily interested in the physically relevant case for which the
cylinder’s depth-to-width ratio, h, is of size O(1), an informative analytic result may be
obtained by considering F(ζ ) in the limit ζ � 1 (or K3h � 1). By utilising the Taylor
expansion

√
tanh(x) ∼ √

x
(

1 − x2

6
+ 19

360
x4 + O(x6)

)
, (3.9)

we obtain √
ξ1 tanh(ξ1ζ )+

√
ξ2 tanh(ξ2ζ )−

√
tanh(ζ )

∼
√
ζ

[
(ξ1 + ξ2 − 1)− ζ 2

6
(ξ3

1 + ξ3
2 − 1)+ O(ζ 4)

]
, (3.10)

for 0 < ζ � 1. Whilst deriving (3.10), we have utilised the bound ξ1, ξ2 < 1 (see (3.8)),
which additionally ensures that 0 < ξjζ � 1 for j = 1, 2. We note that the left-hand side
of (3.10) is equal to F(ζ ) tanh(ζ ), so ζc satisfies

ξ1 + ξ2 − 1 − ζ 2
c

6
(ξ3

1 + ξ3
2 − 1) = O(ζ 4

c ), (3.11)

provided that 0 < ζc � 1. By neglecting terms of size O(ζ 4
c ) in (3.11), one may then easily

solve for ζc in terms of ξ1 and ξ2.
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Alternatively, a more succinct expression for ζc may be found by first noting that

ξ3
1 + ξ3

2 = (ξ1 + ξ2)
3 − 3ξ1ξ2(ξ1 + ξ2) = 1 − 3ξ1ξ2 + O(ζ 2

c ), (3.12)

where we have utilised the leading-order approximation ξ1 + ξ2 = 1 + O(ζ 2
c ) (see (3.11))

to determine the second equality. Upon substituting (3.12) into (3.11), we find that ξ1, ξ2
and ζc are now related by the notably simpler expression

ξ1 + ξ2 − 1 + ζ 2
c

2
ξ1ξ2 = O(ζ 4

c ). (3.13)

By neglecting terms of O(ζ 4
c ), the leading-order approximation for the rescaled critical

depth, ζc, is given by

ζc ∼
√

2(1 − ξ1 − ξ2)

ξ1ξ2
, (3.14)

an expression valid when 0 < ζc � 1 and ξ1 + ξ2 < 1 (see (3.8)). Alternatively, one may
deduce from (3.13) that the contours of ζc satisfy the approximate form

ξ2 ∼ 1 − ξ1

1 + 1
2
ζ 2

c ξ1

, (3.15)

where the term in the denominator is responsible for the increased ‘bending’ of the
contours as ζc becomes progressively larger (see figure 2). We note that the additional
simplification afforded by (3.12) allows for a far more tractable representation of the
contours relative to solving (3.11) directly for ξ2 given ξ1 and ζc.

Despite being derived under the assumption 0 < ζc � 1, we see in figure 2(b) that the
contours given by (3.15) agree favourably with the numerical solution even up to ζc ≈ 1.
However, it is readily verified from (3.14) that the asymptotic approximation of each
contour crosses the boundary curve

√
ξ1 + √

ξ2 = 1 at ζc = 4 (for which ξ1 = ξ2 = 1
4 ),

thereby demonstrating that the reduced asymptotic form has limited applicability (even in a
qualitative sense) for slightly larger values of ζc. One may further improve the quantitative
(and, to an extent, qualitative) agreement between the asymptotic analysis and numerical
computation by including terms of size O(ζ 4) in (3.10); indeed, an analogous calculation
gives rise to the following higher-order correction to (3.13):

ξ1 + ξ2 − 1 + ζ 2
c

2
ξ1ξ2 + ζ 4

c

72
ξ1ξ2 (ξ1ξ2 − 1) = O(ζ 6

c ). (3.16)

Although one may then solve for ζc given ξ1 and ξ2 (or, alternatively, determine the
contours of ζc) by truncating terms of O(ζ 6

c ) in (3.16), the resulting algebraic expressions
yield little qualitative information. However, one may, in principle, use this reduced form
as a reasonable initial guess for a numerical root-finding algorithm for determining the
root of F(ζ ), provided that ζc is not too large.

3.3. Example cavities
Our investigation into the emergence of resonant triads has been focused, thus far, on
finite-depth cylinders with arbitrary horizontal cross-section. However, it is convenient to
understand how the results of Theorem 1 influence the formation (or not) of resonant triads
for some specific cross-sections, namely rectangular, circular and annular cylinders.
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3.3.1. Rectangular cylinder
It is well known that resonant triads are impossible for plane gravity waves evolving
across an unbounded horizontal domain of finite depth (Phillips 1960; Hasselmann 1961)
(weak interactions are possible, however, in the shallow-water limit, Kjh → 0, for which
tanh(Kjh) in the dispersion relation (3.1) is replaced by its leading-order approximation,
Kjh (Phillips 1960; Bryant 1973; Miles 1976)). We now utilise Theorem 1 to demonstrate
a similar result: resonant triads are impossible for gravity waves evolving within a
rectangular cylinder of finite depth. Our result generalises the special case of a 1:2
resonance, for which the impossibility of internal resonance in a rectangular cylinder was
demonstrated by Miles (1976).

To proceed, we consider a rectangular cylinder with side lengths Lx and Ly. By
orientating the Cartesian coordinate system, x = (x, y), so that the cylinder cross-section
is defined by the region 0 < x < Lx and 0 < y < Ly, the eigenmodes are of the form

Φmn(x, y) = 1
Nmn

cos( pmx) cos(qny), (3.17)

where Nmn > 0 is a normalisation constant. Notably, the wavenumbers pm = mπ/Lx and
qn = nπ/Ly are chosen so that the no-flux condition is satisfied (see (2.1d)). For a triad
determined by the non-negative integers mj and nj (for j = 1, 2, 3), the corresponding
wavenumbers, Pj = pmj and Qj = qnj , must satisfy P1 + P2 = P3 and Q1 + Q2 = Q3
(under suitable reordering of the subscripts) in order for the eigenmode correlation
condition (3.5) to be satisfied. By defining the wave vector kj = (Pj,Qj), the conditions on
Pj and Qj simplify to the single requirement k1 + k2 = k3, where the triangle inequality
supplies that |k3| ≤ |k1| + |k2|. As the eigenvalues, K2

j , of the negative Laplacian operator
are related to the wave vectors via Kj = |kj|, we deduce that K3 ≤ K1 + K2. Owing to the
violation of the left-hand bound in (3.6), we conclude that resonant triads cannot exist in
a rectangular cylinder of finite depth.

3.3.2. Circular cylinder
We consider a circular cylinder of unit radius in dimensionless variables (i.e. the
dimensional radius is equal to a; see § 2). For polar coordinates x = (r, θ), it is well known
that the corresponding (complex-valued) eigenmodes may be expressed in the form

Φmn(r, θ) = 1
Nmn

Jm(kmnr)eimθ , where Nmn = |Jm(kmn)|
√

1 − m2

k2
mn

(3.18)

is the normalisation factor and m is the azimuthal wavenumber (an integer). Furthermore,
the no-flux condition (2.1d) determines that the radial wavenumbers, denoted kmn, satisfy
J′

m(kmn) = 0, where 0 < km1 < km2 < · · · (we exclude k00 = 0 from consideration; see
§ 3). Notably, the eigenvalues of the negative Laplacian operator are precisely the squared
wavenumbers, k2

mn; consequently, the antinodes of each Bessel function play a pivotal role
in determining the existence of resonant triads.

Akin to the rectangular cylinder, we find that the eigenmode correlation condition
imparts an important restriction on the combination of eigenmodes that may resonate.
For given mj and nj (for j = 1, 2, 3), we denote Kj = kmjnj , Ψj = Φmjnj and Nj = Nmjnj .
Although the correlation condition given in (3.5) is defined for real eigenmodes, a
similar condition holds for complex-valued eigenmodes, namely

∫∫
D Ψ1Ψ2Ψ

∗
3 dA /= 0.
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By considering the quantity∫∫
D
Ψ1Ψ2Ψ

∗
3 dA = 1

N1N2N3

(∫ 1

0
rJm1(K1r)Jm2(K2r)Jm3(K3r) dr

)

×
(∫ 2π

0
exp(i(m1 + m2 − m3)θ) dθ

)
, (3.19)

we deduce from the azimuthal integral that a necessary condition for the correlation
integral to be non-zero is m1 + m2 = m3 (Michel 2019). This condition thus restricts the
permissible combinations of azimuthal wavenumbers in a manner similar to the restriction
on the permissible planar wavenumbers for the case of a rectangular cylinder. Unlike
rectangular cylinders, however, we demonstrate that resonant triads are possible in a
circular cylinder.

Despite the apparent restriction of the Bessel antinodes, Kj, and summation condition on
the azimuthal wavenumbers, mj, Theorem 1 determines that a vast array of resonant triads
may be excited for judicious choices of the fluid depth. In table 1, we list a small number
of resonant triads and each corresponding critical depth, hc, subject to the restrictions
|mj| ≤ 3 and nj ≤ 3; for larger values of |mj| and nj, the corresponding wave field becomes
increasingly oscillatory, to the extent that the effects of surface tension and dissipation
might become appreciable. Moreover, even marginally relaxing the upper bounds on |mj|
and nj vastly increases the number of resonant triads; indeed, the restriction |mj| ≤ 4 and
nj ≤ 4 introduces 70 additional resonant triads relative to table 1. As the upper bounds
for |mj| and nj are further increased, the typical difference between the various critical
depths decreases and an increasingly large number of triads form at small values of the
critical depth. Triads forming in shallow fluids (e.g. triads 21 to 25 in table 1) have physical
relevance only at larger length scales (e.g. lakes) as dissipation could become a dominant
factor at smaller scales.

Although the list of triads in table 1 is restricted to the lowest radial and azimuthal
modes, we observe some general trends. In particular, we observe that the correlation
integral,

∫∫
D Ψ1Ψ2Ψ

∗
3 dA, generally decreases in magnitude as the fluid depth increases.

Although the correlation integral remains non-zero (as is necessary to satisfy the
correlation condition), its small value in some cases (e.g. triad 10) potentially corresponds
to an elongation of the triad evolution time scale (see § 4.1). Moreover, we observe that the
average wavenumber involved in the triad, K̄ = 1

3(K1 + K2 + K3), is appreciably larger
when the critical depth is very small. This correlation is consistent with the form of the
corresponding angular frequency, Ωj = √

Kj tanh(Kjhc), for which a small critical depth,
hc, is necessary for finite-depth effects to be appreciable when the typical wavenumber
is large. To enumerate the myriad resonant triads arising in a circular cylinder when the
upper bounds on |mj| and nj are relaxed, we provide MATLAB code in the supplementary
material available at https://doi.org/10.1017/jfm.2023.441.

At this juncture, it is informative to assess how the triads listed in table 1 relate to the
resonances explored in prior investigations. First, triad 8 in table 1 (dark grey row) was
explored by Michel (2019) for a circular cylinder of radius 9.45 cm and an approximate
fluid depth of 3 cm; it follows that the depth-to-radius ratio in Michel’s experiment was
approximately 0.317, close to the value of 0.30197 reported in table 1. Furthermore,
table 1 (grey rows) incorporates two well-known examples of a 1:2 resonance, for which
modes 1 and 2 coincide: (i) the critical depth hc = 0.83138 (triad 2) corresponds to the
second-harmonic resonance with the fundamental mode (Miles 1976, 1984a; Bryant 1989;
Yang et al. 2021); (ii) the critical depth hc = 0.19814 (triad 14) corresponds to a standing
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No. m1 m2 m3 n1 n2 n3 K1 K2 K3 K̄ hc
∫∫

D Ψ1Ψ2Ψ
∗
3 dA

1 −1 1 0 1 1 2 1.841 1.841 7.016 3.566 1.00970 −0.02032
2 1 1 2 1 1 2 1.841 1.841 6.706 3.463 0.83138 0.02801
3 −1 2 1 1 1 3 1.841 3.054 8.536 4.477 0.60375 −0.02595
4 1 2 3 1 1 2 1.841 3.054 8.015 4.304 0.50595 0.03712
5 −1 3 2 1 1 3 1.841 4.201 9.969 5.337 0.48152 −0.02717
6 −2 2 0 1 1 3 3.054 3.054 10.173 5.427 0.39129 −0.03050
7 0 1 1 1 1 3 3.832 1.841 8.536 4.736 0.38516 0.00542
8 −1 1 0 1 2 3 1.841 5.331 10.173 5.782 0.30197 −0.00603
9 1 1 2 1 2 3 1.841 5.331 9.969 5.714 0.28691 0.01818
10 0 2 2 1 1 3 3.832 3.054 9.969 5.619 0.26387 −0.00087
11 1 2 3 1 2 3 1.841 6.706 11.346 6.631 0.23678 0.02590
12 0 3 3 1 1 3 3.832 4.201 11.346 6.460 0.21395 −0.00640
13 1 2 3 2 1 3 5.331 3.054 11.346 6.577 0.19839 0.01522
14 0 0 0 1 1 3 3.832 3.832 10.173 5.946 0.19814 0.03327
15 −1 2 1 1 1 2 1.841 3.054 5.331 3.409 0.17266 0.85581
16 −2 2 0 1 1 2 3.054 3.054 7.016 4.375 0.17030 0.46429
17 −1 3 2 1 1 2 1.841 4.201 6.706 4.250 0.16313 0.64211
18 −2 3 1 1 1 3 3.054 4.201 8.536 5.264 0.15767 0.30704
19 −1 1 0 1 1 1 1.841 1.841 3.832 2.505 0.15227 1.28795
20 −3 3 0 1 1 3 4.201 4.201 10.173 6.192 0.14591 0.19061
21 −2 2 0 1 2 3 3.054 6.706 10.173 6.645 0.06331 0.68257
22 −1 3 2 2 1 3 5.331 4.201 9.969 6.501 0.06286 0.66930
23 −1 2 1 2 1 3 5.331 3.054 8.536 5.641 0.04664 0.99088
24 −1 3 2 1 2 3 1.841 8.015 9.969 6.609 0.03928 1.08903
25 0 3 3 2 1 3 7.016 4.201 11.346 7.521 0.02782 1.00669

Table 1. Combinations of the azimuthal wavenumbers, mj, and radial mode indices, nj, that form a resonant
triad (m1 + m2 = m3 and Ω1 +Ω2 = Ω3) at critical depth, hc, in a circular cylinder of unit radius.
For each triad, the corresponding wavenumbers, Kj = kmjnj , satisfy (3.6), and the correlation condition,∫∫

D Ψ1Ψ2Ψ
∗
3 dA /= 0, is met. The list is restricted to resonant triads arising for |mj|, nj ≤ 3, and we consider

m1 ≤ m2 and m3 ≥ 0 without loss of generality. We have omitted resonances that give rise to the same critical
depth, but with the roles of modes 1 and 2 swapped. The triad numbers (left column) and shaded rows are
referenced in the text.

wave composed of two resonant axisymmetric modes (Mack 1962; Yang et al. 2021).
Finally, triads 1, 6, 16, 19 and 20 (table 1, light grey rows) form an interesting class of
resonant triad, for which an axisymmetric mode (m3 = 0) interacts with two identical
counter-propagating non-axisymmetric modes (m1 = −m2 /= 0 and n1 = n2). In fact, our
investigation in § 5.1 demonstrates that the axisymmetric mode is the so-called pump
mode, and may thus excite the non-axisymmetric modes, even when the initial energy
in each non-axisymmetric mode is negligible. We draw an analogy between this novel
class of resonant triad and the excitation of beach edge waves (Guza & Davis 1974) in § 6.

We conclude our exploration of resonant triads arising in a circular cylinder by
remarking that the fluid depth may, in some cases, be judiciously chosen so as to excite
multiple triads. In general, the condition on the angular frequencies, Ω1 +Ω2 = Ω3
(see (3.4)), cannot be satisfied for two distinct triads at the same fluid depth; however,
nonlinear resonance may persist for both triads provided that each condition on the angular
frequencies is approximately satisfied (Bretherton 1964; McGoldrick 1972; Craik 1986),
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at the cost of weak detuning (see § 4.3.1 for further details). Specifically, if triads 1 and 2
have critical depths hc,1 and hc,2, respectively, then there is potential excitement of both
triads when the fluid depth, h, satisfies |h − hc,j| = O(ε) for j = 1, 2 (where 0 < ε � 1 is
the typical wave slope; see § 2), giving rise to the approximation Ω1 +Ω2 −Ω3 = O(ε)
for each triad. For example, if 0 < hc,2 − hc,1 � 1, then it may be sufficient to excite
both triads at an intermediate depth, hc,1 ≤ h ≤ hc,2. We note, however, that the excitation
of multiple triads at a single fluid depth is not possible when the depth discrepancy,
|h − hc,j|, becomes too large (relative to the typical wave slope) for any of the triads under
consideration.

To demonstrate the potential for the simultaneous excitation of two triads within a
circular cylinder of finite depth, we consider two scenarios: (i) the excitation of two triads
that share a common wave mode; and (ii) the excitation of two triads that do not share
any common wave modes. Heuristically, case (ii) is more common than case (i) owing
to the number of similar fluid depths in table 1; however, case (i) will likely generate
a far richer set of dynamics owing to the nonlinear interaction between the two triads
(McEwan, Mander & Smith 1972; Craik 1986; Chow, Henderson & Segur 1996; Choi,
Chabane & Taklo 2021). As an example of case (i), we consider triads 11 and 12 in
table 1, with nearby critical depths hc,1 = 0.23678 and hc,2 = 0.21395, respectively. As
mode (m3, n3) = (3, 3) is common to both triads, inter-triad resonance may arise at an
intermediate depth, e.g. h = 0.225. Furthermore, an example of case (ii) arises for triads 13
and 14 in table 1, with nearby critical depths hc,1 = 0.19839 and hc,2 = 0.19814. Neither
of these triads share a common wave mode, so one would not expect the inter-triad energy
exchange discussed in case (i). Nevertheless, one might anticipate a signature of these two
triads to be visible in the surface evolution for an intermediate depth, e.g. h = 0.19825.
The theoretical and numerical exploration of coupled triads in a circular cylinder will be
the focus of future investigation.

3.3.3. Annular cylinder
A natural variation upon a circular cylinder is an annulus of inner radius r0 ∈ (0, 1) and
outer radius 1. By varying r0, the annulus approaches a circular cylinder as r0 → 0+, and a
quasi-one-dimensional periodic ring as r0 → 1−. Notably, resonant triads are impossible
for a one-dimensional periodic ring, as can be shown by modifying the arguments
presented for the case of a rectangular cylinder (see § 3.3.1). Thus, one might anticipate
that the existence of triads in an annular cylinder depends critically on the inner radius, r0.
Rather than enumerating some possible triads for given values of r0, we instead track the
corresponding critical depth, hc, for the triads identified for a circular cylinder (see table 1)
as r0 is progressively increased from zero. Of particular interest is determining whether a
given triad exists for all r0 < 1, or whether there is some critical inner radius, rc, beyond
which the triad ceases to exist, with either hc → 0 or hc → ∞ as r0 → r−

c .
The (complex-valued) eigenmodes in an annular domain are cylinder functions of the

form

Φmn(r, θ) = 1
Nmn

[Jm(kmnr) cos(γmnπ)+ Ym(kmnr) sin(γmnπ)]eimθ , (3.20)

where Nmn > 0 is a normalisation constant, Ym is the Bessel function of the second
kind with order m (an integer) and γmn ∈ [0, 1] determines the weighting between the
two Bessel functions. As shown in Appendix B, the no-flux condition (see (2.1d)) on the
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Figure 3. The existence and predominant characteristics of a triad in an annular cylinder with inner radius r0
and outer radius 1. The triad bifurcates from the critical depth hc = 0.17266 as r0 → 0 (the limiting case of a
circular cylinder), with corresponding wavenumbers presented in table 1 (see triad 15). (a) The critical depth,
hc (blue curve), with hc → ∞ as r0 → r−

c , where rc ≈ 0.57 (black line). (b) The corresponding wavenumbers,
Kj, all of which remain finite for r0 < rc (black line). (c) The normalised wavenumbers, K1/K3 and K2/K3,
parametrised by increasing r0 (blue arrow), with the limiting case r0 → 0 denoted by the white dot. The
wavenumbers leave the triad existence region (see Theorem 1) via the left-hand boundary (black curve) as
r0 → r−

c .

inner and outer walls determines that the wavenumbers, kmn(r0), satisfy the equation

J′
m(kmnr0)Y′

m(kmn)− J′
m(kmn)Y′

m(kmnr0) = 0. (3.21)

A formula for the corresponding value of γmn is determined in Appendix B. Once again,
the wavenumbers, kmn, are ordered so that 0 < km1 < km2 < · · · (excluding k00 = 0) and
satisfy −�Φmn = k2

mnΦmn. Three correlated wave modes may form a resonant triad (for
a judicious choice of the fluid depth) provided that the corresponding wavenumbers, Kj,
which depend on the channel width, 1 − r0, satisfy the bounds given in Theorem 1.

Bifurcating from the limiting case of a circular cylinder, we track the critical depth
(when such a depth exists) of different triads as r0 is progressively increased. The
predominant behaviour is characterised by the example presented in figure 3, for which
we consider the triad whose critical depth is hc = 0.17266 as r0 → 0+ (see triad 15 in
table 1). Given that hc is fairly small in this limit, one might anticipate that the triad ceases
to exist with hc → 0; somewhat surprisingly, however, the opposite scenario arises, with
hc → ∞ as r0 → r−

c (rc ≈ 0.57 in this example). It follows, therefore, that the triad may
persist for narrow channels only when the fluid is sufficiently deep. We note, however,
that there exist (at least) two relatively rare transitions for increasing r0, which we briefly
describe as follows: (i) the triad ceases to exist when hc → 0 as r0 → r−

c , which may arise
when bifurcating from a sufficiently shallow circular cylinder (e.g. triad 25 in table 1);
and (ii) the triad continues to exist for all r0 < 1, with hc → 0 and Kj → ∞ as r0 → 1,
yet the normalised depth, hcK3, remains finite, and the normalised wavenumbers, K1/K3
and K2/K3, remain within the triad existence region (e.g. triad 14 in table 1). Owing to the
appreciable influence of viscous effects for relatively shallow fluids, the physical relevance
of these latter two scenarios is somewhat nebulous, however.

4. The evolution of resonant triads

Having established the existence of resonant triads, we now determine the long-time
triad evolution, utilising the method of multiple scales. Ostensibly, the calculations
necessary for determining the triad equations are a variation upon the pioneering work of
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McGoldrick (1965, 1970a,b) in the absence of surface tension. However, the confinement
of the fluid to a cylinder imposes some additional considerations, the salient details of
which we outline below. Finally, we note that an alternative approach to multiple scales is
Whitham’s technique of averaging the system’s Lagrangian (Whitham 1965a,b, 1967a,b),
which has the advantage of streamlining some algebraic calculations (Simmons 1969;
Miles 1976, 1984a); nevertheless, multiple-scale analysis is sufficient for our purposes and
allows for the possible inclusion of higher-order corrections in the asymptotic expansion
(McGoldrick 1970b).

In a manner similar to § 3, we consider three linear wave modes (with real-valued
eigenfunctions), enumerated n1, n2 and n3, where we denote

Ωj = ωnj, Kj = knj, Lj = L̂nj, and Ψj(x) = Φnj(x) for j = 1, 2, 3. (4.1a–d)

In contrast to § 3, however, we now allow each (non-zero) angular frequency to be either
negative or positive: the resonance condition on the angular frequencies is henceforth
defined

Ω1 +Ω2 +Ω3 = 0. (4.2)

The modified requirement on the angular frequencies (4.2) is not restrictive on the possible
triad combinations; one may recover (3.4) by mapping Ω3 
→ −Ω3, for example. The
decision behind the summation condition on the angular frequencies is motivated by the
cyclical symmetry of (4.2), a property that will be inherited by the resultant amplitude
equations (Simmons 1969). As a consequence, one need only derive the amplitude
equation for one of the wave modes; the amplitude equations for the remaining two wave
modes follow by cyclic permutation of the subscripts (1, 2, 3).

Before embarking on the multiple-scale analysis presented in § 4.1, we remark upon two
caveats. First, we note that (4.2) corresponds to an exact resonance, for which the fluid
depth, h, is chosen to be precisely equal to the critical depth, hc. In practice, however,
there may be a small discrepancy between h and hc, resulting in a the sum of the angular
frequencies being slightly offset from zero. When the frequency detuning is sufficiently
weak, e.g. Ω1 +Ω2 +Ω3 = O(ε), one may modify the following asymptotic analysis to
derive a similar set of amplitude equations (see § 4.3.1). Second, our analysis in § 4.1 is not
valid when two of the wave modes coincide. This case corresponds to a 1:2 resonance, for
which the corresponding evolution equations were derived by Miles (1976) using Whitham
modulation theory (as summarised in § 4.3.2).

4.1. Multiple-scale analysis
In order to determine the evolution of each of the three dominant wave modes involved
in an exact resonance, we utilise the method of multiple scales (Kevorkian & Cole 1996;
Strogatz 2015). Specifically, we seek a perturbation solution to the Benney–Luke equation
(2.3) of the form u ∼ u0 + εu1 + O(ε2). The leading-order terms in (2.3) determine that
u0 satisfies ∂ttu0 + L u0 = 0; we choose to consider a leading-order solution comprised
only of the three triad modes (all other modes are assumed to be smaller in magnitude and
appear at higher order), giving rise to the leading-order form

u0(x, t, τ ) =
3∑

j=1

[Aj(τ )Ψj(x) exp(−iΩjt)+ c.c.]. (4.3)

In (4.3), we have introduced the slow time scale τ = εt, which governs the evolution of
each complex amplitude, Aj. As ε and t are both independent variables, we treat τ and t
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as independent time scales, giving rise to the transformation of derivatives ∂t 
→ ∂t + ε∂τ .
Finally, c.c. denotes the complex conjugate of the preceding term, a contribution necessary
for real u0.

So as to determine coupled evolution equations for each complex amplitude, Aj,
we consider terms of O(ε) in the Benney–Luke equation (2.3). By substituting the
leading-order solution, u0, into the nonlinear terms and applying the triad condition for
the angular frequencies (4.2), we obtain the following problem for u1:

∂ttu1 + L u1 = −
⎡
⎣ 3∑

j=1

fj(x, τ ) exp(−iΩjt)+ c.c.

⎤
⎦+ non-resonant terms. (4.4)

As we will see below, each of the functions fj(x, τ ) appearing on the right-hand side of
(4.4) will play a fundamental role when determining the amplitude equations; specifically,

f1 = −2iΩ1
dA1

dτ
Ψ1 + iA∗

2A∗
3([Ω2(L2

3 − K2
3)+Ω3(L2

2 − K2
2)− 2Ω1L2L3]Ψ2Ψ3

− 2Ω1∇Ψ2 · ∇Ψ3), (4.5)

where f2 and f3 follow upon cyclic permutation of the subscripts (1, 2, 3). Finally, we note
that the ‘non-resonant terms’ in (4.4) are of the general form p(x, τ )eiς t, where we assume
that the angular frequency, ς , is not equal (or close) to any of the angular frequencies,
±ωn, associated with linear wave modes (see § 3).

We proceed by projecting (4.4) onto each of the three wave modes, giving rise to
differential equations of the form (for j = 1, 2, 3)

∂ttû1,j + Ljû1,j = −[〈Ψj, fj〉 exp(−iΩjt)+ c.c.] + non-resonant terms, (4.6)

where û1,j = 〈Ψj, u1〉 is the projection of u1 onto the mode Ψj. By recalling that Lj = Ω2
j ,

we immediately see that the term in square brackets in (4.6) is itself a solution to the linear
operator ∂tt +Ω2

j . It follows that the solution of (4.6) comprises of particular solutions
that have temporal dependence t exp(±iΩjt), leading to an ill-posed asymptotic expansion
when εt = O(1). The resolution to this problem is achieved via the solubility condition
〈Ψj, fj〉 = 0, which suppresses the secular growth.

By applying the solubility condition 〈Ψj, fj〉 = 0 for j = 1, 2, 3, we conclude that the
complex amplitude, Aj(τ ), of each wave mode, Ψj(x) exp(−iΩjt), evolves according to the
triad system of canonical form (Bretherton 1964; Craik 1986)

dA1

dτ
= α1A∗

2A∗
3,

dA2

dτ
= α2A∗

1A∗
3,

dA3

dτ
= α3A∗

1A∗
2, (4.7a–c)

where

α1 = 1
2Ω1

([Ω2(L2
3 − K2

3)+Ω3(L2
2 − K2

2)− 2Ω1L2L3]C − 2Ω1〈Ψ1,∇Ψ2 · ∇Ψ3〉),
(4.8)

while α2 and α3 follow by cyclic coefficient of the subscripts (1, 2, 3). Furthermore, the
correlation integral, C , is defined

C = 1
S

∫∫
D
Ψ1Ψ2Ψ3 dA, (4.9)

where we recall that S is the area of the cylinder cross-section (see § 2.2). As the triad
equations (4.7a–c) are valid for τ = O(1) (or t = O(1/ε)), their dynamics yields an
informative view of the long-time evolution of the resonant triad.
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Resonant triads of gravity waves

In order to assess the influence of the triad coefficients on the triad evolution (see § 4.2),
we first simplify the algebraic form given in (4.8). As shown by Miles (1976), one may
simplify the inner product 〈Ψ1,∇Ψ2 · ∇Ψ3〉 by repeated application of the divergence
theorem and utilisation of the relationship −�Ψj = K2

j Ψj; it follows that

〈Ψ1,∇Ψ2 · ∇Ψ3〉 = 1
2(K

2
2 + K2

3 − K2
1)C , (4.10)

where C is the correlation integral defined in (4.9). We then substitute (4.10) into (4.8) and
simplify using the relationΩ1 +Ω2 +Ω3 = 0. After some algebra, we derive the reduced
expression

α1 = C

2Ω1

(
Ω2L2

3 +Ω3L2
2 − 2Ω1L2L3 +

3∑
l=1

ΩlK2
l

)
, (4.11)

where α2 and α3 follow similarly. Finally, we demonstrate in Appendix C that the algebraic
form of the triad coefficients may be further reduced to

αj = C β

2Ωj
for j = 1, 2, 3, (4.12)

where

β =
3∑

l=1

ΩlK2
l − 1

2
Ω1Ω2Ω3(Ω

2
1 +Ω2

2 +Ω2
3 ). (4.13)

Equations (4.7a–c), (4.9), (4.12) and (4.13) constitute the triad equations for resonant
gravity waves confined to a cylinder of finite depth. Although the triad equations are of
canonical form (Bretherton 1964), the novelty of our investigation is the computation of
the coefficients, αj, whose algebraic form is specific to our system.

4.2. Properties of the triad coefficients
The simplified form of the coefficients, αj (4.12), allows for some important theoretical
observations that were obfuscated by the more complicated expressions for αj given in
(4.8) and (4.11). In particular, as exactly two of the angular frequencies, Ωj, have the same
sign, we deduce from (4.12) that the two corresponding coefficients, αj, also have the
same sign, with the third coefficient having the opposite sign. By utilising well-known
results pertaining to the canonical triad equations, we conclude that all solutions to
the triad equations (4.7a–c) are periodic in time, with solutions expressible in terms of
elliptic functions (Ball 1964; Bretherton 1964; Simmons 1969; Craik 1986). Typically,
these solutions result in an exchange of energy between the comprising modes, although
there is a class of periodic solution that, perhaps counter-intuitively, results in zero
energy exchange for all time (Case & Chiu 1977; Chabane & Choi 2019). Moreover, it is
readily verified that the leading-order energy density, E1 + E2 + E3, is conserved, where
Ej = Ω2

j |Aj|2, consistent with the Hamiltonian structure of the Euler equations (Bretherton
1964; Craik 1986). The reader is directed to the work of Craik (1986) for a more detailed
account of the various properties of the canonical triad equations.

Of particular relevance to the evolution of the triad is the quantity β (see (4.13)),
which, together with C , determines the time scale over which energy exchange arises.
In particular, we present the form of β in figure 4 for the case Ω1,Ω2 > 0 and Ω3 < 0.
As we will demonstrate below, β < 0 in this case; in general, the sign of β is the same
as the sign of the largest (in magnitude) angular frequency, Ωj. Notably, |β| decreases
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Figure 4. Contours of β/K5/2
3 (see (4.13)) for the case Ω1,Ω2 > 0 and Ω3 < 0 (with Ω1 +Ω2 +Ω3 = 0),

for which β < 0 (see (4.16)).

sharply towards zero as K1 + K2 → K3, corresponding to the limit hc → 0. Similarly,
|β| approaches zero in the limiting cases K1 � K3 or K2 � K3, corresponding to one
low-oscillatory wave mode interacting with two highly oscillatory wave modes. Away
from these limiting cases, however, |β| depends only weakly on the wavenumbers, Kj,
suggesting that the correlation integral, C , predominantly controls the time scale of the
triad evolution. Finally, we observe that β is symmetric about the line K1 = K2, consistent
with the invariance of (4.13) under the mapping K1 ↔ K2 (and hence, Ω1 ↔ Ω2).

We conclude this section by proving that β < 0 in the caseΩ1,Ω2 > 0 andΩ3 < 0. By
comparing the forms of (4.13) and (4.11), and then permuting the subscripts (1, 2, 3) 
→
(3, 1, 2), we first note that β may be equivalently expressed as

β = Ω1L2
2 +Ω2L2

1 − 2Ω3L1L2 +
3∑

l=1

ΩlK2
l , (4.14)

or
β = Ω1(L2

2 + K2
1)+Ω2(L2

1 + K2
2)+ |Ω3|(2L1L2 − K2

3). (4.15)

By bounding Lj = Kj tanh(Kjhc) < Kj for 0 < hc < ∞ and utilising the relation Ω1 +
Ω2 = |Ω3|, we obtain

β < |Ω3|(K2
1 + K2

2 + 2K1K2 − K2
3) = |Ω3|((K1 + K2)

2 − K2
3). (4.16)

As resonant triads exist only when K1 + K2 < K3 (see Theorem 1), we conclude that
β < 0 in this case.

4.3. Summary
To summarise our theoretical developments, the velocity potential, u, at the fluid rest level
(z = 0) evolves according to

u(x, t) ∼
3∑

j=1

[Aj(τ )Ψj(x) exp(−iΩjt)+ c.c.] + O(ε), (4.17)
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Resonant triads of gravity waves

where the complex amplitudes, Aj(τ ), evolve over the slow time scale, τ = εt, according
to the triad equations (4.7a–c). In particular, the triad coefficients, αj (see (4.12)), are
defined in terms of the correlation integral, C (4.9), and the coefficient β (4.13). Notably,
we assume that C is non-zero; if this condition were violated then all three of the
triad coefficients, αj, would be equal to zero, giving rise to non-interacting wave modes
at leading order (contradicting the notion of a triad). Indeed, the condition C /= 0 is
identical to the correlation condition detailed in (3.5), the origins of which we have now
justified. Finally, the evolution of the free surface, η, may be recovered by recalling that
η = −ut + O(ε): we conclude that η(x, t) has a similar leading-order form to u(x, t), but
each complex amplitude, Aj(τ ), in (4.17) is replaced by iΩjAj(τ ) (see (5.3) below).

We briefly contrast our investigation of triad interaction with the early-time calculation
of Michel (2019), who characterised the initial linear growth of a child mode induced by
the nonlinear interaction of two parent modes (where all three modes comprise the triad).
If modes 1 and 2 are the parent modes and mode 3 is the child mode, then the initial linear
growth may be deduced directly from triad equations (4.7a–c) in the limit |A3| � |A1| ∼
|A2|. Specifically, the initial variation of A1 and A2 is slow relative to that of A3, which
has the approximate early-time form A3(τ ) ≈ α3C∗

1C∗
2τ + C3, where Cj = Aj(0). Notably,

the linear growth rate of the child mode depends on the corresponding triad coefficient,
α3, and the product of the initial amplitudes of the two parent modes. However, our result
for circular cylinders differs to that of Michel; we believe that the author neglected some
important nonlinear contributions (compare Michel’s equation (A2) with (2.4) and (2.4a)
of Longuet-Higgins 1962). As Michel’s experiment verified the scaling of the interaction
only up to a proportionality constant, this discrepancy was not captured.

4.3.1. The influence of weak detuning
As discussed earlier in § 4, the analysis in §§ 4.1 and 4.2 does not account for weak
detuning of the angular frequencies, as might arise when the fluid depth, h, differs slightly
from the critical depth, hc. We now briefly consider the case of weak detuning, for which
(4.2) is replaced by the condition Ω1 +Ω2 +Ω3 = εσ (see § 3.3.2); here, ε is the small
parameter representative of the typical wave slope (see § 2) and σ = O(1) determines the
extent of the detuning (Bretherton 1964; McGoldrick 1972). By following a very similar
multiple-scale procedure to the case σ = 0, we obtain amplitude equations that are now
augmented by a time-dependent modulation. Specifically, each complex amplitude now
evolves according to

dA1

dτ
= α1A∗

2A∗
3eiστ ,

dA2

dτ
= α2A∗

1A∗
3eiστ ,

dA3

dτ
= α3A∗

1A∗
2eiστ , (4.18a–c)

where each coefficient, αj, is defined in (4.12). Although detuning yields non-autonomous
amplitude equations, autonomous equations may be derived by mapping Aj(τ ) 
→
Aj(τ ) exp(iστ/3) for all j = 1, 2, 3 (Craik 1986). Finally, we note that the energy, E1 +
E2 + E3, is not exactly conserved when considering the effects of detuning; instead, the
energy slowly oscillates about a constant value (Craik 1986).

4.3.2. The case of a 1:2 resonance
A 1:2 resonance is a resonant triad for which two modes comprising the triad coincide.
For this case, we define two angular frequencies, Ω1 and Ω2, so that Ω2 = 2Ω1 (Miles
1976), where the connection to resonant triads is clear when writing Ω1 +Ω1 = Ω2.
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By following a very similar multiple-scale procedure to that outlined in § 4.1, we obtain

u(x, t) ∼
2∑

j=1

[Aj(τ )Ψj(x) exp(−iΩjt)+ c.c.] + O(ε), (4.19)

where
dA1

dτ
= −γA∗

1A2 and
dA2

dτ
= γ

4
A2

1. (4.20a,b)

In particular, the evolution of the amplitude equations (4.20a,b) depends on the coefficient
γ = C (K2

2 − K2
1 − 3Ω4

1 ), where C = (1/S)
∫∫

D Ψ
2
1 Ψ2 dA is the correlation integral.

Indeed, the amplitude equations (4.20a,b) and coefficient, γ , are consistent with the results
of Miles (1976) when expressing the evolution of each complex amplitude, Aj, in polar
form (with appropriate rescaling). Finally, we note that a weak detuning (see § 4.3.1) may
also be incorporated within the amplitude equations (4.20a,b), thereby accounting for a
slight mismatch between the fluid depth, h, and the corresponding critical depth, hc (Miles
1976).

Of particular interest is the evolution of weakly nonlinear waves steadily propagating
around a circular cylinder of unit radius, focusing on the case where the fluid
depth is precisely equal to the critical depth of a 1:2 resonance (Yang et al.
2021). For the complex-valued eigenmodes defined in (3.18), the correlation condition,∫∫

D Ψ
2
1 Ψ

∗
2 dA /= 0, determines that the angular wavenumbers satisfy m2 = 2m1 (Chossat

& Dias 1995; Yang et al. 2021). By expressing the complex wave amplitudes in polar form,
Aj(τ ) = aj(τ ) exp(iθj(τ )) (for j = 1, 2), (4.20a,b) may be recast as (Miles 1976)

da1

dτ
= −γ a1a2 cosΘ,

da2

dτ
= γ

4
a2

1 cosΘ,
dΘ
dτ

= 2γ a2

[
1 − a2

1

8a2
2

]
sinΘ,

(4.21a–c)

where Θ(τ) = θ2(τ )− 2θ1(τ ) is the time-dependent phase shift. Steadily propagating
waves correspond to time-independent solutions for a1, a2 (both non-zero) and Θ ,
from which we deduce that cosΘ = 0 and a1/a2 = 2

√
2. Indeed, it is remarkable

that the amplitude ratio of the two dominant (normalised) wave modes is independent
of the angular wavenumbers, mj, the radial wavenumbers, Kj, and the corresponding
angular frequencies, Ωj (see § 3.3.2 for details). Furthermore, one may readily determine
the relationship between the angular velocity of the steady wave rotation and the
corresponding wave amplitude, which may then be compared with the numerical solution
of the full Euler equations (Yang et al. 2021). This comparison, as well as a comparison
with steadily propagating waves computed from various truncations of the Euler equations,
will be the subject of future investigation.

5. The excitation of resonant triads

Having established the existence and evolution of resonant triads, we now focus on the
excitation of a particular triad via external forcing. So as to motivate the method of
excitation, we first recall (§ 5.1) the well-known result that one mode in the triad may, or
may not, excite the other two modes (Davis & Acrivos 1967; Hasselmann 1967; Simmons
1969); in the case of excitation, the initial mode is referred to as the pump mode (Craik
1986). We will then utilise the criterion of the pump mode to excite all three modes in the
triad via a pulsating pressure source (§ 5.2). Throughout this section, we continue with the
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convention that the triad angular frequencies satisfy Ω1 +Ω2 +Ω3 = 0, as set forth in
§ 4.

5.1. Excitation via the triad pump mode
To first identify the triad pump mode and then characterise the resultant excitation, we
consider the case for which A3, say, is much larger in magnitude than the other two mode
amplitudes, so |A1|, |A2| � |A3| (Davis & Acrivos 1967; Hasselmann 1967; Simmons
1969). By linearising the triad equations (4.7a–c), we obtain

dA1

dτ
= α1A∗

2A∗
3,

dA2

dτ
= α2A∗

1A∗
3,

dA3

dτ
= 0, (5.1a–c)

from which we immediately conclude that A3 is constant (whilst the linearisation
assumption holds); we denote A3(τ ) = C for some given complex number C. By
considering second derivatives of A1 and A2, we deduce the linearised evolution equations
(Craik 1986)

d2A1

dτ 2 = α1α2|C|2A1 and
d2A2

dτ 2 = α1α2|C|2A2, (5.2a,b)

where α1α2 = C 2β2/(4Ω1Ω2) (see (4.12)). We conclude that A1(τ ) and A2(τ ) grow
exponentially in time (whilst the linearisation approximation holds) whenΩ1Ω2 > 0, and
exhibit sinusoidal oscillations whenΩ1Ω2 < 0 (Davis & Acrivos 1967; Hasselmann 1967;
Craik 1986). Thus, mode 3 may excite modes 1 and 2 when Ω1 and Ω2 have the same
sign (and likewise for other mode permutations). As one angular frequency must have
a different sign from the other two (so as to satisfy Ω1 +Ω2 +Ω3 = 0), we conclude
that the mode whose angular frequency is largest in magnitude (i.e. differs in sign) is the
triad pump mode (Craik 1986). Equivalently, the pump mode is the mode with largest
wavenumber, Kj, providing a robust mechanism for an inverse energy cascade to lower
wavenumbers (Annenkov & Shrira 2006).

To visualise the influence of the pump mode on the resultant free-surface pattern, we
present the solution of the triad equations (4.7a–c) and the corresponding pump-mode
approximation (5.1a–c) in figure 5. By recalling that the free surface satisfies η = −ut +
O(ε), we first deduce that

η(x, t) ∼
3∑

j=1

[iΩjAj(τ )Ψj(x) exp(−iΩjt)+ c.c.] + O(ε). (5.3)

For the case of a circular cylinder, we utilise the complex-valued eigenmodes defined in
(3.18), corresponding to the superposition of steadily propagating waves for mj /= 0 (the
rotation direction depends on the sign of Ωj/mj). Upon initialising the system so that the
energy is primarily within the pump mode (mode 3), modes 1 and 2 are gradually excited
due to nonlinear interaction, with exponential growth evident for τ � 10. As time further
increases, the dynamics departs from the pump-mode approximation: the energy in the
pump mode appreciably decreases, whilst the energy in modes 1 and 2 saturates. The free
surface varies qualitatively during this evolution, with an appreciable change in pattern
structure visible by τ = 24 (primarily a superposition of modes 1 and 2). Notably, the
system evolution is periodic, which becomes apparent over longer time scales.
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Figure 5. Excitation of a triad via its pump mode for the case of a circular cylinder. We consider triad 11
in table 1, but with m3 
→ −m3. We choose Ω1,Ω2 > 0 and Ω3 < 0, so that mode 3 is the pump mode.
(a) Evolution of the free surface, η ∼ −ut, over the slow time scale, τ = εt, with ε = 10−3. (b) The evolution
of the wave amplitudes, |Aj|, according to the triad equations ((4.7a–c), solid curves) and the pump-mode
approximation ((5.1a–c), dashed-dotted curves). Insets: modes 1 (blue), 2 (red) and 3 (gold) at τ = 0; all three
modes rotate counter-clockwise. The simulations were initialised from A1(0) = 0.01 and A2(0) = 0.01i, where
A3(0) was chosen to be the positive real number satisfying E1 + E2 + E3 = 1, with Ej = Ω2

j |Aj|2 (see § 4.2).

5.2. Excitation via an applied pressure source
Based on the ideas of the previous section, we consider a methodology for exciting the
pump mode of a triad, which will subsequently excite the remaining two modes (provided
that the initial disturbance of each of the remaining modes is non-zero). Notably, several
methods for exciting internal resonances have been considered in prior investigations,
primarily focusing on imposed motion of the fluid vessel via horizontal (Miles 1976,
1984c) or vertical vibration (Miles 1976, 1984b; Miles & Henderson 1990; Henderson &
Miles 1991). Furthermore, one may, in principle, utilise sinusoidal paddles or plungers to
excite a particular triad’s pump mode for a given geometry (similar wave makers are used
in rectangular wave tanks McGoldrick 1970a; Henderson & Hammack 1987). However,
for large-scale fluid tanks, imposed motion of the vessel may be impractical (if the tank
were set in a concrete base, for example), and it may be challenging to determine the
correct paddle motion necessary to excite a chosen pump mode for geometrically complex
cylinders. We choose, therefore, to consider a slightly different approach: we instead excite
the pump mode via a pulsating pressure source located just above the free surface (e.g. an
air blower).

In order to incorporate a pressure source within our mathematical framework, we first
reformulate the dimensionless dynamic boundary condition (2.1b) as

φt + η + ε

2
(|∇φ|2 + φ2

z )+ εP(x, t) = 0 for x ∈ D, z = εη, (5.4)

where the dimensional pressure is ε2aρgP for fluid density ρ (P = 0 corresponds to
atmospheric pressure). The pressure source is chosen to be small in magnitude so that
the resultant wave excitation arises over the slow time scale, τ = εt, and may thus be
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saturated by weakly nonlinear effects. By modifying the developments outlined in § 2.1,
we derive the forced Benney–Luke equation

utt + L u + ε

(
ut(L

2 +Δ)u + ∂

∂t
[(L u)2 + |∇u|2] + ∂tP

)
= O(ε2) for x ∈ D,

(5.5)
which will be the starting point for the asymptotic analysis.

Before proceeding further, we first describe two forms of the pressure source relevant
to our investigation. For a stationary pressure source oscillating periodically over the
fast time scale, t, we express P(x, t) = f (τ )s(x) exp(−iΩpt)+ c.c., where s(x) is a fixed
spatial profile (generally spanning the cavity), f (τ ) accounts for a slow modulation in
the magnitude of the pressure, and Ωp is the pulsation angular frequency. We choose
Ωp to be close to the angular frequency of the pump mode, which, without loss of
generality, we assume to be mode 3 (i.e. Ω3 has the opposite sign from Ω1 and Ω2). We
denote, therefore,Ωp = Ω3 + εμ, whereμ = O(1) determines the extent of the frequency
mismatch. For a pressure source orbiting the centre of a circular cylinder at a constant
angular velocity, we instead posit that P has the form P(r, θ, t) = f (τ )s(r, θ −Ωpt), where
Ωp = (Ω3 + εμ)/m3 is the angular velocity of the pressure source (assuming that the
pump mode is non-axisymmetric, i.e. m3 /= 0).

For both standing and orbiting pressure sources, we now follow a similar multiple-scale
procedure to that outlined in § 4.1, starting from the forced Benney–Luke equation (5.5).
So as to discount the possibility that the pressure source excites more than one mode in the
triad, we assume that neither |Ω1| or |Ω2| are close to |Ω3|. Furthermore, we incorporate
a weak detuning in the triad angular frequencies, denoting Ω1 +Ω2 +Ω3 = εσ (see
§ 4.3.1). It follows that each complex amplitude, Aj(τ ), evolves according to

dA1

dτ
= α1A∗

2A∗
3eiστ ,

dA2

dτ
= α2A∗

1A∗
3eiστ ,

dA3

dτ
= α3A∗

1A∗
2eiστ −Ω3s3f (τ ) exp(−iμτ),

⎫⎪⎪⎬
⎪⎪⎭ (5.6a–c)

where the coefficients, αj, are defined in (4.12). Notably, the pump mode may only be
excited provided that the corresponding eigenmode is non-orthogonal to the pressure
source, corresponding to a non-zero projection, i.e. s3 /= 0, where s3 = 〈Ψ3, s〉. Similar
equations describing the evolution of forced resonant triads have been explored by
McEwan et al. (1972) (with the inclusion of linear damping) and Raupp & Silva Dias
(2009).

In the special case of time-independent forcing ( f constant) and no frequency detuning
(σ = μ = 0), the dynamics of the forced triad equations has been analysed by Harris,
Bustamante & Connaughton (2012), with both periodic and quasi-periodic dynamics
reported. We also consider this case, leaving the effects of detuning and variable forcing
for future investigation. In this setting, when |A1|, |A2| and |A3| are initially small relative
to the magnitude of the forcing, |Ω3s3f |, the initial growth in A3 is approximately linear
(see figure 6a). As mode 3 is the pump mode, the growth in A3 excites A1 and A2, thus
activating the triad. The conservation laws of the forced triad equations (Harris et al. 2012)
result in a temporary diminution of mode 3, which is later augmented by the external
forcing; whence the process repeats. In some parameter regimes, the resulting evolution
of the forced triad is periodic in time (see figure 6(b) and Raupp & Silva Dias 2009); in
contrast to the findings of Harris et al. (2012), however, we also identify initial conditions
(with all other parameters unchanged) that result in hitherto unidentified chaotic dynamics
(see figure 6c).
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Figure 6. Evolution of the forced triad equations (5.6a–c) for σ = μ = 0 and constant f . We consider the
same triad as figure 5, with s3f = 0.1. In all four panels, A1(0) = 0.02i and A2(0) = 0.01. For A3(0) = 0.01,
we observe (a) the initial excitation of the triad and (b) the resultant periodic dynamics (the initial growth is
highlighted within the grey box). (c) For A3(0) = 0.01i, the triad evolution appears chaotic. (d) The separation
distance, δ(τ ), of a trajectory randomly perturbed at time τpert, with δ(τpert) = 10−10 and the same initialisation
(at τ = 0) as (c). The black curves bound δ(τ ) for 30 equally spaced values of τpert in the interval 100 ≤ τpert ≤
115; the blue curve corresponds to τpert = 100.

To verify the chaotic nature of this latter example, we consider the separation distance
of two initially adjacent trajectories in phase space, for which we observe exponential
divergence in time (see figure 6d). This exponential divergence is indicative of a positive
maximal Lyapunov exponent (Strogatz 2015), which characterises the sensitivity to
initial conditions exhibited by chaotic systems. Specifically, for a solution, Aj(τ ), and its
perturbation, Aj,pert(τ ), we consider the evolution of the separation distance, defined as

δ(τ ) =

√√√√√ 3∑
j=1

|Aj(τ )− Aj,pert(τ )|2. (5.7)

To compute δ(τ ), we first simulate the forced triad equations (5.6a–c) on the interval
0 ≤ τ ≤ τpert, with Aj(0) = Aj,pert(0) and τpert chosen to be sufficiently large so as to
ensure that the chaotic attractor (should one exist) be approached. At τ = τpert, the
real and imaginary parts of Aj,pert are both randomly perturbed according to a uniform
distribution on the interval (−1, 1), with the resulting complex perturbation scaled so that
δ(τpert) = 10−10. We then evolve Aj(τ ) and Aj,pert(τ ) for τ ≥ τpert, giving rise to initial
exponential growth of δ(τ ), with saturation when the perturbation distance is comparable
to the ‘diameter’ of the chaotic attractor (see figure 6d).

To confirm that the exponential growth was not specific to a perturbation about a
particular point on the chaotic attractor (Strogatz 2015), we considered 30 equally spaced
values of τpert on the interval 100 ≤ τpert ≤ 115, roughly corresponding to the time taken
for one ‘loop’ of the chaotic attractor to take place (see figure 6c). Each simulation was
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computed with a fourth-order Runge–Kutta method and a time step of 0.005. For each
value of τpert, we observed similar exponential divergence of trajectories (see figure 6d);
moreover, the evolution of δ(t) during the growth phase remained unchanged when the
time step was decreased to 0.001, with numerical errors only accumulating over longer
time scales. Our results thus provide strong evidence that there is a positive maximal
Lyapunov exponent in this particular portion of parameter space, indicative of a chaotic
dynamics.

6. Discussion

We have performed a systematic investigation into nonlinear resonant triads of free-surface
gravity waves confined to a cylinder of finite depth; previously studied 1:2 resonances
are obtained as special cases. A key result of our study is Theorem 1, which determines
whether there exists a fluid depth at which three given wave modes resonate due to the
nonlinear evolution of the fluid. Equipped with this result, we determined the long-time
fluid evolution using multiple-scale analysis, from which we deduced that all solutions to
the triad equations are periodic in time. Finally, we determined that a given triad may be
excited via external forcing of the triad’s pump mode, thereby providing a mechanism
for exciting a given triad in a wave tank. All our results are derived for cylinders of
arbitrary cross-section (barring some technical assumptions; see § 2), thus forming a
broad framework for characterising nonlinear resonance of confined free-surface gravity
waves. In particular, our theoretical developments buttress experimental observations
(Michel 2019) and demonstrate the potential generality of confinement as a mechanism
for promoting nonlinear resonance.

A second fundamental component of our study is the influence of the cylinder
cross-section on the existence of resonant triads; for example, resonant triads are
impossible in rectangular cylinders, yet abundant within circular and annular cylinders (for
particular fluid depths). Of the vast array of resonances arising in a circular cylinder, triads
consisting of an axisymmetric pump mode and two identical counter-propagating waves
are of notable interest. This combination of axisymmetric and non-axisymmetric modes
possesses an interesting analogy to the excitation of counter-propagating subharmonic
beach edge waves due to a normally incident standing wave (Guza & Davis 1974).
Specifically, the wave crests of the standing axisymmetric mode are always parallel to
the bounding wall of the circular cylinder, and may excite steadily propagating waves that
are periodic in the azimuthal direction. For the special case for which the amplitudes of the
two counter-propagating modes coincide, one observes the resonant interaction of standing
axisymmetric and non-axisymmetric waves.

So as to gain a deeper insight into the influence of nonlinearity on resonant triads, a
primary focus for future investigations will be the simulation of the Euler equations within
a cylindrical domain, with consideration of various truncated systems (Craig & Sulem
1993; Milewski & Keller 1996; Berger & Milewski 2003; Wang & Milewski 2012). From
a computational perspective, the most natural geometry to consider is a circular cylinder
(Qadeer & Wilkening 2019); this geometry has been previously explored in the context of
steadily propagating nonlinear waves in the vicinity of a 1:2 resonance (Bryant 1989; Yang
et al. 2021), but it remains to assess the efficacy of the amplitude equations (4.7a–c) for
predicting the evolution of nonlinear triads. Indeed, exploration of the nonlinear dynamics
may reveal additional resonant triads arising beyond the small-wave-amplitude limit
explored herein. Of similar interest is the fluid evolution when multiple triads are excited at
a single depth, with the potential for energy exchange via triad–triad interactions (McEwan
et al. 1972; Craik 1986; Chow et al. 1996; Choi et al. 2021). The simulation of free-surface
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gravity waves in non-circular cylinders presents a more formidable challenge, however,
except for cylinder cross-sections that possess a tractable eigenmode decomposition.

A second natural avenue for future investigation is to characterise the influence of
applied forcing on resonant triads. For example, when the fluid bath is subjected to
sufficiently vigorous vertical vibration, Faraday waves (Faraday 1831; Kumar 1996) may
appear on the free surface; although this scenario has been studied in the case of a
1:2 internal resonance (Miles 1984b; Miles & Henderson 1990; Henderson & Miles
1991), resonant triads may give rise to the formation of more exotic free-surface patterns,
particularly at fluid depths that differ from that of a 1:2 resonance. In a similar vein,
horizontal vibration (Miles 1976, 1984c) or a pulsating pressure source at the frequency
of the triad’s pump mode may lead to a wealth of periodic and quasi-periodic dynamics,
as predicted by the forced triad equations (Harris et al. 2012). Our study has indicated,
however, that a chaotic dynamics is also possible in some parameter regimes, and might
thus be excited in numerical simulation or experiments. Lastly, our study has focused
on flat-bottomed cylinders; it seems plausible, however, that submerged topography may
enhance or mitigate certain resonances, which may be an important consideration in the
design of industrial-scale fluid tanks.

Finally, our study has focused on the special case of a liquid–air interface, for which the
dynamics of the air is neglected within the Euler equations. It is natural, however, to extend
our formulation to the case of two-layer flows (in the absence of surface tension), with two
immiscible fluids (e.g. air and water) confined within a cylinder whose lid and base are
both rigid. In this setting, the density difference across the fluid–fluid interface has a strong
influence of the system dynamics; it seems plausible, therefore, that additional resonances
may be excited in this configuration, relative to the liquid–air interface considered herein.
Notably, the anticipated resonances would arise across a single interface, in contrast to the
cross-interface resonances explored in previous investigations (Ball 1964; Simmons 1969;
Joyce 1974; Segur 1980; Taklo & Choi 2020; Choi et al. 2021). Finally, exploring the
influence of parametric forcing (Kumar & Tuckerman 1994) on resonant triads arising
for two-layer flows opens up exciting new vistas in nonlinear resonance induced by
confinement.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.441.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
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Appendix A. Proof of Theorem 1

Proof . To prove Theorem 1, we first show that there are no values of h ∈ (0,∞) satisfying
Ω1 +Ω2 = Ω3 when K1 + K2 ≥ K3 or when

√
K1 + √

K2 ≤ √
K3, where we recall that

Ωj(h) = √
Kj tanh(Kjh) and Kj > 0 for j = 1, 2, 3. We then prove that there exists a

solution to Ω1 +Ω2 = Ω3 when K1 + K2 < K3 < (
√

K1 + √
K2)

2, and that this solution
is unique.

In the case K1 + K2 ≥ K3, we first define χ(K; h) = √
K tanh(Kh). For fixed h > 0, we

observe that

χ(K3; h) ≤ χ(K1 + K2; h) < χ(K1; h)+ χ(K2; h), (A1)
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where we have utilised that χ(K; h) is a positive, monotonically increasing, concave
function of K > 0. We conclude thatΩ3 < Ω1 +Ω2 for any h > 0, so there are no values
of h for which Ω1 +Ω2 = Ω3.

In the case
√

K1 + √
K2 ≤ √

K3, we first note that the lower bound Kj > 0 (for j =
1, 2, 3) implies that K1 < K3 and K2 < K3. Furthermore, as tanh(x) is a monotonically
increasing function for x > 0, we conclude that tanh(Kjh) < tanh(K3h) for j = 1, 2 and
all h > 0. We now utilise this property to deduce that√

K1 tanh(K1h)+
√

K2 tanh(K2h) < (
√

K1 +
√

K2)
√

tanh(K3h) ≤
√

K3 tanh(K3h).
(A2)

We conclude that Ω3 > Ω1 +Ω2 for any h > 0, so there are no values of h for which
Ω1 +Ω2 = Ω3.

For the remainder of the proof, we consider the case

K1 + K2 < K3 and
√

K3 <
√

K1 +
√

K2, (A3a,b)

which is equivalent to the pair of inequalities given by (3.6). Indeed, we will show that
there exists a unique value of h > 0 satisfying Ω1 +Ω2 = Ω3 in this case. Equivalently,
we demonstrate that F(h) = (Ω1(h)+Ω2(h))/Ω3(h)− 1 has a unique positive root,
where we express

F(h) =
√
ψ1(h)+

√
ψ2(h)− 1, (A4)

with the positive functions ψ1 and ψ2 defined

ψj(h) = Kj tanh(Kjh)
K3 tanh(K3h)

for j = 1, 2. (A5)

In order to show the existence of a root of F(h), we first note that

lim
h→0

F(h) = K1 + K2

K3
− 1 < 0 and lim

h→∞
F(h) =

√
K1 + √

K2√
K3

− 1 > 0, (A6a,b)

where we have used the limits limx→0(tanh(x)/x) = 1 and limx→∞ tanh(x) = 1,
respectively, and implemented the inequalities given in (A3a,b). As F(h) is a continuous
function, the intermediate-value theorem determines that F(h) has at least one positive
root.

To prove that such a root is unique, we demonstrate that F(h) is a strictly monotonically
increasing function for h > 0. Specifically, we note that (for j = 1, 2)

dψj

dh
= 2K3ψj(h)

(
Kj

K3
cosech(2Kjh)− cosech(2K3h)

)
> 0 for 0 < Kj < K3, (A7)

where the inequality follows from the convexity of cosech(x) for x > 0, i.e. b cosech(bx) >
cosech(x) for 0 < b < 1 and all x > 0 (associating x = 2K3h and b = Kj/K3). As the
bounds K1 < K3 and K2 < K3 incorporate the region determined by (A3a,b), we deduce
that F(h) is strictly monotonically increasing. We conclude, therefore, that the root of F(h)
must be unique, thereby completing the proof. �

Appendix B. Wavenumbers in an annulus

The no-flux condition (2.1d) on the inner and outer radii of an annulus requires that
∂rΦmn(r0, θ) = 0 and ∂rΦmn(1, θ) = 0 for all θ , where Φmn(r, θ) is the cylinder function
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defined in (3.20). It follows, therefore, that the corresponding wavenumber, kmn, and
weighting factor, γmn, satisfy the equations

J′
m(kmnr0) cos(γmnπ)+ Y′

m(kmnr0) sin(γmnπ) = 0, (B1a)

J′
m(kmn) cos(γmnπ)+ Y′

m(kmn) sin(γmnπ) = 0. (B1b)

By rearranging (B1), we determine the following expressions for tan(γmnπ):

tan(γmnπ) = − J′
m(kmnr0)

Y′
m(kmnr0)

and tan(γmnπ) = − J′
m(kmn)

Y′
m(kmn)

. (B2a,b)

By eliminating tan(γmnπ) and rearranging, we find that kmn > 0 satisfies (3.21). Upon
computing kmn, one may then determine γmn ∈ [0, 1] using either of the equivalent
expressions for tan(γmnπ) given in (B2a,b).

Appendix C. Reduction of the triad coefficients

As motivated by the form of α1 given in (4.11), we demonstrate that

Ω2L2
3 +Ω3L2

2 − 2Ω1L2L3 = −1
2Ω1Ω2Ω3(Ω

2
1 +Ω2

2 +Ω2
3 ), (C1)

where we recall that Ω1 +Ω2 +Ω3 = 0 and Lj = Ω2
j . In fact, the equality given in (C1)

holds under cyclic permutation of the indices (1, 2, 3) (as is necessary when defining α2
and α3), where we note that the right-hand side is unchanged under such permutations. We
conclude that α2 and α3 may be simplified in a similar manner, with the right-hand side of
(C1) appearing as a constant term in all three coefficients (see § 4.2).

We now detail the algebraic manipulations necessary to transform the left-hand side of
(C1) into the right-hand side. By substituting Lj = Ω2

j into the left-hand side of (C1) and
factorising, we obtain

Ω2L2
3 +Ω3L2

2 − 2Ω1L2L3 = Ω4
2Ω3 +Ω2Ω

2
3 (Ω

2
3 − 2Ω1Ω2). (C2)

Next, we substitute

Ω2
3 = (Ω2

1 +Ω2
2 ) = Ω2

1 + 2Ω1Ω2 +Ω2
2 (C3)

into (C2), yielding

Ω2L2
3 +Ω3L2

2 − 2Ω1L2L3 = Ω2Ω3[Ω3
2 +Ω3(Ω

2
1 +Ω2

2 )]. (C4)

We proceed by substituting Ω3 = −(Ω1 +Ω2) within the square brackets in (C4); by
distributing and cancelling common terms, we obtain

Ω2L2
3 +Ω3L2

2 − 2Ω1L2L3 = −Ω1Ω2Ω3[Ω2
1 +Ω1Ω2 +Ω2

2 ]. (C5)

Finally, we rearrange (C3) to give

Ω1Ω2 = 1
2 (Ω

2
3 −Ω2

1 −Ω2
2 ), (C6)

which, upon substitution into (C5), supplies the required result (C1).
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