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Abstract We consider spectral projectors associated to the Euclidean Laplacian on the two-dimensional
torus, in the case where the spectral window is narrow. Bounds for their L2 to Lp operator norm are
derived, extending the classical result of Sogge; a new question on the convolution kernel of the projector
is introduced. The methods employed include `2 decoupling, small cap decoupling and estimates of
exponential sums.
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1. Introduction

1.1. Eigenfunctions of the Laplacian on the two-dimensional torus

We consider the torus:

T2 = R2/Z2,

on which Fourier series are given by:

f(x) =
∑
k∈Z2

f̂ke
2πik·x, f̂k =

∫
T2
f(x)e−2πik·x dx.

A classical question is to estimate the Lp norms of eigenfunctions of the Laplacian: if ϕ
is such that −∆ϕ = λ2ϕ on T2, and if it is normalized in L2, what is the optimal bound
on ‖ϕ‖Lp , for p ≥ 2? What should be expected is unclear (the question is asked in [4]),
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432 C. Demeter and P. Germain

but one possibility is that:

‖ϕ‖Lp .p 1 if p <∞, while ‖ϕ‖L∞ .ε λ
ε. (1.1)

This was proved for p=4 by Cooke [11] and Zygmund [26]; and for p = ∞, the bound

λ
C

log log λ follows from the divisor bound in Gaussian integers. Proving optimal bounds
for ‖ϕ‖Lp for any p ∈ (4,∞) appears to be a very hard problem, which can be relaxed
by considering spectral projectors on narrow spectral windows, to which we now turn.

1.2. A conjecture on spectral projectors on narrow windows

For λ> 2 and δ < 1, the spectral projector on the range (λ − δ, λ + δ) for the square
root of the Euclidean Laplacian is given through functional calculus by the formula:

Pλ,δ = 1(λ−δ,λ+δ)(
√
−∆) or Pλ,δf(x) =

∑
k∈Aλ,δ

f̂ke
2πik·x,

where Aλ,δ is the annulus with inner radius λ− δ and width 2δ:

Aλ,δ = {x ∈ R2, λ− δ < |x| < λ+ δ}.

Two consecutive eigenvalues of
√
−∆ close to λ are at least ∼ 1

2λ
−1 apart. Thus, if

δ = 1
4λ

−1, bounding Pλ,δ is equivalent to bounding eigenfunctions of the Laplacian.
In the present paper, we consider the following conjecture, which focuses on the case

where the spectral window is at least slightly larger than λ−1.

Conjecture A. ([15]). If p ≥ 2, the operator norm of Pλ,δ satisfies for any κ> 0:

‖Pλ,δ‖L2→Lp .κ,p λ
1
2−

2
p δ

1
2 + (λδ)

1
4−

1
2p if δ > λ−1+κ, (1.2)

or in other words:

‖Pλ,δ‖L2→Lp .κ,p


(λδ)

1
4−

1
2p if p ≤ 6

(λδ)
1
4−

1
2p if p ≥ 6, δ ≤ λ

−1+ 8
p+2

λ
1
2−

2
p δ

1
2 if p ≥ 6, δ ≥ λ

−1+ 8
p+2 .

The conjecture is said to be satisfied with ε loss if:

‖Pλ,δ‖L2→Lp .κ,p,ε λ
ε

[
λ

1
2−

2
p δ

1
2 + (λδ)

1
4−

1
2p

]
if δ > λ−1+κ. (1.3)

Remark 1.1. The justification for this conjecture can be found in [15], where two
basic examples are considered: the Knapp example, and the spherical example. They
lead to the two terms on the right-hand side of (1.2).
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Remark 1.2. Combining the conjecture with the guess (1.1), it might be the case
that the estimate (1.2) is true for any κ ≥ 0 and p ∈ [2,∞], with an implicit constant
C(p, κ) which only blows up as (p, κ) → (∞, 0).

1.3. Known results on Conjecture A

Conjecture A is known to hold in a number of cases:

• If δ=1, the conjecture corresponds to the fundamental result of Sogge [23], which
holds on any Riemannian manifold (see also [1] for a recent extension to loga-
rithmically small spectral windows for general non-positively curved manifolds,
including in particular the torus).

• If p=4, the conjecture was proved for the full range λ−1 < δ < 1 by
Bourgain–Burq–Zworski [6].

• If p ≤ 6, the conjecture with ε loss is a consequence of the `2 decoupling of
Bourgain–Demeter [9] as was observed in [15].

• If p = ∞, the conjecture for the full range λ−1 < δ < 1 with ε loss follows
immediately from the bound λε for the L∞ norm of eigenfunctions.

• If p = ∞, the conjecture without ε loss would be a consequence of the estimate
N(λ) = πλ2 + O(λδ) for the number N (r) of integer points in the disc with
radius r. This corresponds to the Gauss circle problem, for which the best current

bound, due to Huxley [20], allows δ > λ−
77
208+ε, with 77

208 ∼ 0.37. Note, however,
that Conjecture A is expected to hold down to δ = λ−1+κ, while the estimate

N(λ) = πλ2 +O(λδ) can only be true for δ > λ−
1
2 .

For the two-dimensional Euclidean cylinder, the conjecture is identical, and it has
been proved with ε loss [14]. Finally, this conjecture has also been considered in higher
dimensions, for which we refer to [4, 5, 7–10, 15, 16, 18].

1.4. A new conjecture

The convolution kernel:

Φλ,δ =
∑

k∈Aλ,δ∩Z2
e2πik·x is such that Pλ,δf = Φλ,δ ∗ f.

Conjecture B. If p ≥ 2 and κ> 0, then if δ > λ−1+κ,

‖Φλ,δ‖Lp .p,κ λ
1− 2

p δ + (λδ)
1
2 ,

or in other words,

‖Φλ,δ‖Lp .


(λδ)

1
2 if 2 ≤ p ≤ 4

(λδ)
1
2 if p ≥ 4 and δ < λ

4
p−1

λ1−
2
p δ if p ≥ 4 and δ > λ

4
p−1.
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434 C. Demeter and P. Germain

This conjecture is interesting in two respects: first, it is partially equivalent to
Conjecture A; and second, it is equivalent to questions on additive energies of
subsets of Z2. See § 4 for more on these two points. This conjecture is based on the
two following observations, which also show that the conjecture is optimal, if true.

• A naive counting argument shows that, for a given δ, there exists in any interval
of length 1 a λ such that #Aλ,δ ∩ Z2 & λδ. For this choice of δ and λ, Hölder’s
inequality and Parseval’s theorem imply that:

‖Φλ,δ‖Lp & ‖Φλ,δ‖L2 =
(
#A′

λ,δ

) 1
2 & (λδ)

1
2 .

• Still considering λ and δ such that #Aλ,δ ∩ Z2 & λδ, Bernstein’s inequality gives
that:

‖Φλ,δ‖Lp & λ−
2
p ‖Φλ,δ‖L∞ = λ−

2
p#A′

λ,δ & λ1−
2
p δ.

Note that the conjecture cannot hold all the way to κ=0 and p ≥ 2, since it would
imply a uniform bound on the number of lattice points on a circle, which is known to
fail.

1.5. Main results

Our main results verify the conjectures for various ranges in (p, λ, δ).

Theorem 1.3.

(i) Conjecture A holds if 2 ≤ p < 6, or p ≥ 6 and δ > min

λ−1− 6
p

3− 2
p , λ

−
10−64

p

29−14
p

+ε

.

(ii) Conjecture A holds with ε loss if 2 ≤ p ≤ 10, or δ > λ−
1
3 , or p = ∞.

This statement follows from combining Theorem 2.5 and Theorem 3.1. Turning to

Conjecture B, it is a consequence of Conjecture A if δ > λ
−1+ 8

p+2 ; thus, the previ-
ous theorem gives the validity of Conjecture B in some range. Furthermore, combining
Corollary 4.5 and Proposition 4.6 gives the following theorem.

Theorem 1.4. Conjecture B holds with ε loss if 2 ≤ p ≤ 6 or λ > δ−
1
3 .

Finally, we refer to § 5 for a graphical representation of the ranges in (p, λ, δ).

1.6. Ideas of the proofs and plan of the paper

1.6.1. Decomposition into caps

This is the first possible line of attack on Conjecture A, which is carried out in § 2; here,
caps are rectangles which optimally cover the annulus Aλ,δ. We investigate estimates on
functions whose Fourier support is restricted to caps containing a bounded number of

https://doi.org/10.1017/S0013091524000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000099


Spectral projectors on the two-dimensional torus 435

lattice points, relying crucially on `2 decoupling. Combining these estimates with an
estimate on caps with a given number of lattice points leads to our result in that section.

1.6.2. Dyadic decomposition of the kernel

This approach to Conjecture A is carried out in § 3. It relies on a dyadic decomposition
of the convolution kernel of Pλ,δ, which is reminiscent of the original proof of the Stein-
Tomas theorem. In the regime where this approach is useful (p large), an important

threshold is the line δ = λ−
1
3 . Reaching (slightly) smaller δ can be achieved with the

help of pointwise bounds on exponential sums, whose investigation is a classical topic in
analytic number theory.

1.6.3. Conjecture B and small caps

Section 4 is dedicated to Conjecture B. We show that it is partially equivalent to
Conjecture A, and explain its connection with additive combinatorics. In order to make
progress on this conjecture for p ≤ 6, `2 decoupling is not strong enough, the right tool
proves to be small cap decoupling. Combining this tool with careful estimates on the
distribution of lattice points in Aλ,δ leads to our main result in that section.

1.7. General curves

How much do our results depend on the geometry of the circle? Is it possible to replace
it by an ellipse (which would correspond to general tori R2/[Ze1 +Ze2], where e1 and e2
are non-colinear vectors in R2), or even by a general curve? We consider a smooth arc or
a closed smooth curve, which is denoted by Γ and is compact; the natural generalizations
of Pλ,δ and Φλ,δ are given by:

P̃λ,δf =
∑

k∈Nδ(λΓ)∩Z2
f̂ke

2πik·x and Φ̃λ,δ(x) =
∑

k∈Nδ(λΓ)∩Z2
e2πik·x,

where Nδ(λΓ) stands for the δ-neighbourhood of λΓ.
Nearly, all the proofs below remain valid as long as the curvature of Γ does not vanish,

and almost all the intermediary estimates proved in this paper still hold. This is the case
for the cap counting Lemma 2.1, the L4 estimate Lemma 2.3, the decoupling estimate
Lemma 2.4, the exponential sum estimates1 in § 3, and the small cap estimates in § 4.3.
But the bound on the number of lattice points in Aλ,δ is lost! For the square torus

R2/Z2, the divisor bound immediately gives the estimate λ1+εδ; but for a general torus,
or a general curve, such an argument is not available to estimate #Nδ(λΓ)∩Z2, and this
bound is much more difficult to obtain. Exponential sum bounds seem to be the only
possibility, which are closely related, if not equivalent, to the Gauss circle problem. They

give the expected result for δ > λ−
1
3 easily, but it is difficult to go significantly below

this barrier.

1 To see why these exponential sum estimates still hold, observe that the asymptotics of the Fourier
transform of the superficial measure supported on Γ are very similar to (3.1). The only difference is that
the phase function |ξ| is replaced by a function φ(ξ), but it remains smooth and 1-homogeneous, see [24],
page 360.
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As a result, for general smooth curves (with curvature) and the associated P̃λ,δ

operators,

• Theorem 2.5 remains true for δ > λ−
1
3 , and a little beyond, even though we will

not compute here the exact exponents.
• Theorem 3.1 remains true.
• Theorem 4.4 and its corollaries remain true for δ > λ−

1
3 .

However, conjectures A and B break down for general curves (with curvature) for small
δ: see Remark 4.8 on the case of the parabola.

2. Caps decomposition of the kernel

In this section, we prove Conjecture A for some range of (p, λ, δ) by decomposing a
function supported on the annulus (in Fourier) into a sum of functions supported on
caps (in Fourier).

2.1. Counting points and caps

Recall that the annulus of inner radius λ− δ and width 2δ is denoted:

Aλ,δ = {x ∈ R2, λ− δ < |x| < λ+ δ}.

Next, we will split the annulus into caps: Aλ,δ can be covered by a finitely disjoint

collection C of caps θ, of dimensions δ × (λδ)
1
2 :

Aλ,δ ⊂ ∪θ∈Cθ.

The number of such caps is ∼ λ
1
2 δ−

1
2 . We will be interested in the number of lattice

points contained in a cap; therefore the notation:

θ′ = θ ∩ Z2, and, more generally, E′ = E ∩ Z2 if E ⊂ R2,

will be useful.
The maximal cardinality of θ′ is ∼ λ

1
2 δ

1
2 ; as for the average cardinality of θ′, it is

expected to be given by the area of θ, namely λ
1
2 δ

3
2 .

We will now split the collection C into ∪sCs ∪ C0 as follows:

• If 2s is such that 1+λ
1
2 δ

3
2 � 2s . λ

1
2 δ

1
2 , Cs gathers all caps θ such that #θ′ ∼ 2s.

• All remaining caps go into C0; in other words, caps in C0 are such that #θ′ .

λ
1
2 δ

3
2 + 1.
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Lemma 2.1. If 2s � 1 + λ
1
2 δ

3
2 , then

#Cs . λδ2−2s.

Proof. This follows along the lines of the argument for Theorem 2.17 in [9]. Since

2s � λ
1
2 δ

3
2 , which is the area of a cap, the set θ′ is one-dimensional.2 It consists of

colinear points, with equal spacing. We now split Ss into:

Ss,m = {θ ∈ C, #θ′ ∼ 2s, and two consecutive points in θ′ are ∼ 2m apart}.

On the one hand, we can associate to θ ∈ Ss,m its direction dθ, which is the difference
between two consecutive points in θ′. This is a vector of Z2 with magnitude ∼ 2m;
therefore, the number of possible directions is . 22m.
On the other hand, the angle between θ′ and the major axis of θ is . δ2−m−s. If

we consider a subcollection of θ ∈ Ss,m with angular separation � δ2−m−s, then the
directions dθ are distinct. Such an angular separation can be achieved by labelling all
caps in the collection C, starting at one cap, and following the circle; and then keeping

only those caps which are in a fixed class modulo ∼ λ
1
2 δ

1
2 2−m−s.

These arguments show that:

#Sm,s . λ
1
2 δ

1
2 2−m−s22m = λ

1
2 δ

1
2 2m−s. (2.1)

Summing over 2m . λ
1
2 δ

1
2 2−s gives the desired result. �

Lemma 2.2. If λδ > 1,

#(Aλ,δ)
′ . λ1+εδ.

Proof. There are ∼ λδ integers n such that λ−δ <
√
n < λ+δ. For each such integer,

there are at most O(λε) solutions of x2 + y2 = n, by the divisor bound in Z[i]. �

2.2. Lp estimates on caps with bounded numbers of points

The basic idea behind the L4 and L6 estimates which are stated below is to break
down our spectral projectors into projections on caps. In order to do so, we choose first
a smooth partition of unity (χθ) associated to the collection C:

Suppχθ ⊂ θ, and
∑
θ∈C

χθ = 1 on Aλ,δ,

and define next the Fourier multipliers:

P θ = χθ(D).

2 Indeed, if a convex body K ⊂ R2 is symmetric with respect to the origin, a ∈ R2 and K ∩ (a+ Z2)
has dimension 2, then #(a+ Z2) ∩K . |K|.
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Lemma 2.3. (L4 estimate by the bilinear argument). Let f be a function on the
torus whose Fourier support S ⊂ Aλ,δ is such that for any θ ∈ C, #(S ∩ θ)′ ≤ N . Then

‖f‖L4 .ε N
1
4 ‖f‖L2 .

Proof. The argument essentially follows that of Proposition 2.4 in [6]. Since f̂ is
supported in Aλ,δ,

‖Pλ,δf‖L4 =

∥∥∥∥∥∥
∑
θ,θ̃∈C

P θf P θ̃f

∥∥∥∥∥∥
1
2

L2

.

The key geometrical observation is that, up to exchanging the roles of θ1 and θ2, the

supports of P θ1fP θ̃1f and P θ2fP θ̃2f are disjoint unless,

dist(θ1, θ2) + dist(θ̃1, θ̃2) . λ
1
2 δ

1
2 .

As a consequence, almost orthogonality followed by Hölder’s inequality gives the bound:

‖Pλ,δf‖L4 .

∑
θ,θ̃

∥∥∥P θfP θ̃f
∥∥∥2
L2

1
4

.

∑
θ,θ̃

∥∥P θf
∥∥2
L4

∥∥∥P θ̃f
∥∥∥2
L4

 1
4

.

Applying successively interpolation, the Cauchy-Schwarz inequality and Lemma 2.1,
we can estimate:

‖P θf‖L4 . ‖P θf‖
1
2
L∞‖P θf‖

1
2
L2 . (#θ′)

1
4 ‖P θf‖L2 ≤ N

1
4 ‖P θf‖L2 .

Injecting this inequality in the previous estimate, and using once again almost
orthogonality,

‖Pλ,δf‖L4 . N
1
4

∑
θ,θ̃

∥∥P θf
∥∥2
L2

∥∥∥P θ̃f
∥∥∥2
L2

 1
4

. N
1
4 ‖f‖L2 .

�

Lemma 2.4. (The L6 estimate by `2 decoupling). Let f be a function on the
torus whose Fourier support S ⊂ Aλ,δ is such that for any θ ∈ C, #(S ∩ θ)′ ≤ N . Then

‖f‖L6 .ε λ
εδ−εN

1
3 ‖f‖L2 .

Proof. The proof follows from [15], the fundamental ingredient being the `2 decou-
pling of Bourgain–Demeter [9]. Writing f as the sum of its Fourier series f =

∑
ake

2πik·x
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and changing variables to X = λx and K = k/λ,

‖f‖L6(T2) =

∥∥∥∥∥∥
∑
k∈Z2

ake
2πik·x

∥∥∥∥∥∥
L6(T2)

.

(
δ

λ

)1
3

∥∥∥∥∥∥φ
(
δX

λ

) ∑
K∈Z2/λ

aλKe
2πiK·X

∥∥∥∥∥∥
L6(R2)

,

where the cutoff function φ can be chosen to have compactly supported Fourier transform.
As a result, the Fourier transform of the function on the right-hand side is supported on
a δ/λ-neighbourhood of S1. It can be written as a sum of functions which are supported

on caps θ/λ with dimension ∼ δ
λ × δ

1
2

λ
1
2

(recall from § 2.1 that the collection C of caps θ

provides an almost disjoint covering of Aλ,δ):

φ

(
δX

λ

) ∑
K∈Z2/λ

aλKe
2πiK·X =

∑
θ

φ

(
δX

λ

) ∑
K∈Z2/λ

χθ(λK)aλKe
2πiK·X .

By `2 decoupling, the L6 norm above is bounded by:

.ε

(
δ

λ

)1
3−ε

∑
θ

∥∥∥∥∥∥φ
(
δX

λ

) ∑
K∈Z2/λ

χθ(λK)aλKe
2πiK·X

∥∥∥∥∥∥
2

L6(R2)


1
2

.

At this point, we use the inequality:

if p ≥ 2, ‖g‖Lp(R2) . ‖g‖L2(R2)|Supp ĝ|
1
2−

1
p ,

which follows by applying successively the Hausdorff–Young and Hölder inequal-
ities, and finally the Plancherel equality. We use this inequality for g(X) =
φ
(
δX
λ

)∑
K χθ(λK)aλKe

2πiK·X . Since #(S ∩ θ)′ ≤ N , its Fourier transform is supported

on the union of at most N balls of radius O(δ/λ), giving |Supp f̂ | . Nδ2λ−2. Thus, the
L6 norm we are trying to bound is less than:

.

(
δ

λ

) 1
3−ε

(Nδ2λ−2)
1
3

∑
θ

∥∥∥∥∥∥φ
(
δX

λ

) ∑
K∈Z2/λ

χθ(λK)aλKe
2πiK·X

∥∥∥∥∥∥
2

L2(R2)


1
2

.

By almost orthogonality and periodicity of the Fourier series, this is in turn bounded
by:

.

(
δ

λ

)1−ε

N
1
3

∥∥∥∥∥∥φ
(
δX

λ

) ∑
K∈Z2/λ

aλKe
2πiK·X

∥∥∥∥∥∥
L2(R2)

.

(
δ

λ

)−ε

N
1
3 ‖f‖L2(T2),

which is the desired estimate. �
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2.3. Interpolation

Interpolating between the estimates proved in the previous subsections enables us to
prove the following theorem.

Theorem 2.5.

(i) If p ∈ [2, 6) and λ−1+κ < δ < λ−κ for some κ> 0,

‖Pλ,δ‖L2→Lp .p,κ (λδ)
1
4−

1
2p .

(ii) If either p ∈ [6, 10] and δ > λ−1, or p ∈ [10,∞] and δ > λ−
1
3 ,

‖Pλ,δ‖L2→Lp .ε λ
ε

[
λ

1
2−

2
p δ

1
2 + (λδ)

1
4−

1
2p

]
.

Proof. Decomposition of Pλ,δ Recall that the Fourier multipliers Pθ were defined in
the previous section. They are now used to set:

P s =
∑
θ∈Cs

P θ and P 0 =
∑
θ∈C0

P θ,

as well as

P s
λ,δ = Pλ,δP

s and P 0
λ,δ = Pλ,δP

0.

We will split Pλ,δ into:

Pλ,δ = P 0
λ,δ +

∑
s

P s
λ,δ,

and estimate the different summands on the right-hand side by interpolating between
L2 → Lp bounds, with p = 4, 6,∞.
Basic bounds We learn from Lemma 2.3 and Lemma 2.4 that, if δ & λ−1 and 2s �
1 + λ

1
2 δ

3
2 ,

‖P 0
λ,δ‖L2→L4 . λ

1
8 δ

3
8 + 1

‖P s
λ,δ‖L2→L4 . 2

s
4

‖P 0
λ,δ‖L2→L6 .ε λ

ε
[
λ

1
6 δ

1
2 + 1

]
‖P s

λ,δf‖L2→L6 .ε λ
ε2

s
3 .

Furthermore, lemmas 2.1 and 2.2 give the bounds:

‖P 0
λ,δ‖L2→L∞ . λε(λδ)

1
2

‖P s
λ,δ‖L2→L∞ . λ

1
2 δ

1
2 2−

s
2

https://doi.org/10.1017/S0013091524000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000099


Spectral projectors on the two-dimensional torus 441

The case 2 ≤ p ≤ 4 By the basic bounds above,

‖Pλ,δ‖L2→L4 . ‖P 0
λ,δ‖L2→L4 +

∑
j

‖P s
λ,δ‖L2→L4 . λ

1
8 δ

3
8 + 1 +

∑
1≤2s≤λ

1
2 δ

1
2

2
s
4 . (λδ)

1
8 .

This is the desired bound if p=4, and the case 2 ≤ p ≤ 4 follows from interpolation
with the trivial case p=2.
Bounding P 0

λ,δ Interpolating between the basic bounds for P 0
λ,δ bounds gives, if 4 ≤ p ≤ 6,

‖P 0
λ,δ‖L2→Lp . λε

[
1 + λ

1
4−

1
2p δ

3
4−

3
2p

]
,

which is consistent with the conjecture if λ−1+κ < δ < λκ.
If 6 ≤ p ≤ ∞, we obtain instead:

‖P 0
λ,δ‖L2→Lp . λε

[
(λδ)

1
2−

3
p + λ

1
2−

2
p δ

1
2

]
.

This is consistent with the conjecture with ε loss if (λδ)
1
2−

3
p + λ

1
2−

2
p δ

1
2 . λ

1
2−

2
p δ

1
2 +

(λδ)
1
4−

1
2p, which is the case if δ > λ−

1
3 or p ≤ 10.

Bounding
∑

s P
s
λ,δ if 4 ≤ p ≤ 6. Interpolating between the basic bounds for P s

λ,δ from L2

to L4 and L2 to L∞,

‖P s
λ,δ‖L2→Lp . λ

1
2−

2
p δ

1
2−

2
p 2

s
(
−1

2+
3
p

)
if 2s � 1 + λ

1
2 δ

3
2 .

Therefore, if p< 6, ∑
1+λ

1
2 δ

3
2�2s.λ

1
2 δ

1
2

‖P s
λ,δ‖L2→Lp . λ

1
4−

1
2p δ

1
4−

1
2p ,

which is consistent with the conjecture.
Bounding

∑
s P

s
λ,δ if p ≥ 6. Interpolating between the basic bounds for P s

λ,δ from L2 to

L6 and L2 to L∞,

‖P s
λ,δ‖L2→Lp .ε λ

ελ
1
2−

3
p δ

1
2−

3
p 2

s
(
−1

2+
5
p

)
if 2s � 1 + λ

1
2 δ

3
2 .

Summing over 2j gives if p ≤ 10∑
1+λ

1
2 δ

3
2�2s.λ

1
2 δ

1
2

‖P j
λ,δ‖L2→Lp . λελ

1
2−

3
p δ

1
2−

3
p

∑
2s.λ

1
2 δ

1
2

2
s
(
−1

2+
5
p

)
∼ λε(λδ)

1
4−

1
2p ,

which is consistent with the conjecture with ε loss.
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If we assume now that p ≥ 10,

∑
1+λ

1
2 δ

3
2�2s.λ

1
2 δ

1
2

‖P j
λ,δ‖L2→Lp . λελ

1
2−

3
p δ

1
2−

3
p

∑
2s�1+λ

1
2 δ

3
2

2
s
(
−1

2+
5
p

)

∼ λε
[
λ

1
4−

1
2p δ

−1
4+

9
2p + (λδ)

1
4−

1
2p

]
.

This is . λε
[
λ

1
2−

2
p δ

1
2 + (λδ)

1
4−

1
2p

]
if and only if δ > λ−

1
3 . �

3. Dyadic decomposition of the kernel

In this section, we will prove the following theorem, which validates Conjecture A for
some range of (p, λ, δ). The idea of the proof is to decompose dyadically (in the Poisson
summation formula) the kernel of the spectral projector.

Theorem 3.1. For p ≥ 6 and ε> 0,

‖Pλ,δ‖L2→Lp .ε λ
1
2−

2
p δ

1
2 if δ > min

λ−1− 6
p

3− 2
p , λ

−
10−64

p

29−14
p

+ε

 .

Remark 3.2. The proof given below uses a pointwise bound on a two-dimensional
exponential sum, which is borrowed from Müller [22] and enables us to prove the theorem

for scales δ (moderately) smaller than λ−
1
3 . The bound in [22] has the advantage of

being robust and admitting a rather simple proof, by the Van der Corput method, while
providing an improvement over the trivial estimate. But it is certainly not optimal;
in particular, the methods recounted in Huxley [19] leading to Huxley [20] could give
further improvements, though they do not seem immediately applicable to the sum under
consideration.

Proof. Decomposition of the kernel For technical reasons, it will be more convenient
to consider a mollified version of the projector Pλ,δ: let

P [
λ,δe

2πik·x = χλ,δ(k)e
2πik·x,

where the function χλ,δ is a non-negative and smooth cutoff function adapted to the
annulus Aλ,δ, namely χλ,δ(x) > c > 0 if x ∈ Aλ,δ. To be more specific, it is defined
as follows: consider the superficial measure dσλ induced by the Lebesgue measure on
the circle of centre 0 and radius λ (in other words, dσλ is the uniform measure on that
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circle with total mass 2πλ). Consider furthermore a positive function χ whose Fourier
transform is compactly supported. Finally, let

χλ,δ = δ−1χ(δ−1·) ∗ dσλ.

We now introduce a dyadic partition of unity, namely C∞
0 , non-negative functions ϕ

and ψ such that:

ϕ(x) +
∑

M∈2N
ψ
( x

M

)
= 1,

and furthermore ϕ is supported in a ball, and ψ in an annulus.
Denoting Φ[

λ,δ the kernel of P [
λ,δ, it can be written by Poisson summation as:

Φ[
λ,δ(x) =

∑
k∈Z2

χλ,δ(k)e
2πik·x =

∑
m∈Z2

χ̂λ,δ(m− x),

where ·̂ stands for the Fourier transform on R) and further decomposed, with the help of
the partition of unity, into:

Φ[
λ,δ(x) =

∑
m∈Z2

ϕ(m− x)χ̂λ,δ(m− x) +
∑

m∈Z2

∑
M∈2N

ψ

(
m− x

M

)
χ̂λ,δ(m− x)

= Φ[,0
λ,δ(x) +

∑
M∈2N

Φ[,M
λ,δ (x).

Finally, the operators associated to these convolution kernels are denoted by P [,0
λ,δ and

P [,M
λ,δ .

Asymptotics of χ̂λ,δ. Denoting J(ξ) for the Fourier transform of dσ1 (superficial measure

on the unit sphere), it follows from the definition of χλ,δ that:

χ̂λ,δ(ξ) = λδJ(λξ)χ̂(δξ).

The function J is smooth, and its asymptotic expansion is well-known:

J(ξ) ∼ ei|ξ|

|ξ|
1
2

∞∑
j=0

aj |ξ|−j +
e−i|ξ|

|ξ|
1
2

∞∑
j=0

bj |ξ|−j . (3.1)

We refer to [24], Chapter VIII, for the proof of this statement and the meaning of the
series in the equivalent (see in particular Proposition 3).
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Bounding P [,0
λ,δ. By Young’s inequality and the above expansion,

‖P [,0
λ,δ‖Lp′→Lp . ‖Φ[,0

λ,δ‖
L
p
2
. ‖χ̂λ,δ‖

L
p
2
. λδ‖J(λξ)‖

L
p
2
. λ1−

4
p δ if p > 8.

To treat the case p ∈ [6, 8], we can invoke the fact that the operator on R2 with

symbol χλ,δ(ξ) has Lp′ → Lp operator norm . λ1−
4
p δ, which follows from the Stein-

Tomas theorem [24, 25]. As a consequence, the operator with convolution kernel ϕχ̂λ,δ

has operator norm . λ1−
4
p δ (indeed, the function ϕχ̂λ,δ can be written under the form

δχ̂λ,1 by modifying the cutoff function).

Since ϕ is compactly supported, this implies the desired bound for the operator P [,0
λ,δ,

whose convolution kernel is given by the periodization of ϕχ̂λ,δ.

Bounding P [,M
λ,δ . This will be achieved by interpolating between L2 → L2 and L1 →

L∞ bounds, in a manner which is reminiscent of the classical proof of the Stein-Tomas
theorem [25]. Before doing so, we observe that the range of M can be restricted to
M . δ−1; this follows from the fact that χ̂ is compactly supported, and the formula for
χ̂λ,δ above.

• To obtain the L2 → L2 bound, we deduce from the definition of the kernel Φ[,M
λ,δ

and Poisson summation that P [,M
λ,δ is the Fourier multiplier on the torus with

symbol M2ψ(M ·) ∗ χλ,δ. Therefore,

‖P [,M
λ,δ ‖L2→L2 . ‖M2ψ(M ·) ∗ χλ,δ‖L∞ .Mδ if M . δ−1.

• To obtain the L1 → L∞ bound, we rely on exponential sum estimates. Reducing
the asymptotics of χ̂λ,δ to its leading order (lower order terms being easier to
treat), we need to bound:

Sλ,M,x = λ
1
2 δ

∑
n∈Z2

ψ

(
n− x

M

)
eiλ|n−x|

〈n− x〉
1
2

.

A first obvious bound is:

|Sλ,M,x| . λ
1
2 δM

3
2 .

Furthermore, this sum can be written under the form

λ
1
2 δM−1

2
∑

|m|∼M W (m)eif(m), which is the form considered in [22] (see

also [17]). In order to apply Theorem 2 in [22], we note that W and f satisfy the
required derivative bounds; as for the condition on the determinant of iterated
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derivatives, it is verified thanks to Lemma 3 in that same paper. This yields the
bound:

|Sλ,M,x| .ε λ
1
2+ωδM

3
2−(q+1)ω+ε if λ ≥M

q−2+ 2
Q , with

ω =
2

4(Q− 1) + 2Q
, Q = 2q.

Choosing q =3, this means that:

|Sλ,M | .ε λ
6
11 δM

29
22+ε if λ > M

5
4 .

Overall, still under the assumption that λ > M
5
4 ,

‖P [,M
λ,δ ‖L1→L∞ . ‖Φ[,M

λ,δ ‖L∞ . min(λ
1
2 δM

3
2 , λ

6
11 δM

29
22+ε).

Interpolating between these two bounds, we find that:

‖P [,M
λ,δ ‖Lp′→Lp .ε min(M

3
2−

1
pλ

1
2−

1
p δ,M

29
22−

7
11p+ε

λ
6
11−

12
11p δ).

Since M . δ−1, this is < λ1−
4
p δ provided:

δ > min

λ− 1− 6
p

3− 2
p , λ

−
10−64

p

29−14
p

+ε

 .

Conclusion of the argument Reconstructing P [
λ,δ as the sum of P [,M

λ,δ for 0 ≤ M . δ−1

gives the Lp′ → Lp bound λ1−
4
p δ. By the classical TT ∗ argument, this implies a L2 → Lp

bound λ
1
2−

2
p δ

1
2 for the operator with symbol

√
χλ,δ, from which we deduce the desired

L2 → Lp bound for Pλ,δ. �

4. The conjecture on the Lp norm of the convolution kernel

This section is dedicated to Conjecture B, which was introduced in the introduction. We
show how it is related to Conjecture A on the one hand, to additive energies on the other

hand, and then use small cap decoupling to prove it with an ε loss, if p ≤ 6 or δ > λ−
1
3 .

4.1. Partial equivalence of Conjecture A and Conjecture B

Lemma 4.1.

(i) If δ > λ
−1+ 8

p+2 , Conjecture A for (δ, λ, p) implies Conjecture B for (δ, λ, p).
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(ii) If p ≥ 4 and δ > λ−1+4
p , Conjecture B for (δ, λ, p) implies Conjecture A for

(δ, λ, 2p).

Proof. Let us assume first that Conjecture A holds for (δ, λ, p) and δ > λ
−1+ 8

p+2 .
Note first that:

‖Φλ,δ‖L2 = ‖Φλ,δ‖
1
2
L∞ = ‖Pλ,δ‖L2→L∞ = (λδ)

1
2 ,

where we used Conjecture A for (δ, λ,∞), which is a consequence of the conjecture for
(δ, λ, p). Then, estimating ‖Φλ,δ‖L2 by Parseval’s equality,

‖Φλ,δ‖Lp = ‖Pλ,δΦλ,δ‖Lp ≤ ‖Pλ,δ‖L2→Lp‖Φλ,δ‖L2 . [λ
1
2−

2
p δ

1
2 ][λ

1
2 δ

1
2 ] = λ1−

2
p δ,

which proves Conjecture B.

Conversely, let us assume that Conjecture B holds for (δ, λ, p) and δ > λ−1+4
p . Then,

by Young’s inequality,

‖Pλ,δf‖L2p = ‖Φλ,δ ∗ f‖L2p . ‖Φλ,δ‖Lp‖f‖
L(2p)′ . λ1−

2
p δ‖f‖

L(2p)′ .

This means that

‖Pλ,δ‖L(2p)′→L2p . λ1−
2
p δ.

By the classical TT ∗ argument,

‖Pλ,δ‖L2→L2p = ‖Pλ,δ‖
1
2

L(2p)′→L2p
. λ

1
2−

1
p δ

1
2 ,

which proves Conjecture A for (δ, λ, 2p). �

4.2. Link to additive energies

For p an even number, the p
2 -additive energy of the set Λ ⊂ R2 is defined as:

Ep
2
(Λ) = #{(x1, . . . , xp) ∈ Λp such that x1 + · · ·+ xp

2
= xp

2+1 + · · ·+ xp}.

If p is an even number,

Ep
2
(A′

λ,δ) = ‖Φλ,δ‖pLp(T2),

so that the conjecture can be reformulated, for even p, as:

Ep
2
(A′

λ,δ) ∼ λp−2δp + (λδ)
p
2 .

How can this conjecture be interpreted in terms of additive energies? The second term
on the above right-hand side comes from diagonal contributions, in other words from the
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universal inequality:

Ep
2
(A′

λ,δ) ≥ |A′
λ,δ|

p
2 .

For the first term on the right-hand side, note that there are ∼ (λδ)p/2 possible sums
of p/2 elements of A′

λ,δ, and they all lie inside the ball of radius ∼ λ. Moreover, two
distinct sums will have to be at least 1 apart from each other. As a result of this, many
pairs of sums are forced to coincide, and a simple application of Cauchy–Schwarz proves
the first lower bound.
Additive energies of annular sets A′

λ,δ in dimension 2 were considered in [21], and then
by Bombieri–Bourgain [2] who could prove that:

E3(A′
λ,0) . [#A′

λ,0]
7
2 .

They conjectured that the exponent 7
2 can be replaced by 3 (which is equivalent to the

case p=6 of (1.1)). Bourgain–Demeter [9] proved the conjecture for p=6, δ = λ−
1
3 with

an ε-loss. Finally, the question was also considered in dimensions 4 and 5, see [8].

4.3. Small cap decoupling

In this section, we write A / B if A .ε P
εB holds for all ε> 0, where P is the scale

parameter, typically denoted by R or λ.
The chief tool for proving Conjecture B in the range 4 ≤ p ≤ 6 is small cap decoupling,

a result first proved in [12], and further refined in [13].
Let I be a compact interval and let Γ : I → R be a smooth curve with:

min
ξ∈I

|Γ′′(ξ)| > 0. (4.1)

Let 0 < β ≤ 1. For R ≥ 1, partition its 1/R-neighbourhood N1/R(Γ) into tubular

regions Γ with length R−β and width/height ∼ 1/R. We will call such γ an (R−β , R−1)-
cap. There are ∼ Rβ such caps.
We introduce the Fourier projection onto L2(γ):

fγ(x) =

∫
γ

f̂(ξ)e(x · ξ)dξ.

Given a ball BR = B(x0, R), we define the weight:

wBR
(x) = (1 +

|x− x0|
R

)−100.

The following was proved in [12] for the parabola. The extension to arbitrary curves Γ
as above is fairly standard, see the sketch of proof below.
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Theorem 4.2 (lp(Lp) small cap decoupling, [12]). Assume f : R2 → C has Fourier
transform supported in N1/R(Γ). Then for 4 ≤ p ≤ min(2 + 2

β , 6) and each ball BR we
have:

‖f‖Lp(BR) / Rβ( 12−
1
p )(

∑
γ

‖fγ‖pLp(wBR
))

1/p. (4.2)

When β > 1/2 this is a good substitute for l2(Lp) decoupling:

‖f‖Lp(BR) / (
∑
γ

‖fγ‖2Lp(wBR
))

1/2,

which is only true if β ≤ 1/2. The reason for the failure of this inequality when β > 1/2

is the fact that there are many (more precisely Rβ− 1
2 ) consecutive caps β inside an

essentially rectangular/flat cap τ with dimensions (R−1/2, R−1).
Parts of our forthcoming argument need a slightly stronger (via Hölder’s inequality)

version of (4.2). This is a particular case of Corollary 5 in [13].

Theorem 4.3 (lq(Lp) small cap decoupling, [13]). Assume f : R2 → C has Fourier
transform supported in N1/R(Γ). Then for 4 ≤ p ≤ min(2 + 2

β , 6),
1
q = 1 − 3

p and each
ball BR we have:

‖f‖Lp(BR) / Rβ( 12−
1
q )(

∑
γ

‖fγ‖qLp(wBR
))

1/q. (4.3)

The upper bound p ≤ min(2 + 2
β , 6) is sharp in both theorems. The value 2 + 2

β is
called the critical exponent for small cap decoupling.

Sketch of proof: Let us comment on the extension of these theorems to general
C 2 curves Γ : [−1/2, 1/2] → R satisfying |Γ(x)|, |Γ′(x)| . 1 and |Γ′′(x)| ∼ 1 for x ∈
[−1/2, 1/2].
The main step in the proof for the parabola was proving a bilinear version of the small

cap decoupling inequality. More precisely, the function f is replaced with the geometric
average |f1f2|1/2 where the spectra of f1, f2 lie in ∼ 1 separated parts of N1/R. The only
relevance of this separation is that normals at points lying in the two pieces point in
separated directions.
Two special tools were used to prove this bilinear inequality. One of them is Cordoba’s

inequality, whose validity and proof remain the same for curves Γ as above. The other
one is a refined Kakeya inequality, which takes the same form for all Γ with non-zero
curvature. Indeed, curvature forces the spatial rectangles localizing wave packets to point
in distinct directions.
The remaining step in the proof for the parabola was a Whitney-type decomposition

for this curve into smaller pieces, and the application of the previously mentioned bilin-
ear small cap decoupling to each piece, via parabolic rescaling. The latter amounts to
mapping a small arc on the parabola to the full scale-one parabola via an affine transfor-
mation (it is crucial that affine transformations commute with the Fourier transform).
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Strictly speaking, this strong form of parabolic rescaling fails for arbitrary curves.
However, the following totally satisfactory analogue is true: given any interval J ⊂
[−1/2, 1/2] of length ∆ and centred at c, the affine map:

(ξ, η) → (
ξ − c

∆
,
η − Γ(c)− Γ′(c)ξ

∆2
),

maps the arc Γ : J → R to some Γ′ : [−1/2, 1/2] → R that has the same properties as Γ.
And since the bilinear decoupling holds true with uniform bounds for such curves, the
argument closes in the same way as in the case of the parabola. �

In our applications of (4.2) and (4.3), f̂ will be supported only on a small number
Nactive of the total number Ntotal ∼ Rβ of caps γ. Then, (4.2) gives:

‖f‖pLp(BR) / N
p
2−1

totalNactive max
γ

‖fγ‖pLp(wBR
), (4.4)

while (4.3) leads to the more favourable:

‖f‖pLp(BR) / N
3−p

2
totalN

p−3
active max

γ
‖fγ‖pLp(wBR

). (4.5)

When β ≤ 1/2, we have an even stronger estimate, as a consequence of l2(Lp) decoupling:

‖f‖pLp(BR) / N
p/2
active max

γ
‖fγ‖pLp(wBR

). (4.6)

We will work with Γ : [−1/2, 1/2] → R given by Γ(ξ) =
√
1− ξ2. In fact, for reasons

of symmetry, we may as well work with the full circle S1. We rescale (4.4) and (4.5) to

allow f̂ to be supported on Aλ,δ, for some δ ≤ 1. If γ are now (λ( δλ )
β , δ)-caps partitioning

Nδ(λS
1) = Aλ,δ, we find that if f̂ is supported on Aλ,δ then (4.4), (4.5) and (4.6) hold

with R ∼ 1/δ.

4.4. Some progress on the kernel conjecture

The main result we prove is as follows. It is important to note that the difficult range
4 < p < 6 does not follow by interpolating the easier endpoint cases p = 4, 6.

Theorem 4.4 (Square root cancellation at the critical exponent). Assume

p ∈ [4, 6] and δ = λ
4
p−1. Then

‖Φλ,δ‖Lp([0,1]2) / (λδ)1/2.

Proof. Note first that

δ ≥ λ−1/3, (4.7)
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so that in particular δ−1 <
√
λδ. We cover Aλ,δ with (δ−1/100, δ)-caps η. This choice is

important for two reasons. On the one hand, it has area smaller than 1/2, and this forces
structure on the lattice points inside η. On the other hand, the length scale ∼ δ−1 of η is
the smallest for which we get Lp square root cancellation via small cap decoupling. We
illustrate this in Case 1 of the following four-case argument.
Decompose

Φλ,δ =
∑
η

Φη,

with Φη(x) =
∑

k∈η∩Z2 e
2πik·x.

Case 1. We apply (the rescaled version of) (4.4) to f =
∑

η Φη (so γ = η and fη = Φη)
and R ∼ 1/δ, with the sum restricted to those η containing exactly one lattice point.
Let us check that η has the desired length ∼ λ( δλ )

β , for some β satisfying p ≤ 2 + 2
β .

Solving 1
δ = λ( δλ )

β and using that δ = λ
4
p−1, leads to β = 2

p−2 . Thus, we apply (4.4) at
the critical exponent.
Note that Ntotal ∼ λδ. We allow for the possibility that Nactive may be comparable

to Ntotal, see the comment a few lines below. Note also that ‖fη‖Lp(wBR
) ∼ R2/p. Using

first the 1-periodicity of f, then (4.4), we conclude with the desired bound:

‖
∑
η

Φη‖pLp([0,1]2)
∼ R−2‖

∑
η

fη‖pLp([0,R]2)
/ (λδ)p/2.

The argument just presented works when considering caps η with 2s / 1 points. The
counting arguments that we will use next show that most lattice points in Aλ,δ are
absorbed by such caps. In particular, for at least one of these small scales s, we have that
Nactive ' λδ. This shows the sharpness of the argument, and motivates the use of small
cap decoupling.
In the remaining cases we restrict attention to those η containing at least two lattice

points. All lattice points inside η need to sit on a line we call lη. This is because the area
of the triangle determined by any three lattice points is half an integer, while the area
of (the convex hull of) η is smaller than 1/2. Moreover, all lattice points on lη ∩ η must
be equidistant, with separation of consecutive points of order ∼ 2m, for some m ≥ 0.
Pigeonholing at the expense of a (logR)2 loss, we may focus on those η corresponding to
a fixed m, and also containing ∼ 2s lattice points, for some fixed s ≥ 0. It follows that:

length(lη ∩ η) ∼ 2s+m . δ−1. (4.8)

Finally, call α the angle between lη and the long axis of η.
Case 2. We restrict attention to those η with α � ecc(η) ∼ δ2. We call them active.

It is worth pointing out that η is essentially a rectangle. In fact, each η sits inside a
((λδ)1/2, δ)-cap (as part of Aλ,δ) that is also essentially a rectangle. We will call such
caps by the letter τ . The fact that τ is longer than η, (λδ)1/2 ≥ δ−1, is a consequence
of (4.7).
Since α is much bigger than the eccentricity of η, the lines lη need to be different for

all active η inside a fixed τ . This will force some separation between any two consecutive
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active η1 and η2, as follows. Pick two lattice points P1, P2 ∈ lη1 ∩ η1 with dist(P1, P2) ∼
2m. Pick any point P3 ∈ (lη2 ∩ η2) \ lη1 . Let d = dist(P3, lη1). Since the area of 4P1P2P3

is at least 1/2, we find that:

d2m & 1. (4.9)

Since α� ecc(η) ∼ δ2, we have that:

α ∼ sinα ∼ δ

2s+m
. (4.10)

On the other hand,

α ∼ sinα ∼ d

|P1P3|
. (4.11)

Combining these two and using that |P1P3| ∼ dist(η1, η2) shows that:

dist(η1, η2) ∼ dδ−12s+m.

When combined with (4.9), this leads to dist(η1, η2) & 2sδ−1.
This suggests partitioning each τ into (2sδ−1, δ)-caps θ. Each η will sit inside some θ,

and each θ contains at most one active η. We call θ active if it contains some active η.
Let now:

f =
∑

η: active

Φη,

fθ =
∑

η⊂θ: active

Φη.

We apply (the rescaled version of) (4.4) to f, with the caps γ being the active θ′s.
We need to check that the length 2sδ−1 of θ may be written as λ( δλ )

β , for some β
satisfying p ≤ min(2 + 2

β , 6). However, this is immediate, since we have observed earlier

that δ−1 = λ( δλ )
2

p−2 . The small cap in this case is getting longer than in the previous
case.
Periodicity and (4.4) with R = 1/δ gives:

|
∑

η: active

Φη‖pLp([0,1]2)
∼ R−2‖

∑
θ: active

fθ‖pLp([0,R]2)

/ R−2N
p
2−1

totalNactive max
θ:active

‖fθ‖pLp(wBR
).

Note that there are Ntotal ∼ λ/(2sδ−1) caps θ.
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τ

2tδ−1

θ

σ1

η

σ2

α

P1 P2

P3

d

Figure 1. Lattice points and caps inside τ .

Here is how we evaluate the number Nactive of active θ. A τ containing at least one
active θ will itself be called active. Each active τ contains . δ(λδ)1/2/2s active θ, and
by (2.1), the number of active τ is . (λδ)1/22m−s. We conclude that:

Nactive .
δ(λδ)1/2

2s
(λδ)1/22m

2s
= λδ22m2−2s.

Since each θ contains ∼ 2s points, we have the trivial sharp estimate:

‖fθ‖pLp(wBR
) . ‖fθ‖2L2(wBR

)
2s(p−2) ∼ 2s(p−1)R2.

Putting things together, we conclude with the desired bound

‖
∑

η: active

Φη‖pLp([0,1]2)
/ (

λδ

2s
)
p
2−1λδ22m2−2s2s(p−1) = (λδ)

p
2 (2m+sδ)2s(

p
2−3) . (λδ)

p
2 ,

where the last inequality follows from (4.8) and the fact that p ≤ 6.
Case 3. We now restrict attention to those η with (δ/λ)1/2 ∼ ecc(τ) . α . ecc(η) ∼ δ2.

In particular, we assume α ∼ 2−tδ2, for some fixed t ≥ 0. The line lη is now the same
for . 2t consecutive active η. We cover each group of such η with a (2tδ−1, δ)-cap σ, and
call the common line lσ. We call σ active. Since lσ crosses at least one η, we have that
2m+s ∼ δ−1.
Next, we prove separation between consecutive active σ1 and σ2, using the argument

from Case 2. Pick two lattice points P1, P2 in σ1 ∩ lσ1 with dist(P1, P2) ∼ 2m and pick
a lattice point P3 ∈ (σ2 ∩ lσ2) \ lσ1 . Letting d = dist(P3, lσ1), we find as before that
d2m & 1. Also as before,

2−tδ2 ∼ α ∼ d

dist(σ1, σ2)
,
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so

dist(σ1, σ2) ∼ d2tδ−2 ∼ d2m2s+tδ−1 & 2s+tδ−1.

We cover each τ with (2s+tδ−1, δ)-caps θ. Each θ contains at most one active σ, and
is contained in a unique τ . We call θ active if it contains some active σ, and we also call
active the τ containing such θ.
We decouple into caps θ. Small cap decoupling is applicable, as θ is even longer than

in Case 2. Note first that:

Ntotal ∼ λδ2−s−t.

There are . (λδ)1/22m−s ∼ 22m(λδ)1/2δ2−t active τ , each containing . δ(λδ)1/2

2s+t active
θ. Thus the number of active θ satisfies:

Nactive . λδ322m−2t−s.

Since θ now contains . 2t+s points, we have as before:

‖fθ‖pLp(wBR
) . ‖fθ‖2L2(wBR

)
2(s+t)(p−2) ∼ 2(s+t)(p−1)R2.

We first make the point that (4.4) is not strong enough in this case, as it leads to:

‖
∑

η: active

Φη‖pLp([0,1]2)
∼ R−2‖

∑
θ: active

fθ‖pLp([0,R]2)

/ R−2N
p
2−1

totalNactive max
θ:active

‖fθ‖pLp(wBR
)

. (λδ)p/2(2m+sδ)22s(
p
2−3)2t(

p
2−2)

∼ (λδ)p/22s(
p
2−3)2t(

p
2−2).

When p> 4, we cannot force this to be . (λδ)p/2, as t may be much larger than s.
However, using instead (4.5) we find the desired upper bound:

‖
∑

η: active

Φη‖pLp([0,1]2)
∼ R−2‖

∑
θ: active

fθ‖pLp([0,R]2)

/ R−2N
3−p

2
totalN

p−3
active max

θ:active
‖fθ‖pLp(wBR

)

. (λδ)p/22−(s+t)(3−p
2 )(δ222m−2t−s)p−32(s+t)(p−1)

. (λδ)p/2(δ222m22s)p−32s(5−
3p
2 )2t(2−

p
2 )

∼ (λδ)p/22s(5−
3p
2 )2t(2−

p
2 ).

This is . (λδ)p/2 if p ≥ 4.
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Case 4. When α � ecc(τ), the points on distinct active τ are aligned in distinct
directions. Thus, there can only be O(22m) active τ . We have that 2s+m ∼ δ−1, and each τ
contains . 2s(λδ)1/2δ points. The desired bound follows from the l2(Lp) decoupling (4.6)
into caps γ = τ :

‖
∑

η: active

Φη‖pLp([0,1]2)
∼ R−2‖

∑
τ : active

fτ‖pLp([0,R]2)

/ R−2N
p/2
active max

τ :active
‖fτ‖pLp(wBR

)

. 2mp(2s(λδ)1/2δ)p−1

∼ (λδ)p/2
δ−1

2s
√
λδ
.

This is . (λδ)p/2 due to (4.7). �

We may now prove Conjecture B in the range δ ≥ λ−1/3.

Corollary 4.5. Assume 1 ≥ δ ≥ λ−1/3. Then Conjecture B holds for all p.

Proof. There is pδ ∈ [4, 6] such that δ = λ
4
pδ

−1
. If p ≤ pδ, the result follows from

Theorem 4.4 and Hölder’s inequality. When p > pδ, it follows from the same theorem
and the L∞ bound:∫

|Φλ,δ|p ≤
∫

|Φλ,δ|pδ (λδ)p−pδ / (λδ)pδ/2(λδ)p−pδ =
(λδ)p

λ2
.

�

A simple application of l2(L6) decoupling gives the following.

Proposition 4.6. Conjecture B holds for p ≤ 6 and δ ≤ λ−1/3.

Proof. We may assume δ � λ−1/3. The case p< 6 follows from p=6 and Hölder’s
inequality. When p=6 we use l2(L6) decoupling (4.6). More precisely, we decouple into
((λδ)1/2, δ)-caps τ . Their volume is ≤ 1/2, so lattice points in τ are contained in a line.
Reasoning as before, there are Nactive / λδ

22s
caps τ with ∼ 22s points. Then, (4.6) gives,

∫
|Φλ,δ|6 / max

s≥0
(Nactive)

325s / max
s≥0

2−s(λδ)3 ∼ (λδ)3.

�

Remark 4.7. A small improvement over the results presented here, which would

reach the region δ < λ−
1
3 , p> 6 for Conjecture B, are possible with the help of bounds

on exponential sums. We will not pursue this approach, in order to avoid further technical
details.
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Theorem 4.4 and thus also Corollary 4.5 continue to hold true (via the same argument)
if Aλ,δ are the lattice points in the δ-neighbourhood of λΓ, where Γ is any curve satisfying
(4.1). However, Proposition 4.6 needs the fact that Aλ,δ contains / λδ lattice points.
Its proof relies on this bound in order to guarantee that Nactive / λδ for the caps τ
containing only one point. For caps with at least two points, the upper bound / λδ/2s

remains true for arbitrary Γ as in (4.1), via the same geometric argument, that only
exploits curvature. The fact that this inequality is also true for caps with one point in
the case of S 1 is an consequence of Lemma 2.2.

Remark 4.8. For certain Γ, the analogue of the set Aλ,δ may contain significantly
more lattice points than λδ, when δ is significantly smaller than λ−1/3. One such example
is the parabola ΓP1(ξ) = ξ2. If λ1/2 = n is an integer, then λΓP1 contains ∼ λ1/2 lattice

points (nl, l2), |l| ≤ n, far more than λδ when δ � λ−1/2 (this is as much as possible for
a general curve, up to a subpolynomial factor, by [3]).
In the case of the parabola, these points are arranged along an arithmetic progression

in the horizontal direction, which leads to constructive interference on a large set: note
that, ∣∣∣∣∣∣

∑
|l|≤n

e(lnx1 + l2x2)

∣∣∣∣∣∣ ∼, n
if x1 ∈ ∪j≤n[j/n, j/n+ 1/10n2], |x2| ≤ 1/10n2. Thus

∫
[0,1]2

∣∣∣∣∣∣
∑
|l|≤n

e(lnx1 + l2x2)

∣∣∣∣∣∣
p

dx1dx2 & λ
p
2−

3
2 . (4.12)

Recall that the generalized projection operator and its kernel are defined by:

P̃λ,δf =
∑

k∈Nδ(λΓ)∩Z2
f̂ke

2πik·x and Φ̃λ,δ(x) =
∑

k∈Nδ(λΓ)∩Z2
e2πik·x.

From the inequality (4.12), it follows that:

‖P̃λ,δ‖L2→Lp & λ
1
4−

3
2p and ‖Φ̃λ,δ‖Lp & λ

1
2−

3
2p ,

which shows that conjectures A and B (for the latter, at least when p is even) do not
apply to the parabola for small enough δ. We refrain from making a precise conjecture
for the parabola, as there might be additional examples.

5. Graphical representation

Figure 2 represents in the coordinates ( 1p ,−
log δ
log p ) the different regions where Conjecture A

is verified. The vertical coordinate gives the size of δ which decreases, making the problem
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0
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1
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•
1
4

1
p

•
1
10

•1α = − log δ
log λ

•1
3

Figure 2. The vertical axis corresponds to α = − log δ
log λ

, and the horizontal axis to 1
p
. In the dark

blue region, Conjecture A is verified; in the light blue region, it is verified with an ε-loss. The

red line is the curve δ = λ
−1+ 8

p+2 , which separates the region where the conjecture is λ
1
2
− 2

p δ
1
2

(below) from the region where the conjecture is (λδ)
1
4
− 1

2p (above).

harder, as one goes up in the picture; for the bottom line δ=1, the conjecture corresponds
to Sogge’s theorem. The horizontal coordinate gives the size of p; if p ≤ 10 and p = ∞,
the conjecture is settled (with ε loss), but it appears that intermediate values of p are
harder to understand.
If the conjecture holds at a given point in the above diagram, then it is also true

on a whole region depending on that point. These implications are summarized in the
following lemma.

Lemma 5.1.

(i) If Conjecture A is satisfied at a point ( 1
p0
, α0) below the red curve, consider the

rectangle with that point as its top right vertex. Then the conjecture holds at any
point in that rectangle.

(ii) If Conjecture B is satisfied at a point ( 1
p0
, α0) above the red curve, then it holds to

the right of this point, that is on the segment joining this point to ( 12 , α0).

Proof. (i) We will show that the conjecture holds at points ( 1p , α0), with p > p0, and

also at points ( 1p , α), with α < α0; this will prove the assertion.

• If p > p0, the Bernstein inequality gives:

‖Pλ,δf‖Lp . λ
2
p0

− 2
p ‖Pλ,δf‖Lp0 . λ

2
p0

− 2
pλ

1
2−

2
p0 δ

1
2 ‖f‖L2 . λ

1
2−

2
p δ

1
2 ‖f‖L2 .
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0
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1
6

•
1
4

1
p

•
1
10

•1α = − log δ
log λ

•1
3

Figure 3. The vertical axis corresponds to α = − log δ
log λ

, and the horizontal axis to 1
p
. In the dark

blue region, Conjecture B is verified without loss; in the light blue region, it is verified with an

ε-loss. The red line is the curve δ = λ
−1+ 4

p , which separates the region where the conjecture is

λ
1− 2

p δ (below) from the region where the conjecture is (λδ)
1
2 (above).

• To deal with the case α < α0, we observe first that the classical TT ∗ argument
shows that ‖Pλ,δ‖L2→Lp = ‖Pλ,δ‖Lp′→Lp . Assume now that:

‖Pλ0,δ0
‖L2→Lp0 = C0λ

1
2−

2
p

0 δ
1
2 ,

for constants (λ0, δ0, p0, C0), and consider δ > δ0. Then the interval (λ− δ, λ+ δ)
can be covered by O(δ/δ0) disjoint intervals (Ij) of length δ0 and,

|Pλ0,δ
‖2
L2→L

p
0
≤

∥∥∥∑
j

PIj

∥∥∥2
L2→Lp0

=
∥∥∥∑

j

PIj

∥∥∥
L
p′0→Lp0

≤
∑
j

∥∥∥PIj

∥∥∥
L
p′0→Lp0

.
δ

δ0
λ
1− 4

p0
0 δ0 . λ

1− 4
p0

0 δ.

(ii) is a consequence of interpolation, and of the trivial bound ‖Pλ,δ‖L2→L2 . 1: if

2 < p < p0, choosing θ such that 1
p − 1

2 = θ
(

1
p0

− 1
2

)
,

‖Pλ,δ‖L2→Lp . ‖Pλ,δ‖1−θ

L2→L2‖Pλ,δ‖θL2→Lp0 . (λδ)
θ

(
1
4−

1
2p0

)
= (λδ)

1
4−

1
2p .

�
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We now turn to Conjecture B; Figure 3 depicts the different regions where it is verified.
Furthermore, if the conjecture holds at a given point in this diagram, then it follows on
a region depending on that point. Such implications are summarized in the following
lemma.

Lemma 5.2.

(i) If Conjecture B is satisfied at a point ( 1
p0
, α0) below the red curve, consider the

rectangle with that point as its top right vertex. Then the conjecture holds at any
point in that rectangle.

(ii) If Conjecture B is satisfied with ε loss at a point ( 1
p0
, α0) above the red curve, then

it holds with ε loss to the right of this point, that is on the segment joining this point
to (12 , α0).

Proof. This is very similar to Lemma 5.1. For (i), we use Bernstein’s inequal-
ity and the fact that, if δ0 < δ, then Φλ,δ can be written as the sum of O( δ

δ0
)

functions of the type Φλ,δ0
. For (ii), it suffices to interpolate with the trivial bound

‖Φλ,δ‖L2 . λε(λδ)
1
2 . �
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