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We study the behaviour of the streamwise velocity variance in turbulent wall-bounded
flows using a direct numerical simulation (DNS) database of pipe flow up to friction
Reynolds number Reτ ≈ 12000. The analysis of the spanwise spectra in the viscous
near-wall region strongly hints to the presence of an overlap layer between the inner-
and the outer-scaled spectral ranges, featuring a k−1+α

θ decay (with kθ the wavenumber
in the azimuthal direction, and α ≈ 0.18), hence shallower than suggested by the classical
formulation of the attached-eddy model. The key implication is that the contribution to
the streamwise velocity variance (〈u2〉) from the largest scales of motion (superstructures)
slowly declines as Re−α

τ , and the integrated inner-scaled variance follows a defect power
law of the type 〈u2〉+ = A − B Re−α

τ , with constants A and B depending on y+. The DNS
data very well support this behaviour, which implies that strict wall scaling is restored in
the infinite-Reynolds-number limit. The extrapolated limit distribution of the streamwise
velocity variance features a buffer-layer peak value of 〈u2〉+ ≈ 12.1, and an additional
outer peak with larger magnitude. The analysis of the velocity spectra also suggests a
similar behaviour of the dissipation rate of the streamwise velocity variance at the wall,
which is expected to attain a limiting value of approximately 0.28, hence slightly exceeding
the value 0.25 which was assumed in previous analyses (Chen & Sreenivasan, J. Fluid
Mech., vol. 908, 2021, R3). We have found evidence suggesting that the reduced near-wall
influence of wall-attached eddies is likely linked to the formation of underlying turbulent
Stokes layers.

Key words: pipe flow, turbulence simulation, turbulent boundary layers

1. Introduction

A fundamental challenge in fluid dynamics research is the identification of appropriate
scaling laws for the turbulence properties. In wall turbulence, the classical scaling
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for the velocity fluctuations is based on the friction velocity, namely uτ = (τw/ρ)1/2,
where τw is the wall shear stress, and ρ is the fluid density. Two length scales can
instead be identified, namely the viscous (inner) length scale δv = ν/uτ (with ν the
fluid kinematic viscosity), and the outer length scale, say δ, connected with the global
dimensions of the wall layer. This classical scenario, first envisaged by Prandtl (1925),
was challenged by later experimental and numerical data (Spalart 1988; DeGraaff & Eaton
2000; Marusic 2001; Metzger & Klewicki 2001, to mention a few), which showed that the
inner-scaled wall-parallel velocity variances have a clear Reynolds-number dependence.
A theoretical layout to explain violations from strict inner-layer universality was set by
Townsend (1976), through the so-called attached-eddy model, hereafter referred to as
AEM. The model appeals to the existence of a self-similar hierarchy of eddies rooted at
the wall, which, on account of the impermeability condition, can only convey wall-parallel
velocity fluctuations in the wall proximity, thus retaining a footprint which manifests
itself with superposition and modulation effects (Hutchins & Marusic 2007b; Mathis,
Hutchins & Marusic 2009). The AEM and its subsequent extensions (Perry & Chong
1982; Perry, Henbest & Chong 1986; Perry & Marusic 1995; Marusic & Monty 2019)
currently constitute the most complete theoretical framework to explain the distributions
of the statistical properties in wall turbulence. One key prediction of the AEM is that
the inner-scaled wall-parallel velocity variances at a fixed outer-scaled location should
decrease logarithmically with the wall distance (Townsend 1976; Perry & Chong 1982;
Meneveau & Marusic 2013). A weaker corollary of the model (Marusic, Baars & Hutchins
2017; Baars & Marusic 2020b) is that the inner-scaled velocity variances at fixed y+
(hereafter, the ‘+’ superscript refers to inner normalization) in the inner part of the wall
layer should increase logarithmically with Reτ , where Reτ = δ/δv = uτ δ/ν, is the friction
Reynolds number. If true, this corollary would imply that strict wall scaling is violated.

At least one potential weakness may be envisaged in applying the AEM to
asymptotically high Reτ . If the growth of the buffer-layer peak of the streamwise velocity
variance were to persist indefinitely, and if the peak consistently occurred at the same
position ( y+ ≈ 15, see Sreenivasan 1989), it would lead to an increasingly high probability
of instantaneous negative velocity events. This would likely alter the nature of the flow.
Whereas the possibility of instantaneous velocity reversal in the viscous sublayer is known
(Lenaers et al. 2012), it is hard to believe that this can extend to the buffer layer. In fact, an
alternative scenario has been recently advocated by Chen & Sreenivasan (2021), whereby
growth of the buffer-layer peak would saturate on account of a bound on the dissipation
rate of the streamwise velocity variance. This would in turn imply that the wall-parallel
velocity variances follow a defect power-law dependence with the wall distance, rather
than logarithmic. Eventually, strict wall scaling would be restored in the limit of very
high Reynolds numbers. Although the model of Chen & Sreenivasan (2021) lacks at the
moment solid mathematical foundations, it nevertheless seems to comply with existing
direct numerical simulation (DNS) and experimental data at least as well as the classical
AEM. Hence, it has stirred the interest of the community, stimulating a number of
follow-up studies (Chen & Sreenivasan 2022; Klewicki 2022; Monkewitz 2022, 2023;
Hwang 2024; Nagib, Monkewitz & Sreenivasan 2024). A common conclusion drawn from
those studies appears to be that discerning alternative scaling based solely on inspection
of basic statistics, such as velocity variances, requires access to Reynolds numbers that
are well beyond the capabilities of current and possibly future experimental and numerical
approaches.

The key objective of this paper is showing that some insight into the asymptotic
behaviour of turbulence in the near-wall region can in fact be achieved even with current
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Flow case Lz/R Mesh (Nθ × Nr × Nz) Reb f Reτ T/τt Line style

B 15 768 × 96 × 768 17 000 0.02719 495.6 192.9
C 15 1792 × 164 × 1792 44 000 0.02119 1132.2 50.4
C-FY 15 1792 × 328 × 1792 44 000 0.02122 1132.2 46.1
C-L 30 1792 × 164 × 3584 44 000 0.02119 1132.3 52.8
C-LL 45 1792 × 164 × 5376 44 000 0.02114 1131.0 45.3
D 15 3072 × 243 × 3072 82 500 0.01828 1972.0 45.1
E 15 4608 × 327 × 4608 133 000 0.01657 3026.8 26.9
F 15 9216 × 546 × 9216 285 000 0.01421 6006.4 18.2
G 15 18 432 × 1024 × 18 432 612 000 0.01242 12054.5 6.99

Table 1. Flow parameters for DNS of pipe flow. Here, R is the pipe radius, Lz is the pipe axial length, Nθ , Nr
and Nz are the number of grid points in the azimuthal, radial and axial directions, respectively, Reb = 2Rub/ν is
the bulk Reynolds number, f = 8τw/(ρu2

b) is the friction factor, Reτ = uτ R/ν is the friction Reynolds number,
T is the time interval used to collect the flow statistics and τt = R/uτ is the eddy turnover time.

day data. For this purpose, we examine the velocity spectra obtained from a newly
generated DNS dataset of turbulent pipe flow, reaching Reynolds numbers up to Reτ ≈
12 000, based on which we believe that informed extrapolation is possible.

2. The DNS database

This paper extends upon a previous publication on the subject, where Reynolds numbers
up to Reτ ≈ 6000 were achieved (Pirozzoli et al. 2021). Here, the database is enlarged
and improved, by extending the time interval of previous DNS, and including a new
data point at Reτ ≈ 12000. A list of the flow cases is reported in table 1, which includes
basic information about the computational mesh and some key parameters. The numerical
algorithm is the same as in Pirozzoli et al. (2021), and details on the mesh resolution
are provided in Appendix A. As one can see in table 1, the largest DNS has run for
less than ten eddy turnover times, which is the commonly accepted limit to guarantee
time convergence (Hoyas & Jiménez 2006). Nevertheless, careful examination of the time
convergence according to the method of Russo & Luchini (2017) has shown that the
estimated standard deviation in the prediction of the streamwise velocity variance in the
range of wall distances under scrutiny here ( y+ � 400), is at most 0.6 %. Uncertainty
is obviously larger in the velocity spectra, for which confidence bands are provided,
see e.g. figure 3. Essential details regarding the mean velocity profiles are provided in
Appendix B; however, a comprehensive overview of the DNS results will be presented in
future publications. Here, the emphasis is on the spectra of streamwise velocity and the
associated variances.

3. Flow organization

The qualitative structure of flow case G (corresponding to Reτ ≈ 12 000) is not dissimilar
to what observed in previous publications (Pirozzoli et al. 2021), in that the near-wall
region is visually dominated by small-scale streaks whose size scales in inner units, and
large-scale streaks scaling on R. This is well portrayed in figure 1, which shows the
instantaneous streamwise velocity at a distance of fifteen wall units from the wall, each
normalized by the corresponding root-mean-square value, at various Reynolds numbers.
According to the established scenario (Hutchins & Marusic 2007a), the flow features a
two-scale organization, with a large number of small-scale streaks whose typical size
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Figure 1. Normalized streamwise velocity fluctuations (u/
√

〈u2〉), at y+ = 15. Thirty-two contours are
shown, from −3 to 3, in colour scale from blue to red.
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scales in inner units, and superposed on those large-scale streaks, being the footprint
of ‘superstructures’ (according to the original definition of Hutchins & Marusic 2007a),
whose size is instead proportional to R. Hence, whereas the former become vanishingly
small as Reτ increases, the size of the latter is visually unaffected. Careful inspection
of the figures further suggests that the superstructures seem to be most intense at the
lowest Reynolds number under consideration, whereas their strength seems to slightly
decline at higher Reτ . This observation would imply that the near-wall influence of the
superstructures, which are rooted in the outer layer, slightly decreases with the Reynolds
number, to an extent that we will attempt to quantify in this manuscript.

Figure 2 shows the spectral maps for the streamwise velocity field, namely the spectral
densities (Eu), presented as a function of the wall distance ( y) and of the spanwise
wavelength (λθ ), pre-multiplied by kθ = 2π/λθ . The figure highlights the near universality
of the small scales of motion, with a prominent buffer-layer peak which is universal in
inner wall units, and an outer energetic site featuring R-sized very large-scale motions
previously observed in experiments (Kim & Adrian 1999; Hellström & Smits 2014), and
which correspond to the superstructures for the present flow. Between the two primary
locations, a band of energetic intermediate modes is observed, with lengths roughly
proportional to their distance from the wall, aligning with the AEM (Hwang 2015). The
discrepancy between the two sites, in terms of both physical distance and of eddy size,
increases in proportion to Reτ , reaching approximately two orders of magnitude in flow
case G. The figure also well clarifies that the influence of the attached eddies and of the
O(R) eddies on streamwise velocity fluctuations extends down to the wall. Indeed, based
on dimensional arguments, spectral densities in the attached-eddy region are expected to
depend on λθ /y, hence the corresponding iso-lines are expected to occur in bands parallel
to the main energetic ridge, which we highlight with a diagonal line in panel (G). While
this is approximately true in the region above the main ridge, the spectral iso-lines rather
tend to attain a triangular shape in the region between the spectral ridge and the wall, as
a result of energy ‘leakage’ from the overlying eddies. This region under the influence of
wall-attached eddies is tentatively marked with dashed red lines in figure 2G, showing that
an upper value of the wall distance exists past which the influence of outer eddies is not
felt. Setting the maximum wavelength of the attached eddies to λθ = 0.4R, it turns out
that the maximum wall distance at which their influence is felt is y+

max ≈ 0.0044 Reτ , with
y+

max ≈ 530 at the highest Reynolds number under scrutiny here. This ‘near-wall’ region is
the main subject of investigation in the present study.

4. The spectra of streamwise velocity

Previous models of the velocity spectra in turbulent wall layers are mainly based on
the work of Perry et al. (1986). The key idea is that, away from the wall, in the
inviscid-dominated region, the spectra can be distinguished in three regions: the range
of dissipative eddies, scaling in inner units, the region of the δ-sized eddies (here,
R-sized), scaling in outer units, and a range of wall-attached eddies, for which the relevant
length scale is the wall distance. In this region, under the crucial assumption that the
population density of eddies that varies inversely with size and hence with distance
from the wall, Perry et al. (1986) predicted the occurrence of a k−1 spectral range,
where k is any wall-parallel wavenumber. Integration of the resulting spectra yields the
prediction, consistent with the phenomenological theory of Townsend (1976), that the
streamwise velocity variance should decay logarithmically with the outer-scaled wall
distance in the region of the wall layer controlled by the attached eddies. Whereas
this scenario is qualitatively confirmed in the spectral maps obtained from experiments
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Figure 2. Variation of pre-multiplied spanwise spectral densities of fluctuating streamwise velocity with wall
distance. Wall distances and wavelengths are reported both in inner units (bottom, left axes), and in outer units
(top, right axes). In G the diagonal line denotes the trend y+ = 0.11λ+θ , and the trapezoidal region bounded by
the red dashed line marks the region of near-wall influence of attached eddies. Contour levels from 0.36 to 3.6
are shown, in intervals of 0.36.

and DNS, quantitative evidence for the k−1 spectral range is quite scarce (Vallikivi,
Ganapathisubramani & Smits 2015; Baars & Marusic 2020a), and the original authors
(Perry et al. 1986) also observed deviations from the expected trend. Marusic & Monty
(2019) and Baars & Marusic (2020a) noted that limited Reynolds numbers could be a
reason for failure in observing the expected scaling. In any case, it is not quite clear
why and how the spectral scaling in the outer, inviscid-dominated region should reflect
the near-wall region in which the peak velocity variance occurs, since viscous effects
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can be non-negligible (Hwang 2016). Arguments for why this should be the case were,
nonetheless, offered by Marusic et al. (2017); Baars & Marusic (2020b).

In figure 3 we show the spanwise spectral densities of streamwise velocity fluctuations
at a number of locations at fixed y+ < y+

max. Uncertainty bars are reported in grey shades
in the left-hand side panels for flow case G, showing that the effects of limited time
convergence are mainly concentrated at scales λθ � R. The figure provides clear evidence
that universality of the spectra at the small scales is achieved when inner scaling is used, at
least for Reτ � 2000. Furthermore, this universal inner-scaled layer tends to become more
and more extended towards longer wavelengths as Reτ increases, until transition occurs to
a R-scaled spectral range. No clear evidence for a definite k−1

θ spectral range is observed,
which in the pre-multiplied representation would correspond to a plateau region. Careful
inspection of the velocity spectra in log–log representation (see the right-hand side panels)
rather suggests the existence of a range of wavelengths with negative power-law behaviour.

Standard overlap arguments such as those used by Millikan (1938) to infer the behaviour
of the mean velocity profile in wall-bounded flows can also be applied to determine the
plausible structure of the velocity spectra, by assuming that: (i) the typical velocity of
all eddies is the friction velocity and (ii) the typical length of the small eddies is δv ,
whereas the typical length of the large eddies is R. The transition (overlap) layer between
the inner- and outer-scaled end of the velocity spectra should then have either the form of
a logarithmic law, or of a power law. Based on the DNS data, the second option appears
to be more appropriate, and in that case the spectral densities in the overlap layer should
behave as

k+
θ E+

u = C
(
λ+θ

)−α = CRe−α
τ

(
λθ

R

)−α

, (4.1)

holding in inner and outer scaling, respectively, where α is a possibly universal constant,
and C is a constant which in general could depend on y+. Equation (4.1) includes the k−1

θ
spectral scaling as a special case, occurring for α = 0. In that case, both the small-scale
end and the large-scale end of the spectrum should be universal.

The DNS data indeed support (4.1), with α ≈ 0.18 ± 0.016, as we have estimated by
fitting the DNS data for flow case G in the range of wavelengths 1000 � λ+θ � 10 000.
Notably, the power-law exponent is the same at all wall distances and all Reynolds
numbers, within the numerical uncertainty. The power-law range is found to be widest
at y+ = 50. Closer to the wall, the strong buffer-layer spectral peak tends to mask this
range towards the small wavelengths, whereas farther from the wall the region under the
influence of attached eddies tends to progressively shrink as y+

max is approached. This is in
our opinion a very important observation, which has a number of implications.

To test the universality of the large-scale end of the spectra, in figure 4, the spectral
densities are shown as a function of the outer-scaled wavelength. Universality is clearly
not as good as seen for the small wavelengths in figure 3, with the energy associated with
the large scales of motion becoming slightly but consistently lower at higher Reynolds
number, for given λθ /R. In figure 5 we then show the outer-scaled spectra compensated
by Reα

τ , as suggested from (4.1). The figure shows that, with good accuracy, universality
at the large-scale end of the spectrum is recovered in a wide range of scales, up to a
short-wavelength limit which shifts to the left as Reτ increases.

Overall, convincing evidence exists that the small-scale end of the velocity spectra is
universal, whereas the large-scale end is not, with an overlap layer connecting the two
ends which features a negative power-law behaviour with exponent α ≈ 0.18. The same
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Figure 3. Pre-multiplied spanwise spectral densities of streamwise velocity at various wall distances: y+ = 1
(a,b), y+ = 15 (c,d), y+ = 50 (e, f ), y+ = 100 (g,h), y+ = 200 (i, j), y+ = 400 (k,l). A semi-log representation
is used in the left-hand side panels, and a log–log representation is used in the right-hand side panels. The
shaded grey regions in the left-hand side panels denote the expected range of uncertainty for flow case G. The
dashed grey lines in the right-hand side panels mark the trend λ−0.18

θ . The colour codes are as in table 1.
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codes are as in table 1.

behaviour is also traced in spectra from plane channel flow DNS (Lee & Moser 2015), as
shown in Appendix C, which corroborates the generality of our findings.

5. The streamwise velocity variance

The information derived from the analysis of the velocity spectra can be distilled to infer
the behaviour of the velocity variance, taking inspiration from Hwang (2024). Letting λs
and λ�, respectively, indicate the lower and upper limits for the observed overlap spectral
range, the velocity variance can be expressed as

〈
u2

〉+ =
∫ λ+s

0
k+
θ E+

u,s d log λ+θ︸ ︷︷ ︸
〈u2〉+s

+
∫ λ+�
λ+s

k+
θ E+

u,o d log λ+θ︸ ︷︷ ︸
〈u2〉+o

+
∫ ∞

λ+�
k+
θ E+

u,� d log λ+θ︸ ︷︷ ︸
〈u2〉+�

, (5.1)

where the subscripts s, � and o denote, respectively, the contributions of the smallest scales,
the largest scales and the intermediate, overlap-layer scales. Although the precise values of
the limits in (5.1) are not important, it is crucial that the lower limit scales in inner units,
hence λ+s = const., and that the upper limit scales in outer units, hence λ�/R = const.
Based on the evidence previously given that the smallest scales tend to be universal across
the Reτ range, the associated contribution to the velocity variance is also expected to be
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Figure 5. Pre-multiplied spanwise spectral densities of streamwise velocity at various wall distances, reported
in outer scaling and compensated by Re0.18

τ : y+ = 1 (a), y+ = 15 (b), y+ = 50 (c), y+ = 100 (d), y+ = 200
(e), y+ = 400 ( f ). The colour codes are as in table 1.

asymptotically constant, namely 〈
u2

〉+
s

= As( y+). (5.2)

Since the upper end of the overlap layer should scale in outer units, we further have λ+� =
Reτλ�/R ∼ Reτ . Based on the matching condition (4.1), and on inspection of figure 5, the
contribution from the large scales is then expected to vary as〈

u2
〉+
�

= B�( y+) Re−α
τ . (5.3)

This is an especially significant formula implying that imprinting effects imparted by the
largest scales of motion (superstructures) on the near-wall region should actually decrease
as Reτ increases, in line with observations made by Hwang (2024). Last, the contribution
of the overlap layer can be evaluated by integrating the power-law spectrum given in (4.1),
thus obtaining〈

u2
〉+
o

= C( y+)

α

[(
λ+s

)−α −
(
λ�

R

)−α

Re−α
τ

]
= Ao( y+) − Bo( y+) Re−α

τ . (5.4)

The most important inference of the present analysis is that the overall velocity variance
should then vary as〈

u2
〉+ = (

As( y+) + Ao( y+)
)︸ ︷︷ ︸

A( y+)

− (
Bo( y+) − B�( y+)

)︸ ︷︷ ︸
B( y+)

Re−α
τ , (5.5)
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Streamwise velocity variance asymptotics

Station A( y+) B( y+)

y+ = 1 0.281 ± 0.00257(0.915 %) 0.396 ± 0.0101(2.56 %)

y+ = 15 12.0 ± 0.0808(0.672 %) 14.2 ± 0.319(2.25 %)

y+ = 50 10.6 ± 0.105(0.985 %) 20.4 ± 0.413(2.03 %)

y+ = 100 11.1 ± 0.133(1.20 %) 25.2 ± 0.526(2.09 %)

y+ = 200 12.3 ± 0.185(1.51 %) 31.2 ± 0.729(1.51 %)

y+ = 400 13.3 ± 0.307(2.31 %) 37.8 ± 1.21(3.21 %)

Table 2. Fitting parameters to use in (5.5), based on DNS data fitting, at several off-wall positions, with
accompanying asymptotic standard errors (α = 0.18 is assumed).
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Figure 6. Streamwise velocity variances (symbols) as a function of Reτ (a) and as a function of Re−0.18
τ (b),

at various off-wall positions, and corresponding fits, according to (5.5), with coefficients given in table 2.

where the functions A and B do not depend explicitly on the Reynolds number, given the
assumptions made to define λs and λ�. Interestingly, this formula is formally identical to
the asymptotic expansion suggested by Monkewitz (2022), in which Re−α

τ has the role
of a gauge function. This formula predicts that, at any fixed y+, the velocity variance
should increase, asymptoting to a finite limit as Reτ increases, thus restoring strict wall
scaling. Values for the asymptotic constants A, B determined from fitting the DNS data
at representative off-wall locations are reported in table 2, along with the corresponding
standard deviations. The resulting distributions of the streamwise velocity variances as a
function of Reτ are shown in figure 6. The quality of the fit is quite good, although it tends
to deteriorate farther from the wall, since the power-law spectral range becomes narrow,
making extrapolations not fully reliable. Most notably, figure 6 shows that, whereas the
defect power law could well be mistaken for logarithmic growth at y+ = 15, the trends at
positions farther from the wall are distinctly different from logarithmic. This difference is
due to the large contribution conveyed by the smallest eddies close to the wall (recalling
figure 3), and tends to overshadow Reynolds-number variations associated with the larger
eddies. The reduction of the energetic peak associated with the near-wall streaks occurring
farther from the wall makes the actual Reynolds-number dependence manifest. Anyhow,
the trend towards the asymptotic limit is quite slow, and even at as extreme Reynolds
numbers as Reτ = 106, the predicted difference between the velocity variance at y+ = 15
and its asymptotic value would still be approximately 8 %.

The extrapolated distributions of the streamwise velocity variance as a function of the
wall distance are shown in figure 7, for various Reτ . While confirming that the predictive
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Figure 7. Predicted distributions of streamwise velocity variances at various Reτ , according to (5.5), assuming
α = 0.18. The symbols denote the DNS data used to determine the fit coefficients A( y+), B( y+) (see table 1
for the colour codes).

formula (5.5) covers well the range of Reynolds numbers for which the model is trained,
the figure also shows extrapolations beyond that range. Regarding the buffer-layer peak, it
is predicted to remain more or less at the same position in inner units, and its maximum
amplitude at infinite Reynolds number is predicted to be approximately 12.1. Taking into
consideration the uncertainty associated with the parameter α, the buffer-layer velocity
variance peak is estimated to fall within the range of 11.9 to 12.5. It is worth mentioning
that these values are somewhat higher than the value of 11.5 derived from the Re−0.25

τ
defect law (Chen & Sreenivasan 2021), while Monkewitz (2022) obtained a value of 11.3
through an inner asymptotic expansion informed by DNS data. Farther from the wall, the
distribution tends to form a shoulder as Reτ increases, with the eventual onset of a clear
‘outer peak’. This outer peak is barely visible at the DNS-accessible Reynolds numbers,
but based on the extrapolated data it should attain a higher value than the inner peak at
extreme Reτ .

The primary inquiry revolves around whether the extrapolated distributions agree with
experimental measurements. To address this question, in figure 8 we present experimental
data collected from various facilities using different measurement techniques. Specifically,
particle-image velocimetry (PIV) measurements from the CICLoPE facility (Willert et al.
2017), hot-wire anemometry (HWA) measurements conducted with nanoscale thermal
anemometry probes at Princeton’s Superpipe facility (Hultmark et al. 2012) and laser
Doppler velocimetry (LDV) measurements carried out at the Hi-Reff facility in Japan
(Ono et al. 2023) are included. The comparison reveals highly favourable agreement
with all measurements at ’low’ Reynolds numbers, approximately Reτ � 5000. However,
notable discrepancies arise at higher Reynolds numbers, varying considerably depending
on the set of measurements. Specifically, while alignment remains nearly perfect with the
PIV measurements in the CICLoPE facility, the DNS-based extrapolations yield values
significantly higher than those obtained from the SuperPipe data. A similar trend of
over-prediction of the experimental data is also noticeable, albeit to a lesser degree, when
comparing with the LDV measurements in Hi-Reff. In principle, these differences could
arise from shortcomings in the DNS and/or its application for extrapolations, but they
are more likely associated with issues in the experimental data. Indeed, the three sets of
measurements utilized here for reference demonstrate notable discrepancies among each

989 A5-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

46
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.467


Streamwise velocity variance asymptotics

0

2

4

6

8

10

12

0

2

4

6

8

10

12

0

2

4

6

8

10

12

100 101 102 103 104 105

100 101 102 103 104 105

100 101 102 103 104 105

5383
11 708
19 918
27 983
39 944

1985
3334
5411

10 480
20 250
37 690
68 370
98 190

y+

990
1990
2990
4200
6050
8700

11 200
14 200
20 750

〈u
2
〉+

〈u
2
〉+

〈u
2
〉+

(b)

(a)

(c)

Figure 8. Comparison of streamwise velocity variance distributions predicted from (5.5) (solid lines), with
experimental measurements taken at the SuperPipe facility ((b) Hultmark et al. 2012), at the CiCLoPE
facility ((c) Willert et al. 2017) and at the Hi-Reff facility ((d) Ono, Furuichi & Tsuji 2023), at matching
values of Reτ , as given in the respective legends.

other, suggesting possible filtering effects, particularly for HWA and LDV measurements,
whereas PIV measurements might be less affected.

The current analysis also has direct implications for the dissipation rate of the
streamwise velocity variance, ε11 = ν〈|∇u|2〉. As noted by Chen & Sreenivasan (2021),
at the wall this quantity equals the viscous diffusion term, which in inner units
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is d2〈u2〉+/dy+2. The latter quantity (not shown) is virtually indistinguishable from
〈u2〉+( y+ = 1), since d〈u2〉+/dy+ = 0 at the wall. The inferred trend of 〈u2〉+( y+ = 1)

(see table 2) then implies that the wall dissipation rate should asymptote to a value of
approximately 0.28, with uncertainty of ±0.01 on account of variability of α. Although a
bit higher than the upper bound of 0.25 advocated by Chen & Sreenivasan (2021), and the
value of 0.26 predicted by Monkewitz & Nagib (2015) for zero-pressure-gradient boundary
layers, this result suggests that wall dissipation retains the same order of magnitude as the
maximum production in the buffer layer.

6. Discussion and conclusions

The current analysis, informed by spectral DNS data of turbulent pipe flow up to
Reτ ≈ 12 000, raises several significant points. Firstly, it offers quantitative arguments,
alongside physical intuition, suggesting that strict wall scaling should be restored in the
limit of infinite Reynolds numbers. This assertion aligns with propositions put forth in
recent literature (Chen & Sreenivasan 2021; Monkewitz 2022), albeit founded on entirely
different arguments. In particular, consistent with the assumptions made by Chen &
Sreenivasan (2021), it appears that the appropriate asymptotic behaviour towards the
infinite-Reynolds-number limit follows a defect power law. However, the exponent of this
negative power law appears to deviate somewhat from the α = 0.25 advocated in those
studies, being instead closer to α = 0.18, with an uncertainty of approximately ±10 %,
as revealed by the analysis of the velocity spectra. This discrepancy might stem from
the inaccurate assumption made by those authors that the wall dissipation rate should
asymptotically approach 0.25 not to exceed the maximum production rate, although this
assertion cannot be rigorously justified on mathematical grounds.

The current analysis fits well within the framework of the classical attached-eddy model.
Indeed, the spectrograms reported in figure 2 bear the clear signature of a hierarchy of
wall-attached eddies. However, in contrast to the classical formulation of the AEM, we
observe that the near-wall signature of these attached eddies becomes fainter as their
centre moves away from the wall. This phenomenon is reflected in a spectral decay that is
shallower than the traditionally accepted k−1 spectrum derived from inviscid arguments.
A secondary implication is that the imprinting of superstructures (here, R-sized eddies)
on the wall diminishes as Reτ increases. However, this observation does not imply that
inner-/outer-layer interactions are negligible. Rather, the slow decay rate implies that
the influence of outer-layer eddies remains substantial at any reasonably high Reynolds
number.

The crucial question revolves around the reason for the spectral slope being less steep
than k−1. A plausible explanation is the presence of viscous effects, which impede the flow
in the near-wall region. While the AEM treats inactive motions (whose size significantly
exceeds the distance from the wall) as satisfying a slip condition at the wall, in reality,
they do not. In this regard, the analysis conducted by Spalart (1988) holds considerable
merit. He argued that inactive eddies influence the near-wall region by inducing periodic,
low-frequency sloshing motions, leading to the formation of Stokes layers of either laminar
or turbulent nature. In the first case, analytical solution of the Navier–Stokes equations
with time-periodic change of the free-stream velocity would yield the following form of
the streamwise velocity variance (Schlichting & Gersten 2000):

〈
u2

〉+ ∼ 1 + e−2y/Δ − 2 cos( y/Δ)e−y/Δ, (6.1)
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Figure 9. Flow case G: pre-multiplied spectral density of streamwise velocity as a function of wall
distance, corresponding to various wavelengths: λ+θ = 455 ( y+

s = 50) (purple), λ+θ = 909 ( y+
s = 100) (green),

λ+θ = 3636 ( y+
s = 400) (orange), λ+θ = 10970 ( y+

s = 1205) (red). The bullets denote the wall distance of the
corresponding eddy centres, see figure 2. The dashed lines in (a) denote predictions of (6.1) with Δ+ = 10,
and in (b) predictions of (6.2).

with Δ = (2ν/ω)1/2 the thickness of the Stokes layer, and ω the oscillation frequency.
Bradshaw (1967) proposed a model for turbulent Stokes layers based on the idea that
the primary effect of low-frequency inactive motions is a time-periodic change of the
wall shear stress, namely τw = τ̄w(1 + A cos(ωt)), with A � 1. Assuming next that the
law-of-the-wall has time to adapt to low-frequency modulation of the wall shear stress
results in the following prediction for the velocity variance associated with inactive
motions: 〈

u2
〉+ ∼

(
U+ + y+ dU+

dy+

)2

. (6.2)

These concepts were put to the test by Spalart (1988), who compared the predictions in
(6.1) and (6.2) with the difference in velocity variances at two modest Reynolds numbers,
which he used as a proxy for the contribution of inactive motions. Here, both approaches
are examined by plotting profiles of E+

u (λ+θ , y+) for various values of λ+θ , which in the
AEM interpretation characterize the intensity of streamwise velocity fluctuations induced
by attached eddies centred at a wall distance y+

s ≈ 0.11λ+θ (refer to figure 2).
Figure 9(a) presents a comparison of the spectral density profiles with the prediction

given by (6.1), where we have arbitrarily assumed Δ+ = 10, and attempted to adjust the
slope of the DNS data at the wall. While the values of the velocity intensities appear
reasonable, the shape is evidently incompatible with the DNS data. On the other hand,
figure 9(b) depicts the predictions of (6.2), again after adjusting the near-wall slope. In
this case, the agreement with the DNS data is remarkable, particularly for wall distances
smaller than the centre of the attached eddies (indicated with bullets in the figure).
This observation serves as plausible evidence that turbulent Stokes layers do indeed
exist, thereby providing the retardation effects responsible for attenuating the influence
of wall-distant eddies.

Although extrapolation is known to be a dangerous, oftentimes ill-posed exercise, we
believe that the present observations lay down a sufficiently solid background to project
today’s DNS results to much higher Reynolds number than feasible in the near or even
foreseeable future. When pushed to the extreme, extrapolation of the present data would
suggest a scenario where the buffer-layer peak of the streamwise velocity variance, while
remaining finite, would be much larger than in any current DNS and experiments, but
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roughly at the same inner-scaled position. Another important feature which we foresee
is a secondary distinct peak farther from the wall, whose strength becomes comparable
to and eventually larger than the buffer-layer peak. The primary caution we emphasize
is that these predictions rely on the assumption that the observed expansion of the
power-law spectrum will persist indefinitely. Should a definite k−1 spectral range arise
at higher Reynolds numbers than those achieved thus far in DNS, as suggested by some
experimental studies (Baars & Marusic 2020a), a logarithmic increasing trend would
resume. Furthermore, it is important to highlight that the current analysis does not offer an
explanation for the specific value of the spectral scaling exponent in the overlap layer. In
contrast, Chen & Sreenivasan (2021) rationalized the presence of a −0.25 exponent in the
proposed defect power law by attributing it to the flux of additional energy dissipation from
the near-wall region to the outer flow. Thus, further theoretical efforts are still necessary
to fully elucidate the observed data and unambiguously establish the asymptotic state of
wall turbulence.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2024.467.
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Appendix A. Box and grid sensitivity analysis

The grid resolution in the axial and azimuthal directions is decided based on
previous experience with second-order finite-difference solvers which indicates that
grid-independent results are obtained provided �x+ ≈ 10, R+�θ ≈ 4.1 (Pirozzoli et al.
2021), hence the associated number of grid points is selected as Nz ≈ Lz/R × Reτ /10,
Nθ ∼ 2π × Reτ /4.1. The wall-normal distribution of the grid points is designed after the
prescriptions set by Pirozzoli & Orlandi (2021), to resolve the steep near-wall velocity
gradients and the local Kolmogorov scale away from the wall, according to

y+( j) = 1
1 + ( j/jb)2

[
�y+

w j +
(

3
4
αcηj

)4/3

( j/jb)2

]
, (A1)

where �y+
w = 0.05 is the wall distance of the first grid point, jb = 40 defines the grid

index at which transition between the near-wall and the outer mesh stretching takes place
and cη = 0.8 guarantees resolution of wavenumbers up to kmaxη = 1.5, with η the local
Kolmogorov length scale. The distributions of the grid points for the DNS listed in table 1
are shown in figure 10(a). A slightly finer mesh is used for flow case G than for the other
cases. The wall-normal resolution is verified a posteriori in figure 10(b), where we show
the grid spacing expressed in local Kolmogorov units, which is found to be no larger than
2.2 throughout the radial direction.
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Figure 10. (a) Distribution of wall-normal grid coordinates as a function of grid index ( j), and
(b) corresponding grid spacings expressed in Kolmogorov units. The colour codes are as in table 1.

The sensitivity of the computed results to the computational box size and grid resolution
has been assessed through additional simulations conducted at Reb = 44 000 (flow case
C), as listed in table 1. Specifically, we have doubled the number of points in the radial
direction (flow case C-FY) and doubled and tripled the pipe length (flow cases C-L and
C-LL, respectively). All these flow cases have been simulated for numerous eddy turnover
times, for the purpose of removing the time sampling error. The resulting change in the
one-point statistics is well below 1 %, as illustrated in figure 11, even for flow properties
that are challenging to converge over time, such as the log-law indicator function (Hoyas
et al. 2024). Figure 12 additionally presents a comparison of the pre-multiplied spanwise
spectra at several off-wall positions for the same flow cases. Once again, box and grid
independence is demonstrated to be excellent, indicating that uncertainties primarily stem
from finite time sampling.

Appendix B. Mean velocity profiles

The mean velocity profiles for the DNS cases listed in table 1 are presented in figure 13(a),
accompanied by the associated log-law diagnostic functions shown in panel (b). The latter
quantity is commonly used to verify the presence of a genuine logarithmic layer in the
mean velocity profile, which would be indicated by a plateau. This diagnostic function
exhibits two peaks: one corresponding to the buffer layer, which is nearly universal in
inner scaling at Reτ � 103, and an outer peak corresponding to the wake region, which
also becomes approximately universal in inner units. Between these two regions, the
distribution tends to change significantly with the Reynolds number. While previous DNS
and analyses suggested linear deviations from the logarithmic behaviour (Afzal & Yajnik
1973; Jiménez & Moser 2007; Luchini 2017; Pirozzoli et al. 2021), at the highest Reynolds
number achieved in this study, the onset of a genuine logarithmic layer is observed, starting
at y+ ≈ 500 and extending up to y/R ≈ 0.2. This finding is consistent with the SuperPipe
data (symbols in panel (b)), recent DNS of plane channel flow (Hoyas et al. 2022) and is
in line with the theoretical analysis of Monkewitz (2021). The data support a value of the
Kármán constant of κ ≈ 0.38, slightly less than estimated in previous studies, in which,
however, a genuine logarithmic layer was not observed. The figure reveals a large scatter
associated with limited time convergence of flow case D for this indicator, confirming
recent analyses (Hoyas et al. 2024). While the predictions for the inner layer appear to
be robust, much longer integration times are required to achieve satisfactory convergence
of statistics associated with velocity derivatives. However, achieving such convergence is
currently beyond the capabilities of DNS. Figure 13(a) confirms that the mean velocity
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Figure 11. Box and grid sensitivity study for one-point statistics: (a) inner-scaled mean velocity profiles and
streamwise velocity variances, (b) log-law diagnostics function, (c) velocity variances. Flow cases C, C-FY,
C-L, C-LL are shown, see table 1 for the line style.

profiles tend to cluster around a common logarithmic distribution. The DNS velocity
profiles for Reτ � 103 follow this distribution with deviations of no more than 0.1 inner
units from y+ ≈ 30 to y/R ≈ 0.15, where the core region develops.

Appendix C. Comparison with DNS of channel flow

In figure 14, we present the spanwise spectra of the streamwise velocity obtained from
the channel flow DNS conducted by Lee & Moser (2015), at several off-wall locations,
while maintaining a constant y+. This figure offers clear evidence that universality of the
spectra at small scales is achieved when inner scaling is employed, at least for Reτ � 2000.
Furthermore, this universal inner-scaled layer tends to become more extended towards
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Figure 12. Box and grid sensitivity study for pre-multiplied spanwise spectral densities of streamwise velocity
at various wall distances: y+ = 1 (a), y+ = 15 (b), y+ = 50 (c), y+ = 100 (d), y+ = 200 (e), y+ = 400 ( f ).
Flow cases C, C-FY, C-L, C-LL are shown, see table 1 for the line style.
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Figure 13. Inner-scaled mean velocity profiles obtained from DNS are presented in panel (a), along with the
corresponding log-law diagnostic function shown in panel (b). In panel (a), the dashed line represents
the logarithmic fit U+

log = log y+/0.38 + 4.3. In panel (b), the dashed horizontal line denotes the inverse of
the expected Kármán constant, κ = 0.38, while symbols denote Princeton SuperPipe data (McKeon, Zagarola
& Smits 2005) at Reτ = 1825, 3328, 6617, 10914. The shaded grey regions denote the expected range of
uncertainty for flow case G (not visible in panel (a)). Colour codes for the lines are as described in table 1.

longer wavelengths as Reτ increases, until a transition to an h-scaled spectral range
occurs. These distributions support the findings reported in figure 3, indicating that the
premultiplied spectra at all considered wall distances exhibit a negative power-law range,
with an exponent of approximately 0.18, as for pipe flow. However, due to the more
limited range of available Reynolds numbers, a clear power-law behaviour is visible
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Figure 14. Pre-multiplied spanwise spectral densities of streamwise velocity from DNS of channel flow (Lee &
Moser 2015), at various wall distances: y+ = 1 (a,b), y+ = 15 (c,d), y+ = 50 (e, f ), y+ = 100 (g,h), y+ = 200
(i, j), y+ = 400 (k,l). A semi-log representation is used in the left-hand side panels, and a log–log representation
is used in the right-hand side panels. The dashed grey lines in the right-hand side panels mark the trend λ−0.18

θ .
The colour codes correspond to Reynolds numbers Reτ = 180 (blue), 550 (green), 1000 (cyan), 2000 (orange),
5200 (purple).
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Streamwise velocity variance asymptotics
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Figure 15. Analysis of velocity variance for turbulent channel flow (Lee & Moser 2015). (a) Streamwise
velocity variances (symbols) as a function of Reτ at various off-wall positions, along with corresponding fits
according to (5.5); and (b) predicted wall-normal distributions of streamwise velocity variances at various Reτ ,
again according to (5.5). In panel (b), the symbols denote the DNS data used to determine the fit coefficients
A( y+) and B( y+), with colour codes corresponding to Reτ = 550 (green), 1000 (cyan), 2000 (orange) and
5200 (purple).

only up to y+ ≈ 100. Similar to our analysis for pipe flow, figure 15(a) illustrates the
Reynolds-number trends of the velocity variance at various distances from the wall. This
figure reaffirms the accuracy of (5.5) in fitting the DNS data and visually highlights
deviations from a logarithmic behaviour.

Figure 15(b) depicts the resulting extrapolated distributions at extreme Reynolds
numbers. The outcome is qualitatively very similar to that shown in figure 7 for pipe flow,
demonstrating saturation of the buffer-layer peak and the onset of a dominant outer-layer
peak. We estimate that the asymptotic value of the buffer-layer peak is approximately
12.3, while the wall dissipation should asymptote to about 0.27, which aligns well with
the numerical values determined for pipe flow.
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