BBS Associateship

Qualified professionals in the biobehavioral sciences who have either (1) been nominated by a current BBS Associate, (2) refereed for BBS, or (3) had a commentary or article accepted for publication are eligible to become BBS Associates. Editors of learned journals and officers of learned societies in the biobehavioral sciences are invited to become BBS Associates *ex officio*. Detailed protocol cards indicating each Associate's specialization and interests are maintained by BBS to aid in commentator selection. Associates have a direct role in shaping BBS policy and are eligible to receive the journal at a special rate. Please write to the editor for further information. New BBS Associates, September 1984 to September 1985. See BBS 3:4 (1980), 4:4 (1981), 5:4 (1982), 6:4 (1983), and 7:4 (1984) for full earlier lists.

Aaron, P. G. (Educational Psychology) Indiana St. Univ. Able, K. P. (Biology) St. Univ. New York Ahlenius, S. (Pharmacology) Astra Läkemedel AB Ainslie, G. W. (Psychiatry) Jefferson Univ. Almeida, J.-M.G. Jr. (Biological Sciences) Univ. Brasilia Alper, J. S. (Chemistry) Univ. Massachusetts Ammons, R. B. (Psychology) Univ. Montana Anderson, J. D. (Communications) Rutgers Univ. Anglin, J. l. (Psychology) Univ. Waterloo Atkinson, J. H. (Psychiatry) Univ. Calif. Med. Sch. Baars, B. J. (Psychology) St. Univ. New York Ballard, D. (Computer Science) Univ. Rochester Bardis, P. D. (Sociology) Toledo Univ. Barlow, H. B. (Physiology) Univ. Cambridge Barnard, C. J. (Zoology) Univ. Nottingham Bechtereva, N. P. (Neurophysiology) Leningrad Inst. Exp. Med. Benbow, C. P. (Psychology) Johns Hopkins Univ. Berglin, C.-G. (Social Psychiatry) Univ. Gothenburg Bernstein, D. J. (Psychology) Univ. Nebraska Best, C. (Psychology) Wesleyan Univ. Boman, B. (Psychiatry) Repatriation General Hosp. Bovet, P. (Neurophysiology) C.N.R.S. Marseille Brand, C. R. (Psychology) Univ. Edinburgh Brenowitz, E. (Psychology) Univ. Calif. Brinker, R. P. (Developmental Disabilities) Univ. Illinois Bruce, D. (Psychology) Florida St. Univ. Bukovský, A. (Mother & Child Care Inst.) Prague Butler, S. F. (Psychology) Vanderbilt Univ. Cabanac, M. (Physiology) Univ. Claude Bernard Fac. Med. Cancro, R. (Psychiatry) New York Univ. Med. Ctr. Carlson, J. S. (Education) Univ. Calif. Castonguay, T. W. (Nutrition) Univ. Calif. Chase, M. (Physiology) Univ. Calif. Med. Sch. Cheng, K. (Biological Sciences) Univ. Sussex Clark, W. C. (Psychiatry) Columbia Univ. Cohen, A. (Psuchology) Univ. Oregon Cohen, N. J. (Psychology) Johns Hopkins Univ. Cole, J. R. (Sociology) Columbia Univ. Conley, J. J. (Psychology) Wesleyan Univ. Costeff, H. (Loewenstein Hosp.) Raanana, Israel Dahlbom, B. (Philosophy of Science) Umeå Univ. Dale, R.H.I. (Psychology) Southeastern Louisiana Univ. Daly, J. A. (Speech Communication) Univ. Texas Daniels, D. (Behavioral Genetics) Univ. Colorado Das, J. P. (Mental Retardation) Univ. Alberta Davison, M. C. (Psychology) Univ. Auckland

Deitz, S. (Education) Georgia St. Univ. DeJong, G. (Electrical Engineering) Univ. Illinois Donahoe, J. W. (Psychology) Univ. Massachusetts Drake, R. A. (Psychology) Univ. Colorado Dworkin, B. R. (Behavioral Science) Hershey Med. Ctr. Ehret, G. (Biology) Univ. Konstanz Engel, B. T. (Gerontology Res.) Baltimore, Md. Eschenburg, J. H. (Mathematics) Westfalische Wilhelms-Univ. Ewert, J.-P. (Neuroethology) Univ. Kassel Falk, D. (Anatomy) Univ. Puerto Rico Med. Sch. Fasold, R. W. (Linguistics) Georgetown Univ. Ferguson, M.W.J. (Dental Sciences) Univ. Manchester Finger, S. (Psychology) Washington Univ. Forster, K. I. (Psychology) Monash Univ. Foss, J. (Philosophy) Univ. Victoria Fouriezos, G. (Psychology) Univ. Ottawa Fox, B. H. (Behavioral Sciences) Boston Univ. Sch. Med. Galizio, M. (Psychology) Univ. North Carolina Gallup, G. G. Jr. (Psychology) St. Univ. New York Genest, M. (Psychology) Univ. Saskatchewan Getchell, T. V. (Anatomy) Wayne St. Univ. Sch. Med. Gilbert, M. (Philosophy) Univ. Connecticut Gillberg, C. (Psychiatry) Göteborg, Sweden Ginn, C. E. (Timberlawn Psychiatric Hosp.) Dallas, Texas Glezer, V. D. (Pavlov Inst.) Leningrad Glymour, C. (Philosophy) Univ. Pittsburgh Goldberg, G. (Moss Rehab. Hosp.) Philadelphia Gopnik, A. (Psychology) Univ. Toronto Gorczynski, R. M. (Ontario Cancer Inst.) Toronto Gordon, R. A. (Sociology) Johns Hopkins Univ. Grimshaw, A. D. (Sociology) Indiana Univ. Grobstein, P. (Anatomy) Univ. Chicago Gruzelier, J. (Psychiatry) Univ. London Gumá, E. (Amplicion Arroyo Arenas) Havana Gurfinkel, V. S. (U.S.S.R. Academy of Sciences) Moscow Halpern, B. P. (Psychology) Cornell Univ. Hamilton, C. R. (Biology) Calif. Inst. Tech. Hanson, J. (Psychology) Washington Univ. Harpending, H. (Anthropology) Univ. New Mexico Harré, R. (Linacre Coll.) Oxford Harzem, P. (Psychology) Auburn Univ. Hecht-Nielsen, R. (TRW) San Diego, Calif. Heelan, P. A. (Philosophy) St. Univ. New York Heijnen, C. J. (Immunology) Univ. Childrens Hosp., Utrecht Henderson, V. W. (Neurology) Univ. Calif. Med. Sch. Henry, J. P. (Psychiatry) Loma Linda Univ. Sch. Med. Henry, W. P. (Psychology) Vanderbilt Univ. Herman, J. J. (Psychology) Univ. Virginia Hirtle, S. C. (Psychology) St. Univ. New York Hocutt, M. (Philosophy) Univ. Alabama Horowitz, M. (Psychiatry) Univ. Calif. Med. Sch. Hunter, L. (Computer Science) Yale Univ. Ilardi, F. (Psychiatry) Tulane Univ. Iversen, S. D. (Neuroscience Res.) Merck Sharp & Dohme James, W. H. (Mammalian Dev.) MRC, London Jenkins, P. F. (Zoology) Univ. Auckland Johnson, C. (Child Development) Univ. Pittsburgh Johnstone, J. (New Hope Pain Ctr.) Pasadena, Calif. Jones, L. V. (Psychology) Univ. North Carolina Julià, P., Barcelona, Spain Kagan, J. (Psychology) Harvard Univ. Kasher, A. (Philosophy) Tel-Aviv Univ. Kelley, D. (Philosophy) Vassar Coll. Kenrick, D. T. (Psychology) Arizona St. Univ. King, A. P. (Psychology) Duke Univ. Klosterhalfen, W. (Medical Psychology) Univ. Düsseldorf Kornbrot, D. (Psychology) Hatfield Polytechnic

Kornetsky, C. (Psychiatry) Boston Univ. Med. Sch. Kostarczyk, E. (Neurophysiology) Nencki Inst., Warsaw Lacey, H. (Philosophy) Swarthmore Coll. Leahey, T. H. (Psychology) Virginia Commonwealth Univ. Leger, D. W. (Psychology) Univ. Nebraska Lickliter, R. (Psychology) Univ. North Carolina Loeser, J. D. (Neurological Surgery) Univ. Washington Mackenzie, B. (Psychology) Tasmania Univ. MacLean, P. D. (Brain Evolution) NIMH, Poolesville, Md. Markowitsch, H. J. (Psychology) Univ. Konstanz Matson, W. I. (Philosophy) Univ. Calif. Mattingly, I. G. (Haskins Lab.) New Haven, Conn. McGregor, P. K. (Zoology) Univ. Nottingham McManus, J. C. (Psychiatry) St. Mary's Hosp. Med. Sch. Merskey, H. (London Psychiatric Hosp.) Ont., Canada Messiha, F. S. (Pathology) Texas Tech. Univ. Med. Sch. Miles, T. R. (Psychology) North Wales Univ. Coll. Moran, G. (Psychology) Univ. Western Ontario Munhall, K. G. (Haskins Lab) New Haven, Conn. Mustillo, P. (Psychology) Concordia Univ. Nelson, R. (Engineering) Princeton Univ. Nettelbeck, T. (Psychology) Univ. Adelaide Nicholas, J. M. (Philosophy) Univ. Western Ontario Nichols, R. C. (Educational Psychology) St. Univ. New York Northcutt, R. G. (Biological Sciences) Univ. Michigan Oatley, K. (Experimental Psychology) Univ. Sussex Pepeu, G. (Pharmacology) Univ. Florence Perone, M. (Psychology) West Virginia Univ. Peterson, B. W. (Physiology) Northwestern Univ. Med. Sch. Place, U. T. (Philosophy) Univ. Leeds Plaut, S. M. (Psychiatry) Univ. Maryland Sch. Med. Poortinga, Y. H. (Psychology) Tilburg Univ. Popov, K. E. (Information Transmission Inst.) Moscow Presl, J. (Mother & Child Care Inst.) Prague Prohovnik, I. (Psychiatry) Columbia Univ. Rakover, S. S. (Psychology) Univ. Haifa Randall, D. C. (Physiology) Univ. Kentucky Med. Ctr. Rapoport, A., Univ. Toronto Reid, A. (Psychology) Duke Univ. Rein, I. G. (Social Sciences) Univ. Tromsoe Riley, A. L. (Psychopharmacology) American Univ. Ringen, J. D. (Philosophy) Indiana Univ. Roberts, S. (Psychology) Univ. Calif. Robertson, L. C. (Psychiatry) Univ. Calif. Med. Ctr. Rosenberg, R. N. (Neurology) Southwestern Med. Sch. Russell, R. J. H. (Psychology) Univ. London Rylander, M. K. (Biological Sciences) Texas St. Univ. Sakagami, T. (Psychology) Keio Univ. Salovey, P. (Psychology) Yale Univ. Scarr, S. (Psychology) Univ. Virginia

Scheerer, E. (Ed. Psychological Research) ex off. Schmajuk, N. A. (Psychology) Univ. Massachusetts Schmidt, R. A. (Kinesiology) Univ. Calif. Schull, J. I. (Psychology) Haverford Coll. Schustack, M. W. (Psychology) Harvard Univ. Searleman, A. (Psychology) St. Lawrence Univ. Shafer, G. (Business) Univ. Kansas Shapiro, D. (Psychiatry) Univ. Calif. Med. Sch. Shettleworth, S. J. (Psychology) Univ. Toronto Shields, W. M. (Environmental Biology) St. Univ. New York Siegel, S. (Psychology) McMaster Univ. Smalheiser, N. (Pediatrics) Univ. Chicago Smith, A. (Neuropsychology) Univ. Michigan Smith, E. E. (Bolt, Beranek & Newman) Cambridge, Mass. Smotherman, W. P. (Psychology) Oregon St. Univ. Snyderman, M. (Psychology) Harvard Univ. Sokolowski, M. B. (Biology) York Univ. Spitz, H. H. (Johnston Training Ctr.) Bordentown, N.J. Sprague, J. M. (Anatomy) Univ. Pennsylvania Sch. Med. Stalker, D. (Philosophy) Univ. Delaware Stearns, S. C. (Zoologisches Inst.) Univ. Basel Steele, T. E. (Psychiatry) South Carolina Med. Univ. Sterelny, K. (Philosophy) Australian Natl. Univ. Strupp, H. H. (Psychology) Vanderbilt Univ. Suedfeld, P. (Psychology) Univ. British Columbia Suzuki, S. (V.A. Med. Ctr.) Sepulveda, Calif. Swijtink, Z. G. (Philosophy) St. Univ. New York Thelen, E. (Psychology) Univ. Missouri Thom, R. (Inst. Hautes Etudes Sci.) Bures-sur-Yvette, France Turk, D. C. (Psychology) Yale Univ. Tyack, P. (Biology) Woods Hole Oceanographic Inst. Volpe, B. T. (Neurology) Cornell Univ. Med. Sch. Walk, R. D. (Psychology) George Washington Univ. Waser, P. (Biological Sciences) Purdue Univ. Watkins, M. (Southwest EdPsych Serv.) Phoenix, Ariz. Webb, W. B. (Psychology) Univ. Florida Weinberger, J., Kew Gardens, N.Y. Weiner, H. (Psychiatry) Univ. Calif. Wellman, H. (Psychology) Univ. Michigan West, M. J. (Psychology) Univ. North Carolina Whimbey, A., Daytona Beach Shores, Fla. Wilkie, D. M. (Psychology) Univ. British Columbia Willner, P. (Psychology) London Polytechnic Worringham, C. (Motor Behavior) Univ. Wisconsin Wright, C. B. (Philosophy) Univ. Exeter Zec, R. F. (Neuropsychiatry) St. Elizabeths Hosp., Washington Ziff, P. (Philosophy) Univ. North Carolina Zink, R. M. (Zoology) Louisiana St. Univ. Zola-morgan, S. (V.A. Med. Ctr.) San Diego Calif.

The Behavioral and Brain Sciences

An International Journal of Current Research and Theory with Open Peer Commentary

Editor Stevan Harnad

20 Nassau St., Suite 240 Princeton, NJ 08542

Assistant Editor Helaine Randerson

Behavioral Biology Jack P. Hailman/U. Wisconsin Hubert Markl/Universität Konstanz

Biosocial Behavior Glendon Schubert/U. Hawaii, Manoa

Cognition and Artificial Intelligence Zenon Pylyshyn/U. Western Ontario

Cognitive Development Annette Karmiloff-Smith/MRC, London and MPI, Nijmegen

Cognitive Neuroscience Lynn Nadel/U. California, Irvine

Developmental Psychology Charles J. Brainerd/University of Alberta

Evolutionary Biology Michael T. Ghiselin/California Academy of Sciences

Experimental Analysis of Behavior A. Charles Catania/U. Maryland, Baltimore County History and Systems Julian Jaynes/Princeton

Language and Cognition Peter Wason/University College, London

Language and Language Disorders Max Coltheart/U. London

Neurobiology

Neuropharmacology Susan D. Iversen/Mercke Sharp and Dohme, Ltd.

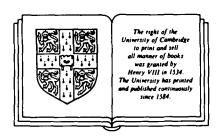
Neuropsychology Jeffrey A. Gray/Inst. Psychiatry, London

Neurophysiology Sten Grillner/Karolinska Institutet

Paleoneurology Stephen Jay Gould/Harvard

Philosophy Daniel C. Dennett/Tufts

Psychobiology Victor H. Denenberg/U. Connecticut David S. Olton/Johns Hopkins


Quantitative Methods Donald B. Rubin/U. Chicago

Vision and Artificial Intelligence Stuart Sutherland/U. Sussex

VOLUME 8, 1985

Cambridge University Press

CAMBRIDGE · LONDON · NEW YORK NEW ROCHELLE · MELBOURNE · SYDNEY

We would like to acknowledge the valuable contributions of the following copyeditors to the BBS editorial process:

Barbara Westergaard (1978–1985) Anne Hebenstreit (1980–1985) Avis Kniffin (1985) Anita O'Brien (1985)

The D.O. Hebb Memorial Fund has been created at McGill University to establish a memorial to Hebb's contributions to psychology and to endow a Chair in Psychology in his name. Contributions may be sent to the D.O. Hebb Memorial Fund, Department of Psychology, McGill University, 1205 Doctor Penfield Avenue, Montreal, Quebec H3A 1B1, Canada.

Published by the Press Syndicate of the University of Cambridge The Pitt Building, Trumpington Street, Cambridge CB2 1RP 32 East 57th Street, New York City 10022 10 Stamford Road, Oakleigh, Melbourne 3166

© Cambridge University Press 1985 Printed in the United States of America by Capital City Press, Montpelier, Vermont

Contents Volume 8:1 March 1985

Fodor, J. A. Précis of The modularity of mind

Open Peer Commentary

Caplan, D. A neo-Cartesian alternative	6
Carroll, J. B. On Spearman's "problem of correlation"	7
Fodor, J. D. Module or muddle?	7
Forster, K. I. Special purpose computation: All is not	
one	9
Gallistel, C. R. & Cheng, K. A modular sense of	
place?	11
Gardner, H. The centrality of modules	12
Glucksberg, S. Modularity: Contextual interactions	
and the tractability of nonmodular systems	14
Glymour, C. Fodor's holism	15
Gross, C. G. On Gall's reputation and some recent	
"new phrenology"	16
Grossberg, S. Cognitive self-organization and neural	
modularity	18
Hunt, E. Evidence for and against modularity	19
Jusczyk, P. W. & Cohen, A. What constitutes a	
module?	20
Kagan, J. The mind as a Necker Cube	21
Killeen, P. R. The modularity of behavior	22

Rachlin, H. Pain and behavior

Open Peer Commentary

Ainslie, G. Behavior is what can be reinforced	53
Atkinson, J. H., Jr. & Kremer, E. F. Behavioral	
definition of pain: Necessary but not sufficient	54
Bernstein, D. J. Internal events as behavior, not	
causes	55
Campbell, K. Pain is three-dimensional, inner, and	
occurrent	56
Clark, W. C. Heuristically, "pain" is mainly in the	١
brain	57
Fordyce, W. E. On Rachlin's "Pain and Behavior": A	
lightening of the burden	58
Foss, J. Radical behaviorism is a dead end	59
Genest, M. On kicking the behaviorist; or, Pain is	
distressing	59
Graham, G. Pain's composite wheel of woe	60
Harman, G. Is pain overt behavior?	61
Jaynes, J. Sensory pain and conscious pain	61
Kitcher, P. Chronic sensory pain	63
Lacey, H. Pain behavior: How to define the	
operant	64
Loeser, J. D. Against dichotomizing pain	65

Kinsbourne, M. Parallel processing explains modular	
informational encapsulation	23
Marshall, J. C. Combe's crucible and the music of the	
modules	23
Mattingly, I. G. & Liberman, A. M. Verticality	
unparalleled	24
Morton, J. Too little and latent	26
Rey, G. Quinity, isotropy, and Wagnerian rapture	27
Robinson, D. N. Faculties, modules, and computers	28
Scarr, S. A rapprochement of biology, psychology.	
and philosophy	29
Schank, R. & Hunter, L. Encapsulation and	
expectation	29
Schwartz, B. Organic insight into mental organs	- 30
Seidenberg, M. S. Lexicon as module	- 31
Sternberg, R. J. Controlled versus automatic	
processing	32
Author's Response	

Fodor, Jerry A	Reply module
----------------	--------------

Logue, A. W. Functional behaviorism: Where the	
pain is does not matter	66
Matson, W. I. One pain is enough	67
Melzack, R. Pain and parallel processing	67
Merskey, H. A mentalistic view of "Pain and	
Behavior''	-68
Miles, T. R. Behavior, cognition, and physiology:	
Three horses or two?	68
Pepeu, G. Is there always a neurochemical link	
between pain and behavior?	69
Place, U. T. Semicovert behavior and the concept of	
pain	70
Shaver, K. G. & Herrman, J. J. Pain without	
behavior: Inhibition of reactions to sensation	71
Shimp, C. P. Molar behaviorism, positivism, and pain Turk, C. D. & Salovey, P. The reign of pain falls	71
mainly in the brain	72
Wall, P. D. Not "pain and behavior" but pain in	
behavior	73
Author's Response	
Rachlin, H. Ghostbusting	73

Baker, M. C. & Cunningham, M. A. The biology of bird-song dialects

Open Peer Commentary

Open Peer Commentary		Fasold, R. W. Bird-song dialects and human-language	
Andrew, R. J. Questions about the evolution of bird		dialects: A common basis?	104
song	100	Gottlieb, G. The need to map auditory perception	
Baptista, L. F. Bird-song dialects: Social adaptation or		onto vocal production in bird song	104
assortative mating?	100	Greenwood, P. J. Adaptation and the cause and effect	
Brenowitz, E. A. Bird-song dialects: Filling the gaps	101	of bird-song dialects	105
Chambers, J. K. Social adaptiveness in human and		Grimshaw, A. D. Human and avian "dialects": A	
songhird dialects	102	cautionary note	106

107	Petrinovich, L. An unbalanced survey of bird-song research: Smoke gets in your eyes	113
108	adaptation and deceptive mimicry?	114
	Slater, P. J. B. White rats and general theories	115
108	Snowdon, C. T. Dialects in primates?	116
109	Waser, P. M. Are dialects epiphenomena?	117
	West, M. J. & King, A. P. Studying dialects in	
110	songbirds: Finding the common ground	117
	Zink, R. M. Genetical population structure and song	
110	dialects in birds	118
111	Authors' Response	
112	Baker, M. C. & Cunningham, M. A. Comparative dialectology	119
	108 108 109 110 110 111	 107 research: Smoke gets in your eyes Shields, W. M. Avian song dialects: Genetic adaptation and deceptive mimicry? Slater, P. J. B. White rats and general theories 108 Snowdon, C. T. Dialects in primates? 109 Waser, P. M. Are dialects epiphenomena? West, M. J. & King, A. P. Studying dialects in songbirds: Finding the common ground Zink, R. M. Genetical population structure and song dialects in birds 111 Authors' Response Baker, M. C. & Cunningham, M. A. Comparative

Nashner, L. M. & McCollum, G. The organization of human postural movements: A formal basis and experimental synthesis

Open Peer Commentary

······································	
Boylls, C. C., Jr. Postural control analysis: Adopting a	
stance	150
Carello, C., Turvey, M. T., & Kugler, P. N. The	
informational support for upright stance	151
Chapple, W. D. Position space and motor synergies:	
A comparative perspective	152
Delcomyn, F. The control of sets of muscles: A	
general principle?	153
Goldberg, G. & Kwan, H. C. Bernsteinian physiology	
and computational modeling: East meets West at	
the "boundary"	153
Greene, P. H. Task analysis of a style of behavior	155
Grossberg, S. The role of learning in sensory-motor	
control	155
Gurfinkel, V. S. & Popov, K. E. Constraints and	
some capabilities of the postural control system	157
Hollerbach, J. M. Dynamics in posture	157
Jaeger, R. Standing posture: Qualitative versus	
quantitative perspectives	158
Kearney, R. E. & Hunter, I. W. Should dynamic and	
passive properties be considered in analyses of	
human postural control?	158

Kuipers, B. Is this a theory of competence or 159 performance? Peterson, B. W. Suggestions for extending the domain of the Nashner-McCollum theory 160 Roberts, T. D. M. Torque and sway 160 Saltzman, E. & Kelso, J. A. S. Synergies: Stabilities, instabilities, and modes 161 Schmidt, R. A. Identifying units of motor behavior 163 Stelmach, G. E. & Worringham. C. Anatomical asymmetry and boundary crossings in postural control 164 Thelen, E. Simplifying assumptions: Can development help? 165 Thom, R. Less cybernetics, more geometry . . . 166Zajac, F. E. Postural control: A further look at neural control strategies set by boundaries in space 167

135

Authors' Response

Nashner, L. M. & McCollum, G. Elements of a	
sensorimotor theory compatible with experiments	167

Continuing Commentary

BBS 5:39–87.			
Ahlenius, S. A functional consideration of anatomical connections between the basal ganglia and the		schizophrenic's head they may simply reduce motivational arousal	176
thalamus suggests that antipsychotic drugs inhibit		Kostarczyk, E. The role of arousal in hedonic	
the initiation of movement	173	evaluations	177
Crow, T. J. The anhedonia hypothesis for neuroleptics		Schallert, T. Brain stimulation and catecholaminergic	
and operant behaviour	174	drugs: A focus on self-selected response durations	
Fouriezos, G. Sedation-induced jumping?	174	versus interresponse intervals	178
Greenshaw, A. J. Dopamine and circling, or décalage?	175	·	
Kornetsky, C. Neuroleptic drugs may attenuate		Author's Response	
pleasure in the operant chamber, but in the		Wise, R. A. The anhedonia hypothesis: Mark III	178
On Smith, P. K. (1982) Does play matter? and human play. BBS 5:139-184.	Func	tional and evolutionary aspects of animal	
Moran, G. Behavioral description and its impact on		Author's Response	
functional inference	186	Smith, P. K. Functional hypotheses and their impact on behavioral description	187

On Wise, R. A. (1982) Neuroleptics and operant behavior: The anhedonia hypothesis.

On Haber, R. N. The impending demise of the icon: A critique of the concept of iconic storage in visual information processing. BBS 6:1–54.

Mustillo, P. Iconic memory: Problems of definition, assessment, and functional role 189

Author's Response

Haber, R. N. The icon as persistence of a brief stimulus—unnecessary and silly

Contents Volume 8:2 July 1985

Jensen, A. R. The nature of the black-white difference on various psychometric tests: Spearman's hypothesis

Open Peer Commentary

Bardis, P. D. Jensen, Spearman's g, and Ghazali's	
dates: A commentary on interracial peace	219
Baron, J. Reliability and g	220
Borkowski, J. G. & Maxwell, S. E. Looking for Mr.	
Good-g: General intelligence and processing speed	221
Brand, C. Jensen's compromise with componentialism	222
Callaway, E. Event-related potentials and the biology	
of human information processing	223
Carlson, J. S. The issue of g: Some relevant questions	224
Carr, T. H. & McDonald, J. L. Different approaches	
to individual differences	225
Cattell, R. B. Intelligence and g: An imaginative	
treatment of unimaginative data	227
Das, J. P. Interpretations for a class on minority	
assessment	228
Eysenck, H. J. The nature of cognitive differences	
between blacks and whites	229
Gordon, R. A. The black-white factor is g	229
Gustafsson, JE. Measuring and interpreting g	231
Johnson, R. C. & Nagoshi, C. T. Do we know enough	
about g to be able to speak of black-white	
differences?	232
Jones, L. V. Golly g: Interpreting Spearman's general	
factor	233
Kline, P. The nature of psychometric g	234
Macphail, E. M. Comparative studies of animal	
intelligence: Is Spearman's g really Hull's D?	234

Nettelbeck, T. What reaction times time	235
Nichols, R. C. Intelligence and its biological substrate	236
Poortinga, Y. H. Empirical evidence of bias in choice	
reaction time experiments	236
Posner, M. I. Chronometric measures of g	237
Rabbitt, P. M. A. Oh g Dr. Jensen! or, g-ing up	
cognitive psychology?	238
Rushton, J. P. Differential K theory and group	
differences in g	239
Schafer, E. W. P. Neural adaptability: A biological	
determinant of g factor intelligence	240
Schönemann, P. H. On artificial intelligence	241
Stanovich, K. E. The black-white differences are real:	
Where do we go from here?	242
Sternberg, R. J. The black-white differences and	
Spearman's g: Old wine in new bottles that still	
doesn't taste good	244
Vernon, P. E. Interpretation of black-white	
differences in g	244
Whimbey, A. Focusing on trainable g	245
Wilson, J. R. Jensen's support for Spearman's	
hypothesis is support for a circular argument	246

Author's Response

Jensen, A. R. The black–white difference in g: A	
phenomenon in search of a theory	246

Kosslyn, S. M., Mainwaring, S. D. & Corcoran,

Feldman, J. A. Four frames suffice: A provisional model of vision and space

Open Peer Commentary

stable feature frame 289 Kuipers, B. The cognitive map overlaps the	
Browse, R. A. & Butler, B. E. Could three frames suffice? 290 environmental frame, the situation, and the r world formulary	298
Dodwell, P. C. Theories of perception as experimental epistemology 291 Oatley, K. Reliable computation in parallel net Richmond, B. J. & Goldberg, M. E. On compu	uter
Glassman, R. B. Linking features in dimension of mind and brain 293 science, visual science, and the physiological of models	300
Grossberg, S. Four frames do not suffice 294 Zucker, S. W. Does connectionism suffice? Haber, R. N. Three frames suffice: Drop the	301
retinotopic frame 295 Author's Response	
Hinton, G. E. Three frames suffice 296 Feldman, Jerome A. Tunnel vision will not suff	fice 302

	ack–w vypoth	vhite difference on variou nesis
		Nettelbeck, T. What reaction times
s		Nichols, R. C. Intelligence and its
	219	Poortinga, Y. H. Empirical evidence
	220	reaction time experiments
4		Posner M I Chronometric measu

https://doi.org/10.1017/S0140525X00044897 Published online by Cambridge University Press

190

193

Fantino, E. & Abarca, N. Choice, optimal foraging, and the delayreduction hypothesis

Open Peer Commentary		Branch, M. N. Preference for a hypothesis: Is the case "closed"?	332
Barnard, C. J. Skinner box ecology: Rules to forage by	330	Brown, B. L. Pavlovian factors in choice behavior	385
Bovet, P. The adaptive fitness of randomness in choice		Caraco, T. Encounter processes, prey densities, and	
and foraging behavior	331	efficient diets	333
Castonguay, T. W. Studies of food choice: The		Lea, S. E. G. Optimality: Sequences, variability,	
nutritional challenge	334	learning	343
Davison, M. Foraging for a science of behavior	335	McNair, J. N. Optimal foraging for operant	
Dinsmoor, J. A. The integrative power of the CS-US		conditioners	343
interval in other contexts	336	Mellgren, R. L. Outcome and mechanism in foraging	344
Gass, C. L. Reaching for an integrated science of		Peden, B. F. Foraging and feeding in operant	
behavior	337	simulations	345
Green, R. F. An interdisciplinary approach to foraging		Rowland, N. Of rats and men	346
behavior	338	Sato, M. & Sakagami, T. Is simulated foraging similar	
Hanson, J. On the nature of support for optimal		to natural foraging?	346
foraging theory	338	Shettleworth, S. J. Questions about foraging	347
Houston, A. I. Choice and preference—you can't		Snyderman, M. Levels of explanation	348
always want what you get	339	Sokolowski, M. B. Genetic aspects to differences in	
Kacelnik, A. & Krebs, J. R. Rate of reinforcement		foraging behavior	348
matters in optimal foraging theory	340	Wilkie, D. M. The validation problem	349
Killeen, P. R. Delay reduction: A field guide for			
optimal foragers?	341	Authors' Response	
Kruse, J. M. Alternative approaches to the psychology		Fantino, E. & Abarca, N. The delay-reduction	
of foraging	342	hypothesis: A choice solution	350

315

Continuing Commentary

On Bradshaw J. L.	& Nettleton,	N. C.	The nat	ure of l	hemisphe	ric special	ization ii	n man.
BBS 4: 51–91.					_	_		

Coltheart, M. Right-homisphere reading revisited	363	Author's Response	
Zaidel, E. & Schweiger, A. Right-hemisphere reading: A case of "déjà lu"	365	Bradshaw, J. L. Reading and the right hemisphere	367

On Anisman, H. & Zacharko, R. M. Depression: The predisposing influence of stress. BBS 5:89-137.

Algarabel, S. Learned helplessness, human		Lloyd, C. & Swann, A. Depression and adaptation to	
depression, and perhaps endorphins?	369	stress: Toward a systems model	371
Baenninger, R. Neurochemistry and psychological		Post, R. M. Stress sensitization, kindling, and	
"diseases"	369	conditioning	372
Friedhoff, A. J. & Platt, J. E. Stress and depression:		Steele, T. E. Stress and depression: Anything new?	373
Definitional problems	370		
Izard, C. E. The role of emotions in a systems view of		Authors' Response	
depression	371	Anisman, H. & Zacharko, R. M. More stress	374

Contents Volume 8:3 September 1985

Ader, R. & Cohen, N. CNS-immune system interactions: Conditioning phenomena

Open Peer Commentary

open i cer commentary	
Anisman, H. & Zacharko, R. M. Brain and the	
immune system: Multiple sites of interaction	395
Ballieux, R. E. & Heijnen, C. J. The seven veils of	
immune conditioning	396
Cunningham, A. J. Conditional immunosuppression:	
An important but probably nonspecific phenomenon	397
Dworkin, B. More evidence for the role of learning in	
homeostasis	397
Elkins, R. L. Taste aversion proneness: A selective	
breeding strategy for studies of immune system	
conditionability	398
Engel, B. T. Immune behavior	399
Fox, B. H. Disease is a stepchild in	
psychoneuroimmunology	400
Friedman, S. B. CNS-immune system interaction: A	
psychosomatic model	400
Glaser, R. & Kiecolt-Glaser, J. K. "Relatively mild	
stress" depresses cellular immunity in healthy adults	401
Green, L. Pavlovian conditioned responses: Some	
elusive results and an indeterminate explanation	402
Hinson, R. E. Conditioned immunosuppression and	
the adaptive function of Pavlovian conditioning	403
Kimmel , H . D . Conditioning of immunosuppression in	
the treatment of transplant tissue rejection	404
Klosterhalfen, W. & Klosterhalfen, S. On	
demonstrating that conditioned immunomodulation	
is conditioned	404

and drawn for the modification of physical	
evidence for the modification of physiological	05
	00
Melnechuk, T. Progress toward a general theory of	00
	06
Revusky, S. Questions about conditioned	~=
minutes differences and see 9.1	07
	07
Rosenberg, L. T. The condition of immunology 4	08
Roszman, T. Behavioral conditioning of	
immunomodulation 4	08
Siegel, S. & Scoles, M. T. Psychoneuroimmunology,	
	09
Smotherman, W. P. Pituitary-adrenal system	
involvement in conditioned immune changes:	
	10
Solomon, G. F. The emerging field of	• •
	11
Veldhuis, H. D. & Wied, D. D. Is conditioned	•••
	11
Weiss, J. M. Conditioned immune responses: How	11
are they mediated and how are they related to other	1.2
classically conditioned responses? 4	12
Authors' Response	
Ader, R. & Cohen, N. The brain and the immune	
system: Conditioned responses to commentator	

379

413

427

Gualtieri, T. & Hicks, R. E. An immunoreactive theory of selective male affliction

stimuli

Open Peer Commentary

open i con continentary	
Adinolfi, M. Immunoselection and male diseases	441
Beatty, W. W., Beatty, P. A., & Goodkin, D. E.	
Testing the immunoreactive theory	442
Benbow, C. P. Intellectually gifted students also suffer	
from immune disorders	442
Berglin, CG. Male antigenicity and parity	442
Bixler, R. H. The sex ratio at conception: Male biased	
or 100?	443
Boklage, C. E. Undisturbed middle term in the logic	
of Gualtieri & Hick's immunoreactive model	444
Bukovský, A. & Presl, J. Possible involvement of	
maternal alloreactivity in negative parity effects	445
Costeff, H. Is the H-Y antigen a malefactor?	446
Diamond, M. C. A possible role of sex steroid	
hormones in determining immune deficiency	
differences between the sexes	447
Ferguson, M. W. J. Short and sweet: The classic male	
life?	448
Gillberg, C. The immunoreactive theory: One for all?	449
Gorczynski, R. M. Does maternal-fetal	
incompatibility lead to neurodevelopmental	
impairment?	450
Hoyenga, K. B. Some implications of the	
immunoreactive theory for evolution and sex ratios	451
James, W. H. The alleged antecedent brother effect	
in sex ratio	453

Jensen, A. J. Immunoreactive theory and the genetics	
of mental ability	453
Loke, Y. W. A reproductive immunologist's view on	
the role of H-Y antigen in neurological disorders	454
Mackey, W. C. Selective immunoreaction as an	
adaptive trait	455
Money, J. Eve first, then Adam	456
Ohno, S. Male-specific antigens and HLA phenotypes	456
Ounsted, C. The Y chromosome message	457
Petersen, A. C. & Hood, K. E. Immunoreactive	
theory: A conceptually narrow theory reflecting	
androcentric bias	457
Searleman, A. Immunoreactive theory and	
pathological left-handedness	458
Taylor, D. C. Development rate is the major	
differentiator between the sexes	459
Taylor, E. & Rutter, M. Sex differences in	
neurodevelopmental and psychiatric disorders: One	
explanation or many?	460
Taylor, P. V. Possible pathogenic effects of maternal	
anti-RO (SS-A) autoantibody on the male fetus	460
• • •	

Authors' Response

Gualtieri, T. & Hicks, R. E. The immunore	active
theory: What it is, what it is not, what it n	night be 461

Rawlins, J. N. P. Associations across time: The hippocampus as a temporary memory store

 Open Peer Commentary Branch, M. N. Another hippocampal theory Cohen, N. J. & Shapiro, M. Minding the general memory store: Further consideration of the role of the hippocampus in memory Dale, R. H. I. The hippocampus as episodic encoder: Does it play tag? Deadwyler, S. A. A physiological basis for hippocampal involvement in coding temporally discontiguous events Gray, J. A. Memory buffer and comparator can share the same circuitry Hughey, D. J. Temporal discontiguity: Alternative to, 	497 498 499 500 501	 Markowitsch, H. J. Memory processing by the brain: Subregionalization, species-dependency, and network character McNaughton, B. L. & Barnes, C. A. The hippocampus, synaptic enhancement, and intermediate-term memory McNaughton, N. Is the hippocampus a store, intermediate or otherwise? Meck, W. H. Hippocampus and "general" mnemonic function: Only time will tell Olton, D. S. Discontiguity and memory Shimp, C. P. The development of theory: Logic of method or underlying processes? 	506 507 508 509 510 511
or component of, existing theories of hippocampal function? James, D. T. D. Does our behavioral methodology conceal the deficit caused by hippocampal damage?	501 502	 Winocur, G. The hippocampus and time Woodruff, M. L. & Whittington, D. L. Effects of hippocampal lesions on some operant visual discrimination tasks 	512 513
 Jarrard, L. E. On the hippocampus, time, and interference Kimble, D. P. Sharpening the focus on functions of the hippocampus Maki, W. S. Three-store theories of memory 	503 504 505	Author's Response Rawlins, J. N. P. Time and hippocampal lesion effects: <i>Tempus edax rerum</i> ?	514

Contents Volume 8:4 December 1985

Libet, B. Unconscious cerebral initiative and the role of conscious will in voluntary action

Open Peer Commentary Brothmayor B. C. Broklan

Breitmeyer, B. G. Problems with the psychophysics of	
intention	539
Bridgeman, B. Free will and the functions	
of consciousness	540
Danto, A. C. Consciousness and motor control	540
Doty, R. W. The time course of conscious processing:	
Vetoes by the uninformed?	541
Eccles, J. C. Mental summation: The timing of	
voluntary intentions by cortical activity	542
Jasper, H. H. Brain mechanisms of conscious	
experience and voluntary action	543
Jung, R. Voluntary intention and conscious selection	
in complex learned action	544
Latto, R. Consciousness as an experimental variable:	
Problems of definition, practice, and interpretation	545
MacKay, D. M. Do we "control" our brains?	546
Marks, L. E. Toward a psychophysics of intention	547
Merikle, P. M. & Cheesman, J. Conscious	
and unconscious processes: Same or different?	547
Mortenson, C. Conscious decisions	548
Näätänen, R. Brain physiology and the unconscious	
initiation of movements	548

Nelson, R. J. Libet's dualism	550
Ringo, J. L. Timing volition: Questions of what	
and when about W	550
Rollman, G. B. Sensory events with variable central	
latencies provide inaccurate clocks	551
Rugg, M. D. Are the origins of any mental processes	
available to introspection?	552
Scheerer, E. Conscious intention is a mental fiat	552
Stamm, J. S. The uncertainty principle in psychology	553
Underwood, G. & Niemi, P. Mind before matter?	554
Vanderwolf, C. H. Nineteenth-century psychology	
and twentieth-century electrophysiology do not mix	555
Van Gulick, R. Conscious wants and self-awareness	555
Wasserman, G. S. Neural mental chronometry	
and chronotheology	556
Wood, C. C. Pardon, your dualism is showing	557

Author's Response

Libet, B. Theory and evidence relating cerebral	
processes to conscious will	558

479

Goldberg, G. Supplementary motor area structure and function: Review and hypotheses

Open Peer Commentary Scholz, J. P., Turvey, M. T., & Kelso, J. A. S. Brown, J. W. A prelude to the Goldberg variations Naturalizing the context for interpreting SMA on motor organization 588 function Damasio, A. R. Understanding the mind's will Schultz, W. Neuronal processes involved in initiating 589 a behavioral act Fuster, J. M. The path to action 589 Tanji, J. New findings on the behavior Gray, J. A. Systems and system interactions 591 of supplementary motor area neurons recorded Kornhuber, H. H. & Deecke, L. The starting function from task-performing monkeys of the SMA 591 Weinrich, M. Medial versus lateral motor control Libet, B. Volitional processes (planned, spontaneous, Wiesendanger, M. The SMA: A "supplementary and conscious) in relation to the SMA 592motor" or a "supramotor" area? Neafsey, E. J. Preparation yes, intention no 594Pandya, D. N. & Barbas, H. Architecture and connections of the premotor areas in the rhesus monkey 596 Porter, R. Participation of SMA neurons in a "self-Author's Response paced" motor act 596 Rizzolatti, G. Free will and motor subroutines: Too Goldberg, G. Where there is a "will," there is a way

Harrington, A. Nineteenth-century ideas on hemisphere differences and "duality of mind"

597

Open Peer Commentary

much for a small area

Bradshaw, J. L. Reinventing hemisphere differences	635
Černáček, J. Hemisphere asymmetry: Old views in	
new light	636
Corballis, M. C. Right and left as symbols	636
Eling, P. Laterality as a means and laterality as an end	637
Isler, H. & Regard, M. The case for applied history	
of medicine, and the place of Wigan	640
Leary, D. E. Scientific amnesia	641
Lokhorst, GJ. C. Hemisphere differences	
before 1800	642
Marshall, J. C. The many-mind problem:	
Neuroscience or neurotheology?	642
Milner, A. D. Two hemispheres do not make	
a dichotomy	643
Mittwoch, U. Lateralization and sex	644
Murray, D. J. What textbooks between 1887 and 1911	
said about hemisphere differences	644

Greenblatt, S. H. Brain theory and the uses of	
history	637
Gruzelier, J. Nineteenth-century views on madness	
and hypnosis: A 1985 perspective	638
Harris, L. J. The ambidextral culture society and the	
"duality of mind"	638
Oppenheimer, J. M. Continuity of thought on duality of brain and mind?	645
Puccetti, R. Experiencing two selves: The history	
of a mistake	646
Smith, A. Do we have one brain or two? Babylon	
revisited?	647

Author's Response

(to understand it)

Harrington, A. Historical and scientific issues en route from Wigan to Sperry 648

Hartung, J. Matrilineal inheritance: New theory and analysis

Open Peer Commentary

of evidence, and matrilineal inheritance	
of evidence, and mathimear internance	670
Borgia, G. Do we need cultural inertia to explain	
matrilineal inheritance?	670
Buss, D. M. Inheritance strategies, resource	
allocation, and causal alternatives for individual	
traits	671
Ellison, P. T. Lineal inheritance and lineal extinction	672
Essock-Vitale, S. M. & Vitale, R. A. Assessment	
of paternity	672
Flinn, M. V. How can evolutionary theory help	
	673
	674
Gowaty, P. A. Low probability of paternity	
	675

Kurland, J. A. Mother knows best?	675
Lancaster, C. S. Matrilineal inheritance:	
Sociobiological vs. ethnological interpretations	675
Mulder, M. B. Resource certainty or paternity	
uncertainty?	677
Shields, W. M. Uncertain paternity, matrilineality,	
and cross-cousin marriage: Hidden connections?	678
Thornhill, N. W. & Thornhill, R. Matriliny and	
sexual selection and conflict	679
Vining, D. R., Jr. Sociobiological theory	
and contemporary humans	680
and contemporary numans	

Author's Response

Hartung,	J.	Lineal	extinction-A	bridge	to eco	logy?	681
----------	----	--------	--------------	--------	--------	-------	-----

567

598

599

599

599

599

601

617

Humphreys, G. W. & Evett, L. J. Are there independent lexical and nonlexical routes in word processing? An evaluation of the dual-route theory of reading

Open Peer Commentary	
Balota, D. A. Bringing together some old and new	
concerns about dual-route theory	705
Baron, J. Back to basics	706
Bub, D. & Kertesz, A. Dual versus single routes:	
What we need to know before constructing a model	706
Carr, T. H. The psychology of the four-letter word,	
plus or minus: Humphreys & Evett's evaluation	
of the dual-route theory of reading	707
Chastain, G. The phonological route to the mental	
lexicon: Some unconsidered evidence	708
Coltheart, M. In defence of dual-route models	
of reading	709
Cooper, W. E. Specifying the loci of context effects	
in reading	710
Forster, K. I. The mechanisms of naming	711
Clushko, R. J. Further complications for dual-route	
theory	712
Henderson, L. Oral reading: Duel but not rout	713
Inhoff, A. W. Phonological effects in the visual	
processing of words: Some methodological	
considerations	714
Juola, J. F. Perceptual units in word recognition	715
Kay, J. Size and salience of spelling-sound	
correspondences	715
Lesgold, A. & Hammond, K. L. Do we look	
for independence or near decomposability?	716
Mitchell, D. C. Access to the lexicon: Are there three	
routes?	717

Morton. J. Criticising dual-route theory: Missing the point
Norris, D. So the "strong" theory loses. But are there
any winners?
Olson, R. K. & Keenan, J. M. Segmentation
in models of reading
Parkin, A. J. Dual-route theory and the consistency
effect
Patterson, K. The pitfalls of selective attention
Perfetti, C. A. Some reasons to save the grapheme
and the phoneme
Pollatsek, A. Only the simplest dual-route theories are unreasonable
Rosson, M. B. Throw out the bath water, but keep
the baby: Issues behind the dual-route theory
of reading
Seidenberg, M. S. Explanatory adequacy and models
of word recognition
Shallice, T. The acquired dyslexias and normal
reading
Taft, M. The lexical account of word naming
considered further
Underwood, G. Interactive processes in word
recognition

689

Authors' Response

Humphreys, G. W. & Evett, L. J. Visual word	
processing: Procedures, representations, and routes	728

Continuing Commentary

On Searle, J. R. (1980) Minds, brains, and programs. BBS 3:417-457. Harvey, R. J. On the nature of prgrams, simulations, Author's Response 741 and organisms Searle, J. R. Patterns, symbols, and understanding 742 On Peters, D. P. and Ceci, S. J. (1982) Peer-review practices of psychological journals: The fate of published articles, submitted again. BBS 5:187-255 Berry, R. L. Administrative freedom vs. academic Sternberg, R. J. Tacit agreements between authors freedom and peer reviews 743 and editors 746 Boice, R., Pecker, G., Zaback, E., and Barlow, D. H. A challenge to Peters and Ceci's conclusions Authors' Response with an examination of editorial files for reviewer Peters, D. P. and Ceci, S. J. Peer review: 744 appropriateness Beauty is in the eye of the beholder 747 Cofer, C. N. Some reactions to manuscript review 745 from a questionnaire study On Kyburg, H. E., Jr. (1983) Rational belief. BBS 6:231–273. Falmagne, R. J. Normative theory and the human Author's Response mind 750 Kyburg, H. E., Jr. Probability intervals and rational Sahlin, N.-E. Three decision rules for generalized norms 753 probability representations 751 On Campion, J., Latto, R., and Smith, Y. M. (1983) Is blindsight an effect of scattered light, spared cortex, and near-threshold vision? BBS 6:423-486. Lutzemberger, L., Marzi, C. A., and Tassinari, G. **Authors' Response** 754 On inferring blindsight from normal vision Campion, J. and Latto, R. What is blindsight? 755 On Dennett, D. C. (1983) Intentional systems in cognitive ethology: The "Panglossian paradigm" defended. BBS 6:343-390. Ben-Zeev, A. Aristotle, final cause, and the intentional Gray, T. Beyond Burrhus and behaviorism: Dennett 762 stance 758 defused 759 Bogdan, R. J. The intentional stance reexamined Author's Response Dahlbom, B. Dennett on cognitive ethology: 760 A broader view Dennett, D. C. When does the intentional stance 763 work?

"This is a very useful book, as a text in cognitive anthropology and as a statement of the themes and directions of current research. It will also appeal to those who identify themselves broadly as cognitive scientists — including students of artificial intelligence, psycholinguistics, and cognitive linguistics. It should find ready acceptance as an undergraduate text in cognitive anthropology courses and as supplementary reading for advanced language and culture courses and for courses in the psychology and philosophy of language." — Stephen A. Tyler, author of Cognitive Anthropology.

Directions in Cognitive Anthropology

Edited by Janet W. D. Dougherty

Twenty-five authors here explore the riches of mind and understanding, contributing to issues of concept definition, acquisition and use of cultural knowledge, modeling systems of cultural knowledge, and the emergent process of understanding social action.

Cognition and Computation: On Being Sufficiently Abstract F. K. Lehman (U Chit Hlaing)

Tarahumara Color Modifiers: Individual Variation and Evolutionary Change

Don Burgess, Willett Kempton, and Robert E. MacLaury Folk Knowledge without Fuzz Oswald Werner

Exploring the Internal Structure of Linguistic Categories: An Extensionist Semantic View

David B. Kronenfeld, James D. Armstrong, and Stan Wilmoth The Utilitarian Factor in Folk Biological Classification Eugene Hunn

Thai Spirits: A Problem in the Study of Folk Classification James Stanlau and Bencha Yoddumnern

Taskonomy: A Practical Approach to Knowledge Structures Janet W. D. Dougherty and Charles M. Keller

"Requiem for the Omniscient Informant": There's Life in the Old Girl Yet James Shilts Boster

Actions Speak Louder than Words John B. Gatewood

Imitating Ban Chiang Pottery: Toward a Cognitive Theory of Replication Penny Van Esterik Steps toward an Ethnosemantics of Verbs: Complex Fishing Technique Scripts and the "Unsaid" in Listener Identification Robert A. Randall

Toward an Encyclopedic Ethnography for Use in "Intelligent" Computer Programs Benjamin N. Colby

"Commitment" in American Marriage: A Cultural Analysis Naomi Quinn

Character Terms and Cultural Models Roy G. D'Andrade

"Bad Ways" and "Bad Talk": Interpretations of Interpersonal Conflict in a Melanesian Society Geoffrey M. White

Individual Experience, Dreams, and the Identification of Magical Stones in an Amazonian Society Michael F. Brown

From Situation to Impression: How Americans Get to Know Themselves and One Another Dorothy C. Holland

How to Grow Schemata out of Interviews Michael H. Agar and Jerry R. Hobbs

464 pages. Cloth, \$37.50; paper, \$13.95. Order toll free 800/638-3030. Maryland residents phone 301/824-7300.

Society for Philosophy and Psychology

Department of Philosophy • University of Minnesota • Minneapolis, MN 55455

President: Fred Dretske University of Wisconsin-Madison

President-Elect: Stevan Harnad The Behavioral and Brain Sciences

> Secretary-Treasurer: Patricia Kitcher University of Minnesota

Program Chairman: Robert Van Gulick Syracuse University

Executive Committee: Myles Brand University of Arizona

William Brewer University of Illinois-Champaign

Patricia S. Churchland University of California—San Diego

> Daniel Dennett Tufts University

Jerome A. Feldman University of Rochester

Janet Fodor University of Connecticut—Storrs

> R.S. Jackendoff Brandeis University

William Lycan University of North Carolina

> John Macnamara McGill University

Anne Treisman University of British Columbia

> Scott Weinstein University of Pennsylvania

Christopher Woods Yale University

CALL FOR PAPERS 1986 ANNUAL MEETING

The Johns Hopkins University

June 5---8, 1986

The Society for Philosophy and Psychology is calling for papers to be read at its 12th annual meeting, June 5–8, 1986 at The Johns Hopkins University, Baltimore, MD.

Contributed papers are refereed and selected on the basis of quality and relevance to both psychologists and philosophers. Psychologists, neuroscientists, linguists, computer scientists and biologists are encouraged to report experimental, theoretical and clinical work that they judge to have philosophical significance.

Contributed papers are for oral presentation and should not exceed a length of 30 minutes (about 12 double-spaced pages). Papers must be accompanied by a camera-ready 300 word abstract. The deadline for submission is 10 January, 1986. Send three copies to the Program Chairman:

Professor Robert Van Gulick Department of Philosophy Syracuse University Syracuse, NY 13210

Symposium Proposals should also be sent to the above address as soon as possible.

Local Arrangements: Professor Gary Hatfield, Department of Philosophy, The Johns Hopkins University.

Individuals interested in becoming members of the Society should send \$15.00 membership dues (\$5.00 for students) to Professor Patricia Kitcher, Department of Philosophy, University of Minnesota, Minneapolis, MN 55455.

The Behavioral and Brain Sciences

Instructions for Authors and Commentators

The Behavioral and Brain Sciences (BBS) is a unique scientific communication medium, providing the service of Open Peer Commentary for reports of significant current work in psychology, neuroscience, behavioral biology or cognitive science. If a manuscript is judged by BBS referees and editors to be appropriate for Commentary (see Criteria below), it is then circulated to a large number of commentators selected (with the aid of systematic bibliographic searches) from the BBS Associateship* and the worldwide biobehavioral science community, including individuals recommended by the author.

Once the Commentary stage of the process has begun, the author can no longer alter the article, but can respond formally to all commentaries accepted for publication. The target article, commentaries and authors' response then co-appear in BBS. Continuing Commentary and replies can appear in later issues.

Criteria for acceptance To be eligible for publication, a paper should not only meet the standards of a journal such as *Psychological Review* or the *International Review of Neurobiology* in terms of conceptual rigor, empirical grounding, and clarity of style, but it should also offer a clear rationale for soliciting Commentary. That rationale should be provided in the author's covering letter, together with a list of suggested commentators. The original manuscript plus eight copies must be submitted.

A paper for BBS can be (*i*) the report and discussion of empirical research that the author judges to have broader scope and implications than might be more appropriately reported in a specialty journal; (*ii*) an unusually significant theoretical article that formally models or systematizes a body of research; or (*iii*) a novel interpretation, synthesis, or critique of existing experimental or theoretical work. Occasionally, articles dealing with social or philosophical aspects of the behavioral and brain sciences will be considered.

The service of Open Peer Commentary will be primarily devoted to original unpublished manuscripts. However, a recently published book whose contents meet the standards outlined above is also eligible for Commentary if the author submits a comprehensive, article-length précis to be published together with the commentaries and his response. In special cases, Commentary will also be extended to a position paper or an already published article dealing with particularly influential or controversial research. Submission of an article implies that it has not been published or is not being considered for publication elsewhere. Previously published articles appear by invitation only. The Associateship and professional readership of BBS are encouraged to nominate current topics and authors for Commentary.

In all the categories described, the decisive consideration for eligibility will be the desirability of Commentary for the submitted material. Controversiality simpliciter is not a sufficient criterion for soliciting Commentary: a paper may be controversial simply because it is wrong or weak. Nor is the mere presence of interdisciplinary aspects sufficient: general cybernetic and "organismic" disquisitions are not appropriate for BBS. Some appropriate rationales for seeking Open Peer Commentary would be that: (1) the material bears in a significant way on some current controversial issues in behavioral and brain sciences; (2) its findings substantively contradict some wellestablished aspects of current research and theory; (3) it criticizes the findings, practices, or principles of an accepted or influential line of work; (4) it unifies a substantial amount of disparate research; (5) it has important cross-disciplinary ramifications; (6) it introduces an innovative methodology or formalism for consideration by proponents of the established forms; (7) it significantly integrates a body of brain and behavioral data; (8) it places a hitherto dissociated area of research into an evolutionary or ecological perspective; etc.

In order to assure communication with potential commentators (and readers) from other BBS specialty areas, all technical terminology must be clearly defined or simplified, and specialized concepts must be fully described. Authors should use numbered section-headings to facilitate cross-reference by commentators.

Note to commentators The purpose of the Open Peer Commentary service is to provide a concentrated constructive interaction between author and commentators on a topic judged to be of broad significance to the biobehavioral science community. Commentators should provide substantive criticism, interpretation, and elaboration as well as any pertinent complementary or supplementary material, such as illustrations; all original data will be refereed in order to assure the archival validity of BBS commentaries. Commentaries and articles should be free of hyperbole and remarks *ad hominem*.

Style and format for articles and commentaries Articles must not exceed 14,000 words (and should ordinarily be considerably shorter); commentaries should not exceed 1,000 words. Spelling, capitalization, and punctuation should be consistent within each article and commentary and should follow the style recommended in the latest edition of A Manual of Style, The University of Chicago Press. It may be helpful to examine a recent issue of BBS. A title should be given for each article and commentary. An auxiliary short title of 50 or fewer characters should be given for any article whose title exceeds that length. Each commentary must have a distinctive, representative commentary title. The contributor's name should be given in the form preferred for publication; the affiliation should include the full institutional address. Two abstracts, one of 100 and one of 250 words, should be submitted with every article. The shorter abstract will appear one issue in advance of the article; the longer one will be circulated to potential commentators and will appear with the printed article. A list of 5-10 keywords should precede the text of the article. Tables and figures (i.e. photographs, graphs, charts, or other artwork) should be numbered consecutively in a separate series. Every table and figure should have a title or caption and at least one reference in the text to indicate its appropriate location. Notes, acknowledgments, appendices, and references should be grouped at the end of the article or commentary. Bibliographic citations in the text must include the author's last name and the date of publication and may include page references. Complete bibliographic information for each citation should be included in the list of references. Examples of correct style for bibliographic citations are: Brown (1973); (Brown 1973); (Brown 1973; 1978); (Brown 1973; Jones 1976); (Brown & Jones 1978); (Brown, Jones & Smith 1979) and subsequently, (Brown et al. 1979). References should be typed in alphabetical order in the style of the following examples. Journal titles should not be abbreviated.

Kupfermann, I. & Weiss, K. (1978) The command neuron concept. Behavioral and Brain Sciences 1:3–39.

- Dunn, J. (1976) How far do early differences in mother-child relations affect later developments? In: Growing points in ethology, ed. P. P. G. Bateson & R. A. Hinde, pp. 1–10. Cambridge University Press.
- Bateson, P. P. G. & Hinde, R. A., eds. (1976) Growing points in ethology. Cambridge University Press.

Preparation of the manuscript The entire manuscript, including notes and references, must be typed **double-spaced** on 8½ by 11 inch or A4 paper, with margins set to 70 characters per line and 25 lines per page, and should not exceed 50 pages. Pages should be numbered consecutively. It will be necessary to return manuscripts for retyping if they do not conform to this standard.

Each table and figure should be submitted on a separate page, not interspersed with the text. Tables should be typed to conform to BBS style. Figures should be ready for photographic reproduction; they cannot be redrawn by the printer. Charts, graphs, or other artwork should be done in black ink on white paper and should be drawn to occupy a standard area of $8\frac{1}{2}$ by 11 or $8\frac{1}{2}$ by $5\frac{1}{2}$ inches before reduction. Photographs should be glossy black-and-white prints; 8 by 10 inch enlargements are preferred. All labels and details on figures should be clearly printed and large enough to remain legible even after a reduction to half size. It is recommended that labels be done in transfer type of a sans-serif face such as Helvetica.

Authors are requested to submit their original manuscript with **eight copies** for refereeing, and commentators their original plus **two copies**, to: Steven Harnad, Editor, The Behavioral and Brain Sciences, 20 Nassau St., Suite 240, Princeton, NJ 08542. In case of doubt as to appropriateness for BBS commentary, authors should write to the editor before submitting eight copies.

Editing The publishers reserve the right to edit and proof all articles and commentaries accepted for publication. Authors of articles will be given the opportunity to review the copyedited manuscript and page proofs. Commentators will be asked to review copyediting only when changes have been substantial; commentators will not see proofs. Both authors and commentators should notify the editorial office of all corrections within 48 hours or approval will be assumed.

Authors of target articles receive 50 offprints of the entire treatment, and can purchase additional copies. Commentators will also be given an opportunity to purchase offprints of the entire treatment.

^{*}Individuals interested in serving as BBS Associates are asked to write to the editor.

The Behavioral and Brain Sciences

To appear in Volume 9, Number 1 (1986)

Offprints of the following forthcoming BBS treatments can be purchased in quantity for educational purposes if they are ordered well in advance. For information, please write to Journals Department, Cambridge University Press, 32 East 57th Street, New York, NY 10022.

Semantic activation without conscious identification

Daniel Holender, Université Libre de Bruxelles

When the meaning of a stimulus is accessed through the processing of a sensory input a person usually recognizes the stimulus consciously. The idea that semantic activation can occur without conscious identification had been the central thesis of the controversial research in subliminal perception. Recently, new claims for such a possibility have come from studies in dichotic listening, parafoveal vision and visual pattern masking. This paper attempts to show that most of these apparent demonstrations can be attributed to inability of the experimental method to reveal conscious identification of the stimulus at the time of presentation rather than to the reality of the phenomenon.

With Commentary from E Bisiach; TH Carr & D Dagenbach; NF Dixon; MH Erdelyi; AW Inhoff; AJ Marcel; PM Merikle & J Cheesman; J Morton; R Näätänen; D Navon; K Rayner; G Underwood; and others.

Cortical connections and parallel processing: Structure and function Dana H. Ballard, University of Rochester

The cerebral cortex is a rich and diverse structure that is the basis of intelligent behavior. One of the deepest mysteries of the function of cortex is that neural processing times are only about one hundred times faster than the fastest response times for complex behavior. At the very least, this would seem to indicate that the cortex does massive amounts of parallel computation. This paper explores the hypothesis that an important part of the cortex can be modeled as a connectionist computer especially suited for parallel problem solving. This computer can be thought of as computing hierarchies of sensory-motor invariants.

With Commentary from RA Andersen; JC Baird; PM Churchland; LH Finkel & GN Reeke Jr., J Foss; S Grossberg; E Harth; JJ Hopfield; D Mumford; AJ Pellionisz; TJ Sejnowski; M Sur; JK Tsotsos; and others.

Intentionality and information processing

Kenneth M. Sayre, University of Notre Dame

(1) What is actually accomplished by the functions of the nervous system that we describe intentionalistically? (2) What makes the information processing involved in these functions semantic? The computational approach fails to provide satisfactory answers. A more promising start is to fall back on mathematical communication theory, with help from evolutionary biology and neurophysiology. Focusing on vision, representations can be defined as patterns of cortical activity constantly adjusting to maintain adequate mutual information between pattern and perceptual object. Intentionality is the direction upon objects accomplished by such representations and this intentionality adds semantic features to the information processing involved.

With Commentary from PM Churchland; JG Daugman; DC Dennett; FI Dretske; DP Ellerman; RT Eskew Jr.; J Heil; M Lebowitz; DM MacKay; LE Marks; D Perlis & R Hall; WT Powers; MT Turvey; and others.

Social versus reproductive success

Daniel R. Vining, Jr., University of Pennsylvania

The central postulate of sociobiology is that individuals exploit favorable environments to increase their genetic representation in the next generation. The data on fertility differentials among contemporary humans are not consistent with this postulate. Except for a period of rising fertility in the middle of this century, contemporary humans exhibit an inverse relationship between fertility and endowment (i.e., wealth, success and measured aptitudes). Contrary to the claims of some modern eugenicists, however, no threat to contemporary culture is posed by this inverse relationship. Environmental change appears to be shifting the means of various trait distributions at rates that are several orders of magnitude larger than those implied by the observed fertility differentials. However, there remains the question of just how elastic these distributions are in the absence of reinforcing genetic change.

With Commentary from JH Barkow; M Daly & M Wilson; R Dawkins; I Eibl-Eibesfeldt; JR Flynn; R Fox; MT Ghiselin & FM Scudo; J Hartung; W Irons; P Kitcher; RJ Sternberg; D Symons; and others.