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1. INTRODUCTION
In a simple type of artificial selection programme individuals are ranked on their

own phenotype for some quantitative trait and the highest ranking individuals are
selected to be parents of the next generation. Prediction equations for changes in
gene frequency with this form of selection have been derived for models in which the
population is assumed to be infinitely large (Haldane, 1931; Kimura, 1958; Griffing,
1960; Latter, 1965). The truncation point, which is the value on the phenotypic
scale exceeded only by selected individuals, can be assumed to be constant for
specified gene frequencies and genotypic effects if the population size is infinite.
However, in a finite population the truncation point must be a random variable
with its value dependent on the genotypes and environmental deviations of the
individuals actually present in the population. Kojima (1961) has derived formulae
for expected changes in gene frequency at a single locus in finite populations, but
an assumption of his model is that the effects of individual genes on the quantitative
trait are small relative to the phenotypic standard deviation. Curnow & Baker
(1968) have extended Kojima's results to repeated cycles of selection by using a
beta distribution to approximate the distribution of gene frequencies.

In this paper a rather restricted model is analysed exactly. Predictions of changes
in gene frequency are obtained for the case where there is selection on the basis of
the individual phenotype (mass selection), but the quantitative trait is affected by
the genotype at only one locus and by random environmental deviations. The theory
is developed initially for a single cycle of selection, but is then extended to cover
repeated generations of selection in a finite monecious diploid population in which
there is random mating. Some of the formulae obtained are evaluated numerically
for the case of normally distributed environmental deviations.

These numerical results are used to check some approximate methods which
may be used to study changes in gene frequency in finite populations. These ap-
proximations involve infinite population models or assumptions of genes with
small effect on the quantitative trait. In particular, some of the theory of limits to
artificial selection in finite populations (Robertson, 1960; Allan & Robertson, 1964;
Hill & Robertson, 1966) has been based on results of Kimura (1957) for the chance of
fixation of single genes. Kimura used a haploid model and adopted a diffusion equa-
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144 W. G. HILL

tion, which is continuous in time and gene frequency. In extending these results to
artificial selection programmes Robertson (1960) had to use results from infinite
population theory to compute selective values of the genes affecting the metric trait.

This paper thus falls into two separate parts. In the first a mathematical theory of
response to artificial selection for single loci is developed and in the second numerical
checks are made to test the accuracy of more simple, approximate, formulae.

2. THEORETICAL ANALYSIS

A generation, which comprises one cycle of selection, may be considered in two
successive stages. In the initial stage a sample of say, M, individuals is obtained at
random from reproduction among the parents. These M individuals are a sample
from a conceptual population of infinite size, comprised of all possible progeny geno-
types and phenotypes from the given set of parents, with the probability distribu-
tion of genotypes among these M individuals depending on the mating system and
parental genotypic frequencies. In the second stage the M individuals are ranked on
phenotype and the top ranking N, say, are selected to be parents of the next genera-
tion. The second stage, namely of selection, will be discussed first as this is more diffi-
cult. Thus we consider a subpopulation of M individuals each of which has specified
genotype, but not phenotypic value.

(i) Single stage of selection from a finite sample with specified genotypes

For simplicity let us assume that there are only two kinds of genotype, denoted
Ax and A2. These may be regarded as either haploid individuals or the only two
genotypes segregating in a backcross to a homozygous line. Extension to three or
more genotypes is straightforward and will be given later.

The phenotypic values of individuals of genotype Av for example, are random
variables because there are chance environmental effects and, in general, because
of segregation at other loci, but these loci are assumed neutral in the model. Let us
assume that the phenotypic values have continuous probability density functions
and cumulative distribution functions given by

A^.f^x), F^x), -co < x < co;
A<>.:U{x), F2(x), -co <x < co.

The mean of each distribution can be interpreted as the appropriate genotypic
value, and deviations from the mean come from environmental effects.

Let us assume that in some sample of M individuals there are Mx of type A1 and
M2 of type A2, with Mx +M2 = M. The AT individuals with the best phenotype are
selected and among these the numbers of A1 and A2 individuals will depend on the
actual phenotypes of the H individuals. Thus we wish to compute the conditional
probability of selecting NXAX and N2 = N—Nl7 A2 individuals, conditional on Mx

and M2 and also, of course M and N. Let this probability be denoted p{N1\M1),
where, for JVj, N2 ^ 0, Nx must lie in the range
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where max and min denote the greater and smaller terms, respectively, in their
arguments. The probability p(N1\M1) will now be derived using order statistics for
mixed distributions.

Imagine that the poorest individual selected has phenotype in the range x to
x + dx, with N1A1 and N2A2 selected. Then either the i^th largest of the Ax's is
in \x, x + dz], so that N2 of the ^42's have phenotype above x + dx and (M2 — iV2) .42's
have phenotype below x or the iV2th ranking of the A2's is in [x, x + dx] with N^^s
above x + dx and (M1 — N±) A^s below x. For dx ->• 0 these events are mutually exclu-
sive. From the theory of order statistics we know that the probability that the

largest Ax from the sample of M1 lies in [x,x + dx] is

and the probability that only 2V2̂ 42's have phenotype superior to x + dx is, as dx -> 0,

These probabilities are independent. Also, summing over the two alternatives that
the Nth ranking is Ax or A2, we obtain the probability that the iV t̂h ranking lies in
[x, x + dx] with Nj^Ai and N2A2 selected, which is

M I

Integrating over x and simplifying, we obtain

where x W 1 " ^(*)]A(*) + ̂ [ 1 - ^(^)]/2(x)}}&, (1)

1,N) and M2 = M -MVN2 = N-Nv

Generalization to g > 2 genotypes with distributions F^x),..., Fg(x) is immediate.
The Nth largest individual may be from each alternative type. If there are

g

Mly ...,Mg with Yi^i = M in the original sample of each type, the probability that

Nlt..., Ng are selected becomes
CO

p{Nlt ...,Ng\Mv ...,Mg) = J^n ( ^ ) [Fi(zy\"t-*'<[1-Ft{x)r<

iFWy-ifWdx. (2)
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146 W. G. HILL

Thus we have obtained a general equation for the distribution of the genotypes of
individuals selected on the basis of phenotype from a finite population.

If the genotypes all have identical distributions, F^x) = F2(x) = ... = Fg(x),
equation (2) reduces to

which is the hypergeometric distribution. So with neutral genes, the problem is
reduced to one of random sampling of N out of M without replacement.

If there is complete dominance at a single locus having only two alleles, A and a,
some simplification of the formulae for three genotypes is possible if we assume that
the distributions of environmental deviations as well as genotypic values are the
same for both genotypes carrying the dominant allele, A. Letting the subscripts 1.
2 and 3 refer to A A, Aa and aa individuals, respectively, we have F^x) = F2(x)
and thus

p(Nv N2, N^M,, M2, M3) = p(N, + N2\M, +M2) (^j {^j j ( ^ ^ j , (3)

where p(N1 + N2\M1+M2) is obtained by appropriate substitution in equation (1).
In the haploid case of equation (1) the expected frequency of At among the

selected individuals is, of course,
1 min(M,,A7)

j
•" max(0,iV-M,)

and in the diploid case the expected frequency of the allele A is

S(JV, + N.MpM, N2,NJM^MJ, (4)

where R denotes all possible combinations of JVX, N2 and N3 such that

#! + N2 + N3 = N and Nv N2, N3 > 0.

(ii) The complete cycle of selection

Our analysis has so far only been in terms of selection from a finite sample with
specified genotypes. The distribution of these M genotypes available for selection
will depend on the genotypes of their parents, the mating system, fertility differ-
ences among the parents and viability differences of the individuals prior to artificial
selection. Let us consider just the case of three genotypes and assume that the proba-
bility that there are M1} M2 and M3 individuals of genotype A A, Aa and aa available
for selection is ^(M^M^M^S), where S specifies the parental genotypes, mating
system, etc., and Mx+M2 + M3 = J/. If individual selection is practised among these
M individuals, the probability Q{Nl,N2, NZ\S) of selecting Nv N2 and N3 of type AA,
Aa and aa, respectively, is

= Hp{NvNa,Na\M1,Ma,M3)ir(M1,M2,M3\8), (5)
o

where piN^N^N^M^M^M^ is given by (2) and summation (C) is taken over all
values of Mv M2 and M3 such that M1+312+M3 = M.
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In a regular breeding system in a monecious population in which each generation
N individuals breed M progeny, from which the best N are selected, we can replace
S in equation (5) by the numbers Nlt, iVa, N& of genotypes at generation t, thus
obtaining the transition probability Q(Nlt+i,^2,i+i'^3,t+i\^it>^T2t'&&). Under our
model this is independent of t.

(iii) Repeated cycles of selection with random mating

The model which will be considered in detail is where there is random mating,
including random selfing, among N monecious diploid individuals in each generation,
and there are no fertility or viability differences. Then the progeny are multi-
nomially distributed, and

where there are i = 2Nlt + N2lA alleles among the parents at generation t. The
gene frequency is i/2N. Thus

Q(Nx.M,N2.M,NatM\NUtNtt,Nu) = Q(Nu+1,Kl+1,N3>t+1\i)

so that with no selection and random mating the distribution of genotypes among
individuals of the next generation is a function only of i and not the genotypic
frequencies. Now we can construct a transition probability matrix, P, for changes
in gene frequency from generation to generation, and can ignore the genotypic
distribution of both the parental and progeny populations. We also assume that
these transition probabilities are independent of t; i.e. that the distribution of geno-
typic values does not change with time, nor does the mating system. Let P, with
elements (ptj),i,j = 0,...,2N be the conditional probability that there are jA
alleles among the N parents at generation t + 1 given that there were i among the
parents at generation t. Thus

Pn= £ Q(NvN2,N3\i) (i,j = 0,...,2N),
N,,Nt,N, for 2Ni + N,=j

where summation is taken over all combinations of Nv N2, N3 such that there are
2NX + iV2 = jA alleles among the parents of the next generation. Combining all the
relevant formulae we obtain

M U- i - l f i / i—L\ i r 1__Li
j [ \ [ \ 2N)\ [/ 2iVj

(6)x n *)[Fh(x)]Mh-Nh [1 -FhixW" S Nk[l -Fk{x]\-*fk{x)dx.

Changes in the distribution of gene frequency for several cycles of selection can be
obtained by repeated multiplication of the matrix P.
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3. NUMERICAL EVALUATION OF THE FORMULAE FOR NORMALLY
DISTRIBUTED ENVIRONMENTAL DEVIATIONS

Let us assume that environmental deviations are normally distributed about the
genotypic value, an assumption which is made in most theoretical predictions of
selection advance. The integrals of equations (1) and (2) cannot then be evaluated
without recourse to numerical methods unless, of course, F±(x) = F2(x) = F3(x) for
the two allele diploid model we shall investigate. For the case of additive gene
action on the quantitative trait let the phenotypic values of A A individuals have a
normal distribution with mean /i + acr and variance a2, i.e. have the N(/j, + acr, or2)
distribution and similarly let N(/i + acr/2, a2) and N(/i, a2) be the distributions of Aa
and aa individuals, respectively, where — oo < /4 < oo, — o o < a < ooandO<<r2<oo.
But p(NvN2, N^M^M2,M3) is dependent only on a in this model so that equation
(2) can be evaluated using the normal distributions iV(<x/2,1), N(0,1) and N( — a/2,1)
for AA, Aa and aa individuals. Thus a is the difference between the phenotypic
values of the two homozygotes as a proportion of the environmental standard
deviation. Letting <f>(x) and <f)(x) denote the density and distribution functions of
the standardized normal distribution, N(0,1), equation (2) for the additive model
becomes

/•oc 3 /M\

^MJ = II £) [O(a-

x S {Nj [O( - x + a - i ja)]-1 <f>(x - a + \ja)} da: (7)

since, by symmetry, 1 — O(x) = <D( -x).
With a model of complete dominance the alternative homozygotes have also been

assumed to differ by acr units in genotypic value and to have normally distributed
phenotypic values. Thus from equations (1) and (3) we have

x [$( - x + fa)]^**-1 [<D( - x - ^ a ) ] ^ - 1

± + Nz)®(-x-\a)4>{x-\a)dx + Ns$(-x + £a)</>{x + \a)dx]. (8)

The probabilities p(N1,N2,N3\M1,M2,M3) are much less quickly computed for all
NltN2,N3 with equation (7) than equation (8). In the latter numerical integration
need only be performed for the range of possible values of N1 + N2.

Equations (7) and (8) were integrated by Simpson's rule over the region

-5-12 < x < 5-12

using an I.B.M. 360/50 computer with double-precision arithmetic. The values of
0(x) were previously tabulated in the computer in the same way. Since

p(NvNt,Na\MvMi,Ma)

is a probability mass function it must sum to unity over the range of Nv N2 and Ns
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Artificial selection infinite populations 149

possible for specified Mx, M2 and M3. The step length for integration was taken suffi-
ciently small that

iN^N^J^MJ-ll < 10-?.

The range — 5-12 ^ x ^ 5-12 was found to be adequately wide, since quantities like
[<£>(x)]M-N [<P(x)]N (fi(x) are very small unless x is close to zero.

In Table 1 some examples of the form of p(N1>N2,N3\M1,M2,31s) are given for the
case of additive gene action. The expectations of the genotypic and gene frequencies
among the selected individuals are also shown. In the next section we shall use the
exact results obtained by numerical integration to check various approximate
formulae for selection advance in both single and repeated cycles of selection.

Table 1. Probabilities of selecting each possible combination of
genotypes in a single stage of selection for an additive gene

(M, = 4, M2 = 8, M3 = 4 and N = 4.)

Nt, N3\Mlt Mt, M,)

0
1
2
3
4
0
1
2
3
0
1
2
0
1
0

E(NJN)
E(NJN)
E(N3/N)

a = 0
0-000549
0-017582
0-092308
0123077
0038462
0008791
0-105494
0-246154
0123077
0-019780
0-105494
0-092308
0-008791
0-017582
0-000549

0-250000
0-500000
0-250000
0-500000

a = 0-2

0-000283
0010634
0-065634
0-102878
0-037795
0-006232
0-087919
0-241161
0-141750
0019321
0121134
0-124597
0011830
0027813
0001019

0-282543
0-498837
0-218620
0-531961

a = 0-8

0-000028
0-001775
0-018227
0-047574
0-029133
0-001657
0-038877
0-177522
0-173873
0013590
0-141784
0-242910
0-021990
0-086063
0-004994

0-383159
0-481673
0-135168
0-623996

4. COMPARISON OF RESULTS FROM EXACT AND APPROXIMATE METHODS

(i) Single stage of selection from a sample with specified genotypes

If there are Mlt 312 and M3 individuals of genotype A A, Aa and aa respective^7

from which selection is made, the expected gene frequency in selected individuals
is given by (4). However, as M—*co the average gene frequency among selected
individuals is readily computed, for the trunaction point T is no longer a random
variable. With additive gene action T must satisfy the following equation on the
standardized scale

M^-T + ̂ +M^i-^+M^i-T-la) = N (9)

as M -»• oo where, for example <[>( — T + fa) = 1 — <£>(T — £a) is the proportion oiAA
IO GRH 13
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individuals which have phenotype superior to T and are selected. The mean fre-
quency q', of A alleles among the selected individuals is then

M-, Moq' = ± ($1 T -\- Aa) -I - O( T).
N 2N

Equation (10) is easily evaluated and requires little computation.

(10)

Table 2. Expected change in gene frequency when selecting N individuals from
a population of size M in exact Hardy-Weinberg frequencies

(The change in gene frequency is tabulated for infinite M, and changes at other
values of M as a percentage difference, P = [(q' — q)m/(q' — q)x — 1] x 100.)

1

0-25

0-5

0-75

1
0-25

0-5

0-75

M ...

a

0-2
0-8

0-2
0-8

0-2
0-8

N/M

$
i
A
I
i
A
4
i
A

r~

2
2

3

8

•30
•23

•81

16

P

0-91
117

0-78
0-73

0-65
0-29

1-58
- 0 - 8 4

—

1-59
- 1 1 8

—

1-58
- 1 - 4 5

—

Additive
A

32

0-36
0-48

0-30
0-27

0-24
0-07

0-72
-0 -60
-2 -40

0-72
-0 -75
-2 -45

0-72
-0-87
-2 -48

-> oo

q'-q

(1) NjM = I
0024192
0-098819

0031713
0-123099

0-023391
0-086674

(2) a = 0-4

0-029723
0-064769
0-078694

0-039630
0-081449
0-096986

0-029723
0-057791
0-067622

8

—

1-65
-0-27

—

__

—

3-71
—
—
—
—
—

Complete dominant

16

P

0-83
0-74

0-51
-0-32

0-33
0-61

1-62
-1-20

—

1-55
-1-74

—

1-41
-1-88

—

32

0-33
0-28

018
-0-21

009
-0-35

0-74
-0-75
-2-51

0-71
-0-89
-2 -43

0-64
- 1 0 5
-2 -31

-> 00

q'-q

0-035937
0-140654

0030604
0-104206

0-011176
0-034964

0044569
0-093064
0110752

0039431
0-071782
0-081990

0-014637
0024820
0-027830

In Table 2 predictions of expected change in gene frequency from a single stage
of selection using the finite population and infinite population methods are com-
pared for both additive and completely dominant gene action. The configurations
of genotypic frequency among the M individuals are chosen such that M\ = AMXMZ,
with the original frequency q being q = (M1+M2I2)JM. Thus for q = 0-25 and
M = 32 we haveM1 = 2,M2 = 12 andikf3 = 18. These genotypic frequencies are those
corresponding to the Hardy-Weinberg equilibrium frequencies, but since we are
only considering one sample they may be assumed to have occurred by chance.
Other possible configurances have not been considered separately. In Table 2 the
predicted changes in gene frequency (q' — q) computed with the infinite population
model (equation (10) for additive gene action) are given, and the expected changes
using the finite model expressed as a proportion of these. The results of the table
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indicate that the infinite population model gives a very close prediction of the
response expected from finite populations. Even when as few as 2 individuals out
of 16 are chosen the error scarcely exceeds 2 % of the mean change in gene frequency.

(ii) Complete cycle of selection with random mating

In a complete generation or cycle of selection there is sampling of progeny
followed by selection of parents for the next generation. We shall only consider
the case where the genotypes among the M progeny are multinomially distributed
with expected frequencies q2, 2q(l — q) and (1 — q)2 for AA, Aa and aa individuals,
where q is the frequency of A among the parents. General formulae for this model,
assuming a random mating monecious population, have been given in an earlier
section. The expected gene frequency E(q') among the parents of the next genera-
tion is, for complete dominance and integral 2Nq,

I 2N

E(q') = E(Jl2N\q = ij2N) = ^ S M , (11)

where pti is given in equation (6). The model has been restricted by assuming that
there are N parents in each of the two generations, but relaxation of this assumption
is straightforward. Also integration has been carried out only for the case of complete
dominance so that equation (8) could be used to reduce computation time.

An approximate method for obtaining E(q') has been given by Kojima (1961).
He showed that for small values of a (the gene effect in standard deviations) such
that a2, a3, etc. could be ignored relative to a, the mean change in gene frequency

j
is 8q~kaq(l-q)2 J V '
for complete dominance. Kojima calls k a 'generalized selection differential',
and Pike (1969) has shown that if the phenotypic values are normally distributed
about the genotypic values k becomes the mean of the highest N order statistics
in a sample of size M from a single standardized normal distribution.

As M becomes infinitely large the value of k can be obtained directly from tables
of the normal distribution, and may be denoted i, the standardized selection
differential. Thus lim k = i for N/M constant. Equation (12) is then the well known

approximate formula for the change in gene frequency with truncation selection
(Haldane, 1931; Kimura, 1958; Griffing, 1960; Latter, 1965) in which ia is the
selective value of the allele A. Latter (1965) has studied the errors associated with
this approximation for predicting changes in gene frequency in infinite population.
The exact values for q' in infinite population can, of course, be obtained from (10).

In Table 3 the approximate and exact methods are compared for a choice of
values of the parameters a, NjM, q and M. Predictions of change of gene frequency,
Sq, have been computed for the exact method (equation (11)) and are tabulated as
a proportion of the change predicted by the simple form Sq = kaq( 1 — q)2. The values
oik were obtained from tables of the expectations of order statistics from the normal
distribution, which are given to 10 decimal places by Teichroew (1956). In the
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limiting case of JV -> oo, k equals i in the approximate formulae, and in the exact
formulation the finite population predictions are replaced by the exact infinite
predictions of equation (10), where MltM2 can be replaced by Mqz and 2Mq(l—q).
The values for N -> oo are thus tests of the infinite model approximations, but
at the same time serve as limiting values for the finite model approximations of
Kojima in which it is assumed that gene effects (a) are small.

Table 3. Response from one full cycle of selection for complete dominance

(M progeny are taken at random from parents in Hardy-Weinberg equilibrium with
gene frequency q, and JV are selected. The response (Sq) is tabulated as a percentage
deviation from kaq(l — q)2, i.e. as [8q/kaq(l — q)2 — 1] x 100, where k is the mean
of first N from M order statistics from the standardized normal distribution.)

M

q

0-25

0-5

0-75

q
0-25

0-5

0-75

a

0-2
0-8

0-2
0-8

0-2
0-8

N/M

i

i

i

4

N/M

-0-27
-4-23

-0-32
-4-87

-0-41
-6-27

a, =

—
—
—
—

8

= *
-0-23
-3-60

-0-31
-4-73

-0-47
-7-12

0-4
8

+ 0-09
—

-7-24
—

-11-48

16

-0-20
-3-20

-0-30
-4-66

-0-51
-7-64

16

+ 0-24
+ 0-32

-7-60
-11-91

- 1 2 1 6
-18-22

^
-*• OO

-0-18
-2-73

-0-29
-4-58
-0-55
-8-22

-*• 00

+ 0-42
+ 0-84

-7-99
-12-50

-21-90
-19-32

We see in Table 3 that the approximation for the finite model is rarely much
poorer than with an infinite population. Since essentially the same assumptions
about the size of a are made in each case, we should not be surprised to observe
that a poor fit between the predictions is only found with finite populations for values
of a and selection intensity (i.e. NjM) which lead to inadequate approximation in
infinite population.

Kojima (1961) also derived formulae for the variance of change in gene frequency
based on the same assumptions as the mean change. For complete dominance this is

q ^ ^ (13)

Some checks on the accuracy of (13) have been made against the exact finite popula-
tion prediction, obtained by finding J£(q')2 by extension of equation (11). Again,
as we would expect the approximate and exact methods agree well except at the
highest values of a(0-8) and selection intensity.
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Attention should perhaps be drawn to the fact that when we calculated the
expected change in gene frequency from a population with specified numbers Mlt

M2, M3 of each genotype a good approximation was obtained using an infinite popula-
tion prediction (10). For small a equation (10) reduces to q' = q + iaq(l — q)2 for
complete dominance, where q = {2M1 +M2)/2Mand i is the infinite population stand-
ardized selection differential. However, when the M individuals in the population
are themselves a sample of genotypes then the selection differential should be
calculated as k from order statistics for the appropriate finite population size. In
the latter case we obtain a reasonable fit using order statistics from the normal
distribution because the combined (binomial) distribution of genotypic values and
(normal) distribution of environmental values is close to normal in form.

(iii) Chance of fixation of single genes

The theory of limits in artificial selection in finite populations developed by
Robertson (1960) is based on the concept of the chance of fixation, u(q0), which is
the probability that an allele with initial frequency qQ will eventually be fixed in
the population. Using a diffusion equation (the Kolmogorov backward equation),
Kimura (1957,1962) showed that, for example, the chance of fixation of a dominant
allele with selective value was

f"° I T (14)o) = f"° eN^-x^ dx I T eN^-x^ dx.
Jo / J o

To describe the response to artificial selection the selective value has been taken as
s = ia. (Robertson, 1960; Hill & Robertson, 1966). The model used in (14) is continu-
ous and haploid in form, so it seemed necessary to check the accuracy of (14) for
diploids with artificial selection and discrete generations. Previously Ewens (1963)
has made numerical tests on the errors resulting from use of the diffusion equation,
but only for haploid individuals and additive gene action.

The approximate results were obtained by numerical integration of (14), using
Simpson's rule, where s was replaced by ia and also by ka, with k computed for a
few pairs of N and M values.

Exact results for our model of a diploid monecious random mating population
with stationary transition probabilities were obtained from the matrix P (equation
(6)). A vector v(0) with elements vi(0) was first constructed, where vA0) = i/2N,
i = 0,..., 2JV. Then successive products v(1) = Pv(0), v(2) = Pv(1),..., vft) = Pv(/_!)
were computed. An element vi(il is therefore the expected gene frequency at time t
for an initial frequency of i/2N. Iteration was continued for at least QN generations
so that the ratio of changes in gene frequency in successive generations

(%) - W<<J-D)/(*>iG-i) - vi(t-2>)

became sufficiently constant that the chance of fixation, lim v^, could be predicted

to 5 decimal places by fitting an exponential curve to the last 3 values of vi(t) by the
S2 method (Aitken, 1926). This iterative method of obtaining the chance of fixation
was preferred to more direct methods, since expected gene frequencies at inter-
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mediate generations were required for further tests on approximate methods which
will be described in the next section.

In Tables 4 and 5 comparisons are shown of the chance of fixation computed by
the exact method and by the diffusion approximation. Results are given for different
values of Na. Positive values imply that the dominant allele is favoured by selection,

Table 4. Chance of fixation u(q0) x 10* for a dominant gene with truncation selection
computed exactly by matrix iteration and by diffusion approximation

(The selective value for the diffusion equation is koc, with k computed from order
statistics for specified values of N. The chance of fixation is tabulated for the
diffusion results with N -+ oo, Dx, others by difference from Dx.)

Not.

0-2

0-4

0-8

1-6

3-2

6-4

-0-2
-0-4
-0-8
-1-6
-3-2
-6-4

0-8

1-6

-0-8
-1-6

2o

0-25
0-5
0-75
0-25
0-5
0-75
0-25
0-5
0-75
0-25
0-5
0-75
0-25
0-5
0-75
0-25
0-5
0-75
0-5
0-5
0-5
0-5
0-5
0-5

0-25
0-5
0-75
0-25
0-5
0-75
0-5
0-5

2

[#

54
66
48
114
130
90
252
245
159
560
396
224
—
—
—.

—
—
—
-68

-167
-271
-517
—
—

216
225
155
307
220
134

-204
-265

Matrix
N

4

oo-w(?o)]x

—
—
—
62
70
48
136
131
83
287
202
110
436
156
66
—
—
—
—
-73

-142
-255
-381
—

117
118
79
160
114
65

-103
-125

10

104

N/M =
13
15
11
26
29
20
57
55
34
118
81
43
159
55
22
80
6
1

-15
-30
-58
-101
-135
-119

N/M =

• — -

—

—

—

—

—

00

#00 X I©4

0-5

2864
5403
7748
3254
5812
7990
4098
6621
8447
5853
8043
9180
8430
9556
9850
9837
9989
9998
4607
4229
3531
2404
1088
0238

0-25

5148
7510
8916
7595
9146
9684
2819
1501

10

[D

15
15
10
20
31
18
66
60
33
130
94
45
134
60
23
31
4
1

-15
-28
-50
-73
-68
-29

—
—
—
—
—
—

Diffusion
N

4

„-«(?„)] x 10*

.—
—
—
73
75
43
158
145
80
312
229
112
337
155
61

—
—
—.
-68
-121
-178
-168
—

156
124
64
220
122
52

-97
-109

2

64
68
42
134
138
81
292
270
149
583
437
216
—
__
—
—
—-
—
-65
126
226
340
—
—

296
238
123
430
243
105
187
214
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negative values that the recessive allele is favoured. The continuous model with
s = ia can be regarded as the limiting case as N -> oo, with Na remaining constant.
We find in the tables that there is mostly quite good agreement between the exact
and approximate predictions of chance of fixation. As we must expect, the fit is
poorest at low values of N and high values of a, for given .A â, especially when the
initial frequency of the favoured allele is low (Table 5). The diffusion approximation
method with s = ia generally overestimates the total change in expected gene
frequency, \u(q0) — qo\. Thus when s is replaced by lea for the appropriate M and N
values a better fit is obtained since k < i; but, except for the smallest N values, this
correction may not be thought worthwhile. The values of N (< 10) used in this study
are less than in many animal selection experiments or programmes so, in practice,
k and i may differ by very little.

Table 5. Chance of fixation x 10*

(Computed from exact transition matrix (TM) with N = 10 and M = 20, and
by diffusion approximation (DA) with selective value computed from order statistics.
Diffusion result is shown as difference D = DA — TM.)

q0... 005 01 0-5 0-9 0-95

JVa TM D TM D TM D TM D TM D
0-4 720 -2 1398 -3 5783 -2 9196 +1 9598 +1
1-6 1697 +4 3046 +2 7962 -13 9668 +1 9835 0
6-4 5472 +455 7911 +338 9983 +2 9999 0 9999 0

-0-4 336 +1 692 +2 4259 -2 8799 -4 9399 -2
-1-6 86 +2 197 +2 2505 -28 8226 -28 9109 -16
-6-4 0 0 1 0 349 -82 6187 -241 8384 -138

(iv) Rate of selection advance with repeated cycles of selection;
simple transition probability matrices

A further consequence of the diffusion approximation to the selection process for
single genes in finite populations is that the distribution of gene frequencies among
replicate lines, and therefore the mean gene frequency also, is a function of only
Ns and the initial frequency, provided that time is measured on a scale proportional
to N. This result was pointed out by Robertson (1960) and it leads to a considerable
simplification of the description of the rate of advance. The chance of fixation (as
t ->• oo) is then a function of only Ns and q0, and we see in Table 4 that this still holds
reasonably well when we compare the exact values for the chance of fixation
computed for the same Na and NjM, but different N.

As a measure of the rate of advance we shall use the 'half-life' of the change in
gene frequency, which is the time taken for the mean gene frequency to get half
way from its initial to its limiting value (Robertson, 1960). Half-lives were calcu-
lated by linear interpolation between the two successive generations which had mean
gene frequency spanning the half-way frequency and have been expressed propor-
tional to the parental population size, N, in the relevant tables.

If M and N become large an excessive amount of numerical integration is re-

https://doi.org/10.1017/S0016672300002858 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300002858


156 W. G. HILL

quired in order to evaluate the matrix P (equation (6)), and it becomes very difficult
to carry out the computation of P with sufficient accuracy. Therefore it seems de-
sirable to have a more efficient, if approximate, method for computing intermediate
gene frequencies and half-lives. A simple type of transition matrix was constructed
and compared with the exact matrix P for artificial selection in amonecious random
mating population. In this simple matrix it is assumed that the gene frequency among
the parents of the next generation is binomially distributed with mean q + sq{ 1 — q)2

from (12). Let us denote this matrix B, with elements (6i;.), i,j = 0,..., 2JV, which
define the same transition probabilities as do the elements of P. Thus bti is the
(approximate) probability that there are jA alleles among the N parents at genera-
tion t+ 1, given that there were i at generation t. B is assumed independent of t. The
elements of B are obtained by adopting a haploid type of model. We assume that the
expected gene frequency in generation t + 1 is

+ i
2N 2N\ 2N

for complete dominance. The selective value s can be replaced by ka in Kojima's
(1961) formulation, as we have seen in equation (12). The 2N alleles among the par-
ents of the next generation are then obtained by sampling from the binomial dis-
tribution. Thus

_ /22m i si / i yyt i * / < \ w
6« ~\j ) [2N+2N[1~2N) \ [l~2N 2N\l~2N) \ ' ( }

Expected gene frequencies in the intermediate stages of selection and chances
of fixation were obtained by repeated iteration of the matrix B in the same manner
as described for the matrix P.

In Tables 6 and 7 comparison is made of the chances of fixation and half-lives,
respectively, computed using matrices P and B. In B the selective value s is set
equal to ka for the appropriate value of N. We find a rather better fit in Table 6
between the pairs of matrix results than we observed between the results from the
diffusion and the exact method in Table 4. For the half-lives the agreement between
results for different values of N and constant Net improves as N increases with either
method. Also, for large N and small a. the approximate and exact methods agree
more closely with each other. This pattern of results could be predicted to some ex-
tent because the continuous model assumptions are less severely violated at large
N, ignoring terms in a2, a3,... becomes less serious for small a, and because the
change of k with N is smaller as N becomes larger. In Tables 6 and 7 effects of popula-
tion size on the genetic sampling process and on selection intensity are confounded
since the parameter k is used. For constant values of Ns, but differing N, half-lives
have been computed using the simplified matrix B and a few results are given in
Table 8. Again, although some wide discrepancies occur at the higher Ns value,
there is probably sufficient agreement for practical purposes because approximate
values of half-lives (or other measures of rate of advance) are all we are likely to need
when planning or interpreting selection experiments. Also, it should be pointed out
that the apparently large discrepancies between predicted half-lives (Table 7) using
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Table 6. Chance of fixation x 104

(Computed by exact transition probability matrix method (P) and approximate
matrix method {B) with N/M = 0-5. Results are shown as deviationsPN — P10 or
BN — P10 from exact method with N = 10.)

N ... 2 4 10

Net,

0-4

1-6

6-4

0-4
1-6
6-4

<7o

0-25
0-5
0-75
0-25
0-5
0-75
0-25
0-5
0-75
0-5
0-5
0-5

B

-103
-119
-81
-588
-480
-268
—
—
—
+ 86

+ 124

P

-88
-101
-70
-442
-315
-181
—
—

+ 107
+ 416

B

-46
-53
-34
-295
-234
-124
—
—

+ 31
+ 15

P

-36
-42
-28
-169
-121
-67
.—
—
—
+ 42
+ 154

B

-4
-5
-3
-65
-55
-27
-33
-8
_ 3

-4
-54

-114

P

3228
5783
7970
5735
7962
9137
9757
9983
9997
4259
2505
349

Table 7. Half-lives ( x 1000/JV generations)

(Computed by exact transition probability matrix method (P) and approximate
matrix method (B) with N/M = 0-5. Results are shown as deviations P^/ — Pw
or BN — Bw from exact method with N = 10.)

N ... 2 4 10

Noc

0-4

1-6

6-4

0-4
1-6
6-4

So

0-25
0-5
0-75
0-25
0-5
0-75
0-25
0-5
0-75
0-5
0-5
0-5

B

-197
-173
-147
-241
-235
-199
—
—
—
-84
+ 7

P

-156
-131
-94
-92
-69
-5

—
—

-122
-61

B

-76
-74
-62
-115
-113
-102

—
.—
-30
+ 16

P

-57
-51
-37
-45
-34
-12
—
—
—
-48
-24

B

-9
-10
-10
-30
-30
-34
-16
-22
-40
+ 8
+ 18
-8

P

1231
1412
1701
1331
1414
1644
645
607
762
1272
994
400

Table 8. Half-lives x 1000/iV generations computed with different N and
constant Ns using the simplified transition matrix B

Ns

9a —

N ...
1
4

-1
-4

8

1239
756
794
250

0-25

32

1349
791
820
278

0-5
c

8

1398
711
1076
476

\
32

1456
757
1090
482

0-75

8

1639
857
1443
853

32

1691
900
1446
835
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matrices P and B may have no practical significance for small N values. For
example, with JV = 2 half-lives of 1-345JV and 1- 179JV (No. = 1-6, q0 = 0-5) both imply
simply that the mean gene frequency at generation 2 is less than half-way to its
expected limit and that at generation 3 more than half-way. It is possible to con-
struct matrices other than B which give better approximations to the exact results.
For example, diploid selection can be included in terms of selective values, and
still not require numerical integration. However, the extra computation involved in
setting up such matrices does not seem justified by the small increase in precision
obtained. Curnow & Baker (1968) have developed an alternative method of pre-
dicting the selection advance by approximating the gene frequency distribution by a
beta distribution. The accuracy of this method has recently been checked by Pike
(1969) and found to be satisfactory for all but the smallest population size (4)
checked.

(v) Optimum intensity of artificial selection

The optimum intensity of selection in an artificial selection programme has
been discussed by Dempster (1955) and Robertson (1960), who pointed out that, for
fixed M, the selection limit would be maximized if NjM = 0-5. This conclusion is
based on the diffusion equation model and assumes that JV is very large so that the
limit is a function oiNi. For the normal distribution i = zj(NjM) where z is the ordi-
nate of the standardized normal distribution at the truncation point. Thus JVi = Mz
so Ni is maximized when z is maximized at NjM = 0-5. However, even in finite
populations, it will now be shown that sufficient conditions for Nk to be mazimized
when NjM = 0-5 are for the distribution of phenotypic values to be unimodal
and symmetric. Let xlt..., xM be the expected values of the order statistics as devia-
tions from the mean of a symmetric distribution, then

N M

i = l i = N + l

and by symmetry, xi = —xM_i+1. Substituting, we obtain
N M

M-N

= S «t
i=l

or
NkN=(M-N)kM_N,

where kN and kM_N are the means of the best JV and M — N, respectively, ordered
individuals. Therefore, as long as the approximation from the diffusion equation
that Nk is a sufficient parameter holds fairly well we expect the limit to be maxi-
mized when half the population is selected and to be symmetric about this propor-
tion.

Some checks on this prediction were made using the exact model with M = 16,
q0 = 0-5 and a — 0-4 or — 0-4, with the limit computed for JV = 2, 4, 6, 8, 10, 12 and
14 individuals selected each generation. Results are shown in Fig. 1, where we
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observe that the curve of chance of fixation against N departs very little from sym-
metry. Of course the rates of approach to the limit differ widely. This is illustrated in
Fig. 2, in which the mean gene frequency is plotted against number of generations
(t) for M — 16, q0 = 0-5 and a = 0-2. Also in Fig. 2 we find that the time scale fits

0 75 -

"(<?„)

0-25 -

Fig. 1. The effect of selection intensity on the selection limit. The chance of fixation
u(q0) is computed by the exact method and plotted for q0 = 0-25, 0-5 and 0-75, for
different numbers of individuals (JV) selected from 16 recorded every generation.

well with the diffusion theory in that it is inversely proportional to N. Thus we
expect the same mean frequency after cN generations with population size N as with
c(M — N) generations with population size M — N, where c is a positive constant.
In the example of Fig. 2 let us compare N = 4 with N = 12, where gene frequencies
for some values of c are as follows:

Popula-
tion
size c ...

4
12

0-5

0-55348
0-55366

1 0

Mean

0-59337
0-59365

2-0

gene frequency

0-64871
0-64919

4 0

0-70424
0-70530

0-72718
0-74129
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100

Fig. 2. The effect of selection, intensity on the rate of selection advance. The mean
gene frequency, q, is computed by the exact method and plotted against the number
of generations (t) of selection for different numbers of individuals selected from 16
recorded every generation.

5. DISCUSSION

The formulae developed for the simple model of artificial selection in finite popula-
tions have enabled us to make checks on some of the simplifying assumptions in the
theory of selection limits. The population sizes which have been tested (usually
JV ^ 10) are smaller than would normally be encountered in breeding schemes in
which much emphasis is placed on selection within lines. Thus, in practice, we would
expect population sizes to be larger and the diffusion approximation to fit better
than in the examples given here. Therefore, in view of our results, we can probably
conclude that the diffusion equation gives an adequate approximation for the model
of a single gene in a random mating monecious population which is analysed in this
paper.

At the same time, this single locus model is unlikely ever to be realized for a
quantitative trait in nature, nor are monecious populations of direct interest in
livestock improvement. The limitations of this approach therefore appear to rest
mostly on the model adopted. However, this study should be viewed as an initial
attempt to test the adequacy of some simple theory for describing artificial selection
in finite populations.

A comparison of monecious and diecious models has been made by Hill & Robert-
son (1968) for the case of natural selection acting on viability differences at a single
locus with complete dominance or heterozygote advantage. The populations
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comprised 10 parents in the monecious model, and 5 of each sex in the diecious
case. The alternative models led to similar results for the change in fitness (Hill
& Robertson, 1968) and mean gene frequency (unpublished), and it was considered
that the monecious model was adequate for descriptive purposes.

Even if there are many loci segregating for the quantitative trait the algebraic
theory developed in the first part of this paper can, in principle, still be used for
single generations of selection. One alternative approach is merely to evaluate the
probability of selection of each possible genotype. As in the single locus situation
we have discussed, the only variation of phenotypic value about genotypic value
would be attributed to environmental deviation. The expected change of gene
frequency at a single locus can then be obtained by summation of selection proba-
bilities over all possible genotypes. Alternatively, segregation at other loci can be
included as variation in the phenotypic values about the genotypic values of the
locus with which we are concerned. Thus the distribution of phenotypic values will
be the distribution of the sum of, say, normally distributed environmental deviations
and perhaps binomially distributed genetic differences. If there is no linkage dis-
equilibrium, epistasis or genotype-environment interaction the distributions of
phenotype may only differ in mean. If there are many independent genes of small
effect which influence the trait, the phenotypes may be almost exactly normally
distributed. The variance will be equal to the total phenotypic variance for the trait,
less that actually contributed by the locus under consideration. This approxima-
tion has been used in infinite population theory by Griffing (1960) and Latter (1965),
and by Kojima (1961) for finite populations.

However, when there are repeated cycles of selection and several loci affect
the selected trait it may be difficult to justify the assumption that the transition
probabilities of matrix P, for example, are stationary. Selection and inbreeding will
change the frequencies and variance at each locus, so that the distribution of
phenotypic values for a specified genotype, and therefore the selective values,
will not remain constant over generations. The extent to which selective values will
change in the presence of other loci will, of course, depend on their initial fre-
quencies, effects and linkage relationships. The general tendency would seem to be
for selective values to increase as other loci approach fixation as a result of selection
or drift. At the same time, as Robertson (1960) has mentioned, the environmental
variance may rise due to inbreeding, and may partially compensate for the reduction
in genetic variance. Also, it is clear that genes of large effect and low initial frequency
of the favourable allele are most likely to be lost from the population in the first
few generations. If they survive to this stage their frequency is unlikely still to be low,
and they will become fixed eventually. Thus' decisions' about the fate of such genes,
and essentially all genes with relatively large Ns value, are taken in early generations
before the phenotypic variance can have changed appreciably, so that a theory
developed for single loci may given satisfactory predictions in such cases. It will be
less satisfactory for genes of smaller effect when fixation takes longer, but further
work on this topic is clearly required.

When selection is practised in finite populations initially in equilibrium tight
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linkage leads to an excess of the repulsion phase (Hill & Robertson, 1966; Latter,
1966). Thus a theory based on single loci overestimates the expected selection gain
in this case.

SUMMARY

The effect of selection on individual performance for a quantitative trait is studied
theoretically for populations of finite size. The trait is assumed to be affected by
environmental error and by segregation at a single locus. Exact formulae are
derived to predict the change in gene frequency at this locus, initially by finding
the probability distribution of the numbers of each genotype selected from a finite
population of specified genotypic composition. Assuming that there is random mat-
ing and no natural selection the results are extended to describe repeated cycles
of artificial selection for amonecious population. The formulae are evaluated numeri-
cally for the case of normally distributed environmental errors.

Using numerical examples comparisons are made between the exact values for
the predicted change in gene frequency with values obtained using approximate,
but simpler, methods. Unless the gene has a large effect (a) on the quantitative
trait, relative to the standard deviation of the environmental errors, the agreement
between exact and approximate methods is satisfactory for most predictive
purposes. The chance of fixation after repeated generations of selection is also
evaluated using the exact method, and by means of a diffusion approximation and
simple transition probability matrix methods. Except for very small values of
population size (N) and large a the results from the diffusion equation agree closely
with those from the exact method. Similar results are found from tests made of the
prediction from the diffusion equation that the limit is only a function of Na for
a given intensity of selection and initial frequency, and that the rate of advance in
gene frequency is proportional to 1/^ for the same set of parameters.

I am grateful to Professors O. Kempthome and Alan Robertson for their helpful suggestions
and comments on the manuscript.
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