SIMPLE QUOTIENTS OF EUCLIDEAN LIE ALGEBRAS

ROBERT V. MOODY

Introduction. In [2], we considered a class of Lie algebras generalizing the classical simple Lie algebras. Using a field Φ of characteristic zero and a square matrix $\left(A_{i j}\right)$ of integers with the properties (1) $A_{i i}=2$, (2) $A_{i j} \leqq 0$ if $i \neq j$, (3) $A_{i j}=0$ if and only if $A_{j i}=0$, and (4) $\left(A_{i j}\right) \operatorname{diag}\left\{\epsilon_{1}, \ldots, \epsilon_{l}\right\}$ is symmetric for some appropriate non-zero rational ϵ_{i}, a Lie algebra $E=E\left(\left(A_{i j}\right)\right)$ over Φ can be constructed, together with the usual accoutrements: a root system, invariant bilinear form, and Weyl group.

For indecomposable $\left(A_{i j}\right), E$ is simple except when $\left(A_{i j}\right)$ is singular and removal of any row and corresponding column of $\left(A_{i j}\right)$ leaves a Cartan matrix. The non-simple Es, Euclidean Lie algebras, were our object of study in [3] as well as in the present paper. They are infinite-dimensional, have ascending chain condition on ideals, and proper ideals are of finite codimension. Furthermore, there exists a special bijective linear mapping ': $E \rightarrow E$ with the property $\left[a^{\prime} b\right]=[a b]^{\prime}$ for all $a, b \in E$. This shift map is determined only up to a scalar multiple. For $\mu \in \Phi^{\times}=\Phi-\{0\}, I(\mu)=\left\{a^{\prime}-\mu a \mid a \in E\right\}$ is an ideal, and the quotient $E(\mu)$ of E by this ideal is finite-dimensional central simple over Φ. In this paper we are concerned with the structure of these simple quotient algebras.

Every Euclidean Lie algebra has a tier number associated with it (see § 1), and this is one of 1,2 , or 3 . In [3] we proved that when the tier number is $1, E(\mu) \cong E(1)$ for all $\mu \in \Phi^{\times}$and is a split simple Lie algebra of easily determined type. For 2 -tiered Lie algebras (with the exception of $F_{4,2}$) we showed that $E(\mu)$ has type independent of μ but $E(\mu)$ and $E(\nu)$ may fail to be isomorphic for some μ and ν in Φ^{\times}.

The main results of this paper are the following.
Theorem 1. If E is a 2-tiered Euclidean Lie algebra over a field Φ of characteristic zero, then the shift map can be chosen so that $E(\mu)$ splits over $\Phi(\sqrt{ } \mu)$ (relative to the Cartan subalgebra $\left.\left(H+E_{\xi}\right) \pi_{\mu}\right)$ for all $\mu \in \Phi^{\times}$.

Theorem 3. Under the assumptions of Theorem $1, E(\mu) \cong E(\nu)$ if and only if $\mu \nu^{-1}$ is a square.

We also see along the way that $F_{4,2}(\mu)$ is of type E_{6} for all μ.
In the last section we show that the adjoint group of $E(\mu)$, where μ is a non-square of Φ^{\times}, is the Steinberg twisted group arising from the split algebra $\Phi(\sqrt{ } \mu) \otimes_{\Phi} E(\mu)$ relative to the non-trivial automorphism of $\Phi(\sqrt{ } \mu)$ over Φ.

[^0] No. A-5607.

1. Proof of Theorem 1. Let $\mathbf{L}=\{0,1, \ldots, l\}$ where l is some positive integer and let Φ be a field of characteristic zero. We identify the integers \mathbf{Z} with the prime subring of Φ. Let E be a 2 -tiered Euclidean Lie algebra over Φ with generators $\left\{e_{i}, f_{i}, h_{i} \mid i \in \mathbf{L}\right\}$. We briefly recall the relevant facts about E and refer the reader to [3] for the definitions and further details.

Let Δ be the root system for E relative to the given generators (we consider 0 to be in Δ). For each $\alpha \in \Delta$ let E_{α} denote the corresponding root space. $H \equiv \Phi h_{0}+\ldots+\Phi h_{l}$ is E_{0} and forms an abelian subalgebra of E of dimension $l($ not $l+1)$.

Denote by Π the fundamental system of roots $\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{l}\right\}$ and by $\Delta_{\mathbf{Z}}$ the group generated by them. $\Delta_{\mathbf{z}}$ is a free abelian group of rank $l+1$ and the real space $\mathbf{R} \otimes_{\mathbf{Z}} \Delta_{\mathbf{Z}}$ is equipped with a positive semi-definite form (,) of rank l. The reflections $r_{0}, r_{1}, \ldots, r_{l}$ defined by $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{l}$ generate an affine reflection group W which stabilizes Δ. The radical of (,) intersects Δ in a cyclic group Z and we can take as a generator for Z the positive element $\xi=\sum_{i \in \mathbf{L}} \xi_{i} \alpha_{i}$ of least height in Z. Our α_{0} is chosen (to within symmetries of the diagram of Π) by the following conditions: (1) $\Pi-\alpha_{0}$ is connected, (2) $\xi_{0}=1$, (3) (used only when (1) and (2) do not characterize a root to within diagram symmetries) $\alpha_{0}+\xi \in \Delta$.

The hypothesis (2-tiered) on E means that if an element α is in Δ, then so are all its translates by elements of $\mathbf{Z} 2 \xi$ (but there exist elements α in Δ for which $\alpha+\xi \notin \Delta)$. If X is any subset of Δ, \bar{X} will denote the set of equivalence classes represented by the elements of X in Δ taken modulo 2ξ. The shift map ' of E onto itself has the following properties: (1) $[a b]^{\prime}=\left[a^{\prime} b\right]$ for all $a, b \in E$ and (2) $E_{\alpha}{ }^{\prime}=E_{\alpha+2 \xi}$ for all $\alpha \in \Delta$. These properties characterize it to within a scalar multiple. For each $\mu \in \Phi^{\times}$let π_{μ} be the natural homomorphism of E onto $E(\mu)$. Then

$$
E(\mu)=\sum \underset{\substack{\alpha \in \pm \\ 0 \leq h t \alpha<h t 2 \xi}}{\oplus}\left(E_{\alpha}\right) \pi_{\mu}
$$

and $\left(H+E_{\xi}\right) \pi_{\mu}$ is a Cartan subalgebra [3, Lemma 5].
In the following we will be considering $E(1)$ for the most part. We will denote $E(1)$ by \bar{E} and $\left(E_{\alpha}\right) \pi_{1}$ by \bar{E}_{α} for all $\alpha \in \Delta$. Since $\bar{E}_{\alpha}=\bar{E}_{\beta}$ if and only if $\alpha \equiv \beta(\bmod 2 \xi)$, there is no ambiguity in spealing of \bar{E}_{α}, where $\alpha \in \bar{\Delta}$. Since H and \bar{H} are canonically isomorphic, we often consider elements of Δ as functions on $\bar{H} . \bar{H}+\bar{E}_{\xi}$ will be denoted by K. Finally we define some subsets of $\Delta: \Delta_{0}=\{\alpha \in \Delta-Z \mid \alpha+\xi \notin \Delta\}, \Delta_{1}=\{\alpha \in \Delta-Z \mid \alpha+\xi \in \Delta\}$. For $\alpha=\sum_{i \in \mathbf{L}} z_{i} \alpha_{i}$ define $t(\alpha)=z_{0}$. Let $\Gamma=\{\alpha \mid t(\alpha)$ is odd $\}$.

For each $\beta \in \Delta-Z$ and for each $x \in E_{\beta}$, ad x is nilpotent, and hence $\exp (\operatorname{ad} x)$ is a well-defined automorphism of E. The group \mathfrak{X}_{β}, generated by these as x ranges over E_{β} is isomorphic to Φ^{+}. As usual, we call the group G generated by the \mathfrak{X}_{β}, as β ranges over $\Delta-Z$, the adjoint group of E, and see that it is generated by $\mathscr{X}_{ \pm \alpha_{0}}, \ldots, \mathfrak{X}_{ \pm \alpha l}[\mathbf{6}]$. For $x \in E_{\beta}, l \in E, l^{\prime} \exp (\operatorname{ad} x)=$ $(l \exp (\operatorname{ad} x))^{\prime}$, whence G commutes with the shift map. Thus G stabilizes
every ideal of E and induces a group of automorphisms on each quotient of E. The group induced on $E(\mu)$ will be denoted G_{μ}.

For each $w \in W$ there is an automorphism $\theta=\theta(w) \in G$ (not unique) such that $E_{\beta} \theta=E_{\beta w}$ for all $\beta \in \Delta[\mathbf{1}$, Theorem 2]. We will need the fact that if $w=r_{i_{1}} \ldots r_{i_{k}}$, then $\theta(w)$ can be chosen to be a product of the automorphisms exp ad e_{j} and \exp ad $f_{j}, j=i_{1}, \ldots, i_{k}$. We will then say that θ is defined over $\alpha_{i_{1}}, \ldots, \alpha_{i_{k}}$.

Lemma 1. If $\alpha \in \Delta_{1}$ and $a \in E_{\alpha}, a \neq 0$, then $\left[a E_{\xi}\right] \neq(0)$.
Proof. Using a suitable automorphism of W if necessary, we can suppose that $\alpha=\alpha_{i} \in \Pi$ and $a=e_{i}$. Let $K_{i}=\Phi e_{i}+\Phi h_{i}+\Phi f_{i}$ and let $b \in E_{\alpha_{i}+\xi}$. By [3, Lemma 2], the K_{i}-module M generated by b is irreducible. Since $\left(\alpha_{i}+\xi\right)\left(h_{i}\right)=2, M \cap E_{\xi} \neq(0)$, and hence $\left[e_{i} E_{\xi}\right] \cap M \neq(0)$.

Fix $\alpha \in \Delta_{1}$ and let $V^{(\alpha)}=\bar{E}_{\alpha}+\bar{E}_{\alpha+\xi}$. V is a two-dimensional K-module, and hence for some finite extension P of $\Phi, V_{\mathrm{P}}{ }^{(\alpha)}=\mathrm{P} \otimes_{\Phi} V^{(\alpha)}$ has a weight vector $u_{1} \neq 0$, say with weight φ_{1}. We suppose that P is chosen to be minimal. Let $a \in \bar{E}_{\alpha}-\{0\}, a^{*} \in \bar{E}_{\alpha+\xi}-\{0\}$. It is a consequence of Lemma 1 that $\mathrm{P} \otimes \bar{E}_{\alpha+\xi}$ is not a weight space for K. We can suppose then, that $u_{1}=a+\lambda a^{*}$, with $\lambda \in \mathrm{P}$. It follows that $\varphi_{1} \mid \bar{H}=\alpha$, and for all $k \in \bar{E}_{\xi}$,

$$
\begin{equation*}
\varphi_{1}(k) a=\lambda\left[a^{*} k\right], \quad \lambda \varphi_{1}(k) a^{*}=[a k] . \tag{1}
\end{equation*}
$$

By Lemma 1, choose $k_{0} \in \bar{E}_{\xi}$ such that $\left[a k_{0}\right] \neq 0$. Using k_{0} in (1), we have $\lambda \neq 0$ and $\varphi_{1} \mid \bar{E}_{\xi} \neq 0$. Again from (1), it is apparent that $u_{2}=a-\lambda a^{*}$ is a weight vector relative to K with weight φ_{2} satisfying

$$
\varphi_{2}\left|\bar{H}=\alpha, \quad \varphi_{2}\right| \bar{E}_{\xi}=-\varphi_{1} \mid \bar{E}_{\xi} .
$$

$V_{\mathbf{P}}{ }^{(\alpha)}=\mathrm{P} u_{1} \oplus \mathrm{P} u_{2}$. Now, the characteristic polynomial of $\mathrm{ad}_{V} k_{0}$ has as its splitting field, Σ, in P either Φ or $\Phi(\sqrt{ } \mu)$, for some $\mu \in \Phi$. As $a \pm \lambda a^{*}$ are characteristic vectors for ad k_{0} considered as a transformation on $V_{\mathbf{P}}{ }^{(\alpha)}$, and $a, a^{*} \in V^{(\alpha)}$, we find $\lambda \in \Sigma$. With k_{0} in (1), we see that $\varphi_{1}\left(k_{0}\right) / \lambda$ and $\lambda \varphi_{1}\left(k_{0}\right)$ are in Φ, whence $\lambda^{2} \in \Phi$ and $\mathrm{P}=\Phi(\lambda)$ is an extension of degree at most two.

All this depends on our choice of $\alpha \in \Delta_{1}$ which has played no part up to this point. In the cases $C_{l, 2}, F_{4,2}$, and $A_{1,2}, \Delta_{1}$ is a single orbit under W, and hence, using suitable automorphisms $\theta(w)$, we obtain immediately that $V_{\mathbf{P}}{ }^{(\beta)}$ decomposes into two weight spaces relative to K for all $\beta \in \Delta_{1}$. In the case $B_{l, 2}$, the two orbits making up Δ_{1} are interchanged by the natural automorphism which effects $e_{i} \leftrightarrow e_{l-i}, f_{i} \leftrightarrow f_{l-i}, h_{i} \leftrightarrow-h_{l-i}, i \in \mathbf{L}$. There remains $B C_{l, 2}$. Again there are two orbits, and we can take α_{l-1} and α_{l} as representatives of them (indexing as in [3, Table 2]). Let us suppose that the $\alpha \in \Delta_{1}$ of the previous discussion was taken to be α_{l}. Then, since $\alpha_{l-1}+\alpha_{l}$ and $-\alpha_{l}$ are in the same orbit as $\left.\alpha_{l}, V_{\mathbf{P}}{ }^{\left(\alpha_{l}-1\right.}+\alpha_{l}\right)$ and $V_{\mathbf{P}}^{\left(-\alpha_{l}\right)}$ both break into two weight spaces over P. Let $a \pm a^{*}$ and $b \pm b^{*}$ be corresponding weight vectors. [3, Lemma 2] shows that neither [ab] nor [a*b] can be zero. All
four of the products $\left[a \pm a^{*}, b \pm b^{*}\right]$ are weight vectors for K in $V_{\mathbf{P}}{ }^{\left(\alpha_{l}-1\right)}$ and it is easy to pick two independent ones from amongst them. This shows that $V_{\mathrm{P}}{ }^{\left(\boldsymbol{\alpha}_{l}-1\right)}$ decomposes into two weight spaces relative to K, and hence so does $V_{\mathbf{P}}{ }^{(\beta)}$ for all $\beta \in \Delta_{1}$.

We have proved that if E is a 2-tiered Euclidean Lie algebra over a field Φ of characteristic zero, $\bar{E}=E(1)$ splits relative to $\bar{H}+\bar{E}_{\xi}$ in some extension P of Φ of degree at most two.

We obtain Theorem 1 by judiciously scaling the shift map. Fix $\alpha \in \Delta_{1}$ and return to the discussion centering around equation (1). If we replace a and a^{*} by their respective pre-images under π_{1} in E_{α} and $E_{\alpha+\xi}$, respectively, and rewrite (1) in E, we obtain

$$
\begin{equation*}
\varphi_{1}(k) a^{\prime}=\lambda\left[a^{*} k\right], \quad \lambda \varphi_{1}(k) a^{*}=[a k] \tag{2}
\end{equation*}
$$

for all $k \in E_{\xi}$.
We have seen that $\varphi_{1}(k) / \lambda, \lambda \varphi_{1}(k)$, and λ^{2} are all in Φ for all $k \in E_{\xi}$. Define " to be the shift map ' scaled by λ^{-2}, and define ψ by $\psi(k)=\lambda_{1}(k)$. Equations (2) become

$$
\psi(k) a^{\prime \prime}=\left[a^{*} k\right], \quad \psi(k) a^{*}=[a k], \quad k \in E_{\xi}
$$

Thus replacing ' by ", the new $\bar{E}=E(1)$ is already split in Φ relative to $K=\bar{H}+\bar{E}_{\xi}$. Theorem 1 follows.
2. The root system of $E(1)$. Let $\Delta^{\prime} \subset K^{*}$ be the root system for \bar{E} relative to K. To avoid confusion, we denote the root space for $\varphi \in \Delta^{\prime}$ by L_{φ}. Each $\alpha \in \bar{\Delta}_{0}$ yields a non-zero root $\varphi \in \Delta^{\prime}$ with $L_{\varphi}=\bar{E}_{\alpha}, \varphi|\bar{H}=\alpha, \varphi| \bar{E}_{\xi}=0$. Each pair $\alpha, \alpha+\xi \in \bar{\Delta}_{1}\left(\alpha+\xi\right.$ has an obvious interpretation in $\left.\bar{\Delta}_{1}\right)$ yields two roots φ and $\tilde{\varphi}$ with $\varphi|\bar{H}=\alpha=\tilde{\varphi}| \bar{H}, \varphi\left|\bar{E}_{\xi}=-\tilde{\varphi}\right| \bar{E}_{\xi}$, and $L_{\varphi}+L_{\tilde{\varphi}}=\bar{E}_{\alpha}+\bar{E}_{\alpha+\xi}$. All the roots of $\Delta^{\prime}-\{0\}$ are obtained in these two ways. For $\psi \in \Delta^{\prime}$, we define $\tilde{\psi}$ by $\tilde{\psi}|\bar{H}=\psi| \bar{H}, \psi\left|\bar{E}_{\xi}=-\tilde{\psi}\right| \bar{E}_{\xi}$. \sim maps Δ^{\prime} onto itself, is of order two, and extends the use of \sim above.

Define a map ι of \bar{E} into itself by $\iota|\bar{H}=1, \downarrow| \bar{E}_{\xi}=-1, \iota \mid \bar{E}_{\alpha}=1$ if $\alpha \in \Delta-(Z \cup \Gamma), \iota \mid \bar{E}_{\alpha}=-1$ if $\alpha \in \Gamma$. Then ι is an automorphism of period two since its value on any space \bar{E}_{α} depends on whether the number $t(\alpha)$ is even or odd.

Suppose that $\Delta_{1} \cap\left(\Pi-\left\{\alpha_{0}\right\}\right)=\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$.
Lemma 2. Let $e_{i}{ }^{*}\left(f_{i}^{*}\right)$ be non-zero elements of $E_{\alpha_{i}+\xi}\left(E_{-\alpha_{i}+\xi}\right), i=1, \ldots, k$. Then $e_{1}, \ldots, e_{l}, f_{1}, \ldots, f_{l}, e_{1}{ }^{*}, \ldots, e_{k}{ }^{*}, f_{1}{ }^{*}, \ldots, f_{k}{ }^{*}$ generate E.

Proof. Let A be the subalgebra of E which they generate. In the cases $E=B_{l, 2}, C_{l, 2}, F_{4,2}, \alpha_{0}\left\langle r_{1}, \ldots, r_{l}\right\rangle$ is the set of all roots of Δ of the form $\alpha_{0}+\sum_{i=1}^{l} \lambda_{i} \alpha_{i}$ [3, Lemma 9]. Fix $i \in\{1, \ldots, k\} . \alpha_{i}+\xi \in \Delta$ and is in

$$
\alpha_{0}\left\langle r_{1}, \ldots, r_{l}\right\rangle-\operatorname{say}\left(\alpha_{i}+\xi\right) w=\alpha_{0}, \quad w \in\left\langle r_{1}, \ldots, r_{l}\right\rangle .
$$

We can produce a $\theta=\theta(w)$ defined over $\alpha_{1}, \ldots, \alpha_{l}$. Then $e_{i}^{*} \theta \in A \cap E_{\alpha_{0}}$. Thus e_{0}, and similarly f_{0}, is in A; whence $A=E$.

In the cases $B C_{l, 2}$ and $A_{1,2}$, with the notation of [3, Table 2], $2 \alpha_{l}+\xi$ and $2 \alpha_{1}+\xi$ are roots, respectively, and the corresponding root spaces are clearly in A. Using [3, Lemma 11] and the fact that $2 \alpha_{l}+\xi$ and $2 \alpha_{1}+\xi$ are of weight 4 , we see that they are in $\alpha_{0}\left\langle r_{1}, \ldots, r_{l}\right\rangle$. We now proceed as above.

Let $\varphi_{1}, \ldots, \varphi_{s}$ be the set of all roots $\psi \in \Delta^{\prime}$ such that $\psi \mid \bar{H} \in \Pi-\left\{\alpha_{0}\right\}$ (considered as functions on \bar{H}).

Lemma 3. $\left\{\varphi_{1}, \ldots, \varphi_{s}\right\}$ are linearly independent elements of K^{*}.
Proof. Suppose that the φ s are indexed so that $\varphi_{i} \mid \bar{H}=\alpha_{i}, i=1, \ldots, k$. Let $e_{i}{ }^{*}\left(f_{i}^{*}\right)$ be a non-zero element of $E_{\alpha_{i}+\xi}\left(E_{-\alpha_{i}+\xi}\right), i=1, \ldots, k$. Then $\left[e_{1}^{*} f_{1}\right], \ldots,\left[e_{k}^{*} f_{k}\right]$ is a basis of E_{ξ} [3, Lemma 6 and the discussion in cases (1)-(6) following Proposition 8].
$\varphi_{1}\left|\bar{E}_{\xi}, \ldots, \varphi_{k}\right| \bar{E}_{\xi}$ are independent functions: for if not, there is a $g \in E_{\xi}-\{0\}$ such that $\bar{g} \in \bar{E}_{\xi}-\{0\}$ satisfies $\varphi_{i}(\bar{g})=0, i=1, \ldots, k$. Then by (1), $\left[e_{i} g\right]=0$ for $i=1, \ldots, k$, and hence for $i=1, \ldots, l$. Also from (1), $\left[e_{i}{ }^{*} g\right]=0$ for $i=1, \ldots, k$. Now $-\varphi_{i}\left|\bar{H}=-\alpha_{i}\right| \bar{H}$ and hence $\left[f_{i} g\right]=0$, $i \in \mathbf{L}$. For $i=1, \ldots, k, f_{i}{ }^{*}=\left[h_{i}{ }^{*} f_{i}\right]$ for suitable $h_{i}{ }^{*} \in E_{\xi}$, from which $\left[f_{i}{ }^{*} g\right]=0$. Lemma 2 implies that g is in the centre of E whence $g=0$.

Put $S=\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{s}\right\}-\left\{\varphi_{1}, \tilde{\varphi}_{1}, \ldots, \varphi_{k}, \tilde{\varphi}_{k}\right\}$. Now, if

$$
\sum_{i=1}^{k} \lambda_{i} \varphi_{i}+\sum_{i=1}^{k} \lambda_{i}{ }^{\prime} \tilde{\varphi}_{i}+\sum_{\varphi \in S} \lambda_{\varphi} \varphi=0
$$

where all $\lambda \in \Phi$, then restricting to \bar{H} and \bar{E}_{ξ} in turn, we see that all the λ s are zero. This proves the lemma.

Lemma 4: If. $i \neq j, \varphi_{i}-\varphi_{j} \notin \Delta^{\prime}$.
Proof. Suppose that $\varphi_{i}-\varphi_{j} \in \Delta^{\prime} .\left(\varphi_{i}-\varphi_{j}\right) \mid \bar{H}$ is the function $\alpha_{m}-\alpha_{n}$, where $\alpha_{m}=\varphi_{i}\left|\bar{H}, \alpha_{n}=\varphi_{j}\right| \bar{H}$. Since $\varphi_{i}-\varphi_{j}$ is induced by a non-zero root (or root pair) of $\Delta-Z$, we conclude that $\alpha_{m}-\alpha_{n}$ or $\alpha_{m}-\alpha_{n}+\xi$ is in Δ. The only possibility is the latter. [3, Lemmas 9 and 11] show that

$$
\beta=\alpha_{m}-\alpha_{n}+\xi \in \alpha_{0}\left\langle r_{1}, \ldots, r_{l}\right\rangle,
$$

and since the weight of β is greater than 1 and $l \geqq 2(m, n \in \mathbf{L}-\{0\})$, E must be $B C_{l, 2}$. Then weight β is 4 . Now, the proof of [3, Lemma 11] actually shows that there exist $r_{i_{1}}, \ldots, r_{i_{t}} \in\left\{r_{1}, \ldots, r_{i}\right\}$ such that $\alpha_{0}=\beta r_{i_{1}} \ldots r_{i_{t}}$ and ht $\beta>\mathrm{ht} \beta r_{i_{1}}>\mathrm{ht} \beta r_{i_{1}} r_{i_{2}} \ldots>\mathrm{ht} \alpha_{0}$. We see that each $r_{i_{j}}$ must be r_{m} or r_{n}. Then $l=2$, and a short calculation leads to a contradiction.

Theorem 2. $\left\{\varphi_{1}, \ldots, \varphi_{s}\right\}$ is a simple system of roots for \bar{E} relative to K. The automorphism ι is a diagram automorphism of \bar{E} relative to this system.

Proof. The assertion about ι is obvious if $\left\{\varphi_{1}, \ldots, \varphi_{s}\right\}$ is a simple system. $L_{ \pm \varphi_{1}}, \ldots, L_{ \pm \varphi_{s}}$ generate \bar{E} by Lemma 2 . Note that if $i \neq j$, then

$$
\varphi_{i}-\varphi_{j} \notin \Delta^{\prime} \quad(\text { Lemma } 4)
$$

Let \langle,$\rangle denote the bilinear form on K^{*}$ induced by the Killing form on \bar{E}. For all $i \neq j,\left\langle\varphi_{i}, \varphi_{j}\right\rangle \leqq 0$ since $\varphi_{i}-\varphi_{j} \notin \Delta^{\prime}$. Thus the integers $B_{i j}=2\left\langle\varphi_{i}, \varphi_{j}\right\rangle /\left\langle\varphi_{j}, \varphi_{j}\right\rangle$ form a generalized Cartan matrix. Let $N=E\left(\left(B_{i j}\right)\right)$ be the Lie algebra defined by $\left(B_{i j}\right)$. Since $\varphi_{1}, \ldots, \varphi_{s}$ are linearly independent, we can use the subset of $\mathbf{Z} \varphi_{1}+\ldots+\mathbf{Z} \varphi_{s}$ obtained from $\varphi_{1}, \ldots, \varphi_{s}$ under the maps $R_{j}: \varphi_{i} \mapsto \varphi_{i}-B_{i j} \varphi_{j}, j=1, \ldots, s$, as the root system of N. Since $\varphi_{i}-B_{i j} \varphi_{j} \in \Delta^{\prime}$, the root system of N is finite, and hence ($B_{i j}$) is a Cartan matrix and N is semi-simple. Choosing $\hat{e}_{i} \in L_{\varphi_{i}}, \hat{f}_{i} \in L_{-\varphi_{i}}, \hat{h}_{i} \in K$ such that $\left[\hat{e}_{i} \hat{f}_{i}\right]=\hat{h}_{i},\left[\hat{e}_{i} \hat{h}_{i}\right]=2 \hat{e}_{i},\left[\hat{f}_{i} \hat{h}_{i}\right]=-2 \hat{f}_{i}$, we obtain a natural homomorphism of N onto \bar{E}. Clearly $N \cong \bar{E}$ and $N_{\beta} \rightarrow L_{\beta}$ for all $\beta \in \Delta^{\prime}$, whence each $\beta \in \Delta^{\prime}$ is either a non-positive or non-negative integral combination of $\varphi_{1}, \ldots, \varphi_{s}$.
3. Proof of Theorem 3. If \mathbb{R} is a semi-simple Lie algebra over a field Φ, split relative to a Cartan subalgebra \mathfrak{F}, and if $\left(B_{i j}\right)$ is a Cartan matrix and $\beta_{1}, \ldots, \beta_{l}$ is a simple root system for Ω, we say that a set of generators $a_{i} \in \mathbb{R}_{\beta_{i}}, b_{i} \in \mathbb{R}_{-\beta_{i}}, i=1, \ldots, l$, is a standard set of generators for \mathbb{R}, if, putting $c_{i}=\left[a_{i} b_{i}\right]$ we have $\left[a_{i} c_{j}\right]=B_{i j} a_{i}$ and $\left[b_{i} c_{j}\right]=-B_{i j} b_{i}$.

We use the notation of the previous section. Then $\varphi_{1}, \ldots, \varphi_{s}$ is a simple system of roots for Δ^{\prime} and we can choose $e_{i}{ }^{*} \in E_{\alpha_{i}+\xi}, f_{i}^{*} \in E_{-\alpha_{i}+\xi}, i=1, \ldots, k$, $\lambda_{1}, \ldots, \lambda_{k} \in \Phi^{\times}$such that
$\bar{e}_{1} \pm \bar{e}_{1}{ }^{*}, \ldots, \bar{e}_{k} \pm \bar{e}_{k}{ }^{*}, \bar{e}_{k+1}, \ldots, \bar{e}_{l}, \lambda_{1}\left(\bar{f}_{1} \pm \bar{f}_{1}{ }^{*}\right), \ldots, \lambda_{k}\left(\bar{f}_{k} \pm \bar{f}_{k}{ }^{*}\right), \bar{f}_{k+1}, \ldots, \bar{f}_{l}$ is a standard set of generators for $\bar{E}=E(1)$. (\bar{a} means $(a) \pi_{1}$.)

Let $\tilde{\Phi}$ be an algebraic closure of Φ and, for each $\mu \in \Phi^{\times}$, let $\sqrt{ } \mu$ be a square root of μ in $\tilde{\Phi}$. Let $\mu \in \Phi^{\times}$and let $\mathrm{P}=\Phi(\sqrt{ } \mu)$. Define a linear map κ : $E_{\mathrm{P}} \rightarrow E_{\mathrm{P}}$ by $e_{\alpha} \mapsto(\sqrt{ } \mu)^{-t(\alpha)} e_{\alpha}$ for all $\alpha \in \Delta$, and $e_{\alpha} \in E_{\alpha} . \kappa$ is an automorphism of E and maps the ideal $I(1)$ onto $I(\mu)$. Thus there is an induced isomorphism κ^{\prime} of $E_{\mathrm{P}}(1)$ onto $E_{\mathrm{P}}(\mu)$. If $\sqrt{ } \mu \in \Phi$, this shows that $E(1) \cong E(\mu)$.

Suppose now that $\sqrt{ } \mu \notin \Phi$. Let τ_{0} denote the non-trivial automorphism of P over Φ and $\tau_{0}{ }^{\prime}$ some extension of τ_{0} to an automorphism of $\tilde{\Phi}$ over Φ. The image under κ^{\prime} of the standard basis of $E(1)$ given above is

$$
e_{1} \pi_{\mu} \pm(\sqrt{ } \mu)^{-1} e_{1}^{*} \pi_{\mu}, \ldots, e_{k} \pi_{\mu} \pm(\sqrt{ } \mu)^{-1} e_{k}^{*} \pi_{\mu}, e_{k+1} \pi_{\mu}, \ldots, e_{l} \pi_{\mu}
$$

etc. These generate, over Φ, an algebra X isomorphic to the split algebra $E(1)$. The semi-linear automorphism $\tau=\tau_{0} \otimes 1_{E(\mu)}$ of $E_{\mathrm{P}}(\mu)=\mathrm{P} \otimes_{\Phi} E(\mu)$ fixes $E(\mu)$ while performing a diagram automorphism on X. This is sufficient to prove that $X \not \not E E(\mu)$. In fact, let $\tau_{X}=\tau \mid X$, and let $\tilde{\tau}_{X}$ be the extension of τ_{X} to an automorphism of $\widetilde{X}=X_{\tilde{\Phi}}=E(\mu)_{\tilde{\Phi}}$. Suppose, by way of contradiction, that $\omega: E(\mu) \rightarrow X$ is an isomorphism. Let $\tilde{\omega}$ be the extension of ω to an automorphism of \widetilde{X} and τ^{*} the extension of τ to a $\tau_{0}{ }^{\prime}$-semi-linear map of \tilde{X} onto itself. From

$$
\begin{equation*}
\tau_{X}^{-1} \tau_{X}=\omega^{-1} 1_{E(\mu)} \omega \tag{3}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\tilde{\tau}_{X}{ }^{-1} \tau^{*}=\tilde{\omega}^{-1} \tau^{*} \tilde{\omega} \tag{4}
\end{equation*}
$$

since each side of (4) is the unique $\tau_{0}{ }^{\prime}$-semi-linear extension to \tilde{X} of the corresponding side of (3).

Thus we have $\tilde{\tau}_{X}=\tau^{*} \tilde{\omega}^{-1}\left(\tau^{*}\right)^{-1} \tilde{\omega}$. But $\tilde{\tau}_{X}$ is a diagram automorphism of \tilde{X}, and consequently $\tau^{*} \tilde{\omega}^{-1}\left(\tau^{*}\right)^{-1} \tilde{\omega}$ is an outer automorphism. This means that $\tilde{\omega}$ must be an outer automorphism. However, it is easy to see that the choice of ω can be made so that $\tilde{\omega}$ is inner. This shows that $E(\mu) \nsupseteq X \cong E(1)$.

The general case $\mu \nu^{-1} \notin \Phi^{\times 2}$ now follows immediately. We can suppose that neither μ nor ν is in $\Phi^{\times 2} . \nu \notin \mathrm{P}^{\times 2}$, where $\mathrm{P}=\Phi(\sqrt{ } \mu)$, and hence

$$
E(\mu)_{\mathrm{P}}=E_{\mathrm{P}}(\mu) \cong E_{\mathrm{P}}(1) \nVdash E_{\mathrm{P}}(\nu)=E(\nu)_{\mathrm{P}}
$$

from which $E(\mu) \nsubseteq E(\nu)$.
Corollary. $F_{4,2}(\mu)$ is of type E_{6} for all $\mu \in \Phi^{\times}$.
Proof. From [3, p. 1453], $F_{4,2}(\mu)$ is of type B_{6}, C_{6}, or $E_{6} . F_{4,2}(1)$ is split and has a diagram automorphism, and hence is of type E_{6}. For other μ, $\Phi(\sqrt{ } \mu) \otimes_{\Phi} F_{4,2}(\mu) \cong \Phi(\sqrt{ } \mu) \otimes_{\Phi} F_{4,2}(1)$.
4. Connections with Chevalley groups. Our aim in this section is to prove the following result.

Theorem 4. If $\mu \notin \Phi^{\times 2}$ and τ_{0} is the automorphism of $\mathrm{P}=\Phi(\sqrt{ } \mu)$ over Φ of period two, then the Steinberg group G_{0} of the split simple algebra $E_{\mathbf{P}}(\mu)$ relative to τ_{0} is precisely the group of automorphisms G_{μ} of $E(\mu)$ induced by G. (Every automorphism of $E(\mu)$ can obviously be identified with one of $E_{P}(\mu)$.)
G_{0} is obtained as follows. Let X be a split simple Φ-subalgebra of $E_{\mathrm{P}}(\mu)$ such that $X_{\mathrm{P}}=E_{\mathrm{P}}(\mu)$. Let δ be the diagram automorphism of X and extend it to a semi-automorphism $\bar{\delta}$ of X_{P} with automorphism τ_{0} on P . The elements of the adjoint group of $E_{\mathrm{P}}(\mu)$ invariant by conjugation by $\bar{\delta}$ form G_{0}.

For convenience we will denote $(\nu) \tau_{0}$ by $\bar{\nu}$, for $\nu \in \mathrm{P}$.
We select X as in $\S 3$ so that τ is the semi-automorphism $\bar{\delta}$. Using the κ and κ^{\prime} of $\S 3$, we have the diagram

For each root space L_{φ} of $E(1)$, let $L_{\varphi}{ }^{\prime}$ denote its image in X under κ^{\prime}. Since we will be working entirely in $E(\mu)$, it is convenient to use e_{i}, e_{i}^{*}, etc., instead of $e_{i} \pi_{\mu}, e_{i}^{*} \pi_{\mu}$, etc.
G_{μ} is generated by the elements $\exp \lambda \operatorname{ad} e_{i}, \exp \lambda \operatorname{ad} f_{i}$, where $\lambda \in \Phi$ and
$i=0,1, \ldots, l$. These extend uniquely to automorphisms in G_{0}, providing us with an injective homomorphism of G_{μ} into G_{0}. Conversely, each element of G_{0} induces an automorphism of $E(\mu)$, and thus we have an injective homomorphism of G_{0} into Aut $E(\mu)$.
X has $e_{i} \pm(\sqrt{ } \mu)^{-1} e_{i}^{*}, \quad i=1, \ldots, k, \quad e_{k+1}, \ldots, e_{l}, \quad \lambda_{i}\left(f_{i} \pm(\sqrt{ } \mu)^{-1} f_{i}\right)$, $i=1, \ldots, k, \lambda_{k+1} f_{k+1}, \ldots, \lambda_{l} f_{l}$ as a standard set of generators. By [5, Lemmas 4.6 and 7.6], G_{0} is generated by the following sets of elements:
(1) $\exp \operatorname{ad} \nu e_{i}, i=k+1, \ldots, l, \nu \in \Phi$;
(2) $\exp \operatorname{ad} \nu\left(e_{i}+(\sqrt{ } \mu)^{-1} e_{i}^{*}\right) \exp \operatorname{ad} \bar{\nu}\left(e_{i}-(\sqrt{ } \mu)^{-1} e_{i}{ }^{*}\right), i=1, \ldots, k$, when $\varphi_{i}+\tilde{\varphi}_{i} \notin \Delta^{\prime}(\nu \in \mathrm{P})$;
(3) $\exp \operatorname{ad} \nu\left(e_{i}+(\sqrt{ } \mu)^{-1} e_{i}^{*}\right) \exp$ ad $\bar{\nu}\left(e_{i}-(\sqrt{ } \mu)^{-1} e_{i}^{*}\right) \exp$ ad y for $i=$ $1, \ldots, k$, when $\varphi_{i}+\tilde{\varphi}_{i} \in \Delta^{\prime}(\nu \in \mathrm{P})$. Here y is in $\mathrm{P}\left(L_{\varphi_{i}+\tilde{\varphi}_{i}}^{\prime}\right)$ and its precise form is of no importance to us;
(4) the expressions resulting from (1), (2), and (3) when the es are replaced by f s.

Generators of type (1) are clearly in G_{μ}. In the case (2),

$$
\left[e_{i}+(\sqrt{ } \mu)^{-1} e_{i}^{*}, e_{i}-(\sqrt{ } \mu)^{-1} e_{i}^{*}\right]=0
$$

and so we obtain $\left(\exp \operatorname{ad}(\nu+\bar{\nu}) e_{i}\right)\left(\exp (\sqrt{ } \mu)^{-1}(\nu-\bar{\nu}) e_{i}^{*}\right)$, which is in G_{μ}. In case (3), put $x^{+}=e_{i}+(\sqrt{ } \mu)^{-1} e_{i}^{*}, x^{-}=e_{i}-(\sqrt{ } \mu)^{-1} e_{i}{ }^{*}$. Using the facts that $2 \varphi_{i}+\tilde{\varphi}_{i}$ and $\varphi_{i}+2 \tilde{\varphi}_{i}$ are not in $\Delta^{\prime}, y \in \mathrm{P}\left(L_{\varphi_{i}+\tilde{\varphi}_{i}}^{\prime}\right)$, and the CampbellHausdorff formula [1] we obtain

$$
\begin{aligned}
\exp \operatorname{ad} \nu x^{+} \exp \text { ad } \bar{\nu} x^{-} \exp \text { ad } y & =\exp \operatorname{ad}\left(\nu x^{+}+\bar{\nu} x^{-}+\frac{1}{2} \nu \bar{\nu}\left[x^{+} x^{-}\right]\right) \exp \operatorname{ad} y \\
& =\exp \operatorname{ad}\left(\nu x^{+}+\bar{\nu} x^{-}\right) \exp \operatorname{ad}\left(\frac{1}{2} \nu \bar{\nu}\left[x^{+} x^{-}\right]+y\right)
\end{aligned}
$$

Since τ commutes with our generator, $g=\frac{1}{2} \nu \bar{\nu}\left[x^{+} x^{-}\right]+y$ is in $E(\mu)$. Thus \exp ad $g \in G_{\mu}$. Writing $\nu x^{+}+\bar{\nu} x^{-}=a+b$, where $a \in\left(E_{\alpha_{i}}\right) \pi_{\mu}, b \in\left(E_{\alpha_{i}+\xi}\right) \pi_{\mu}$, $\exp \operatorname{ad} a \exp \operatorname{ad} b=\exp \operatorname{ad}\left(a+b+\frac{1}{2}[a b]\right)=\exp \operatorname{ad}(a+b) \exp \operatorname{ad} \frac{1}{2}[a b]$, since $3 \alpha_{i}$ and $3 \alpha_{i}+\xi$ are not in Δ. Thus $\exp \operatorname{ad}(a+b) \in G_{\mu}$. Now the homomorphism $G_{0} \rightarrow$ Aut $E(\mu)$ maps G_{0} into G_{μ}, whence $G_{0}=G_{\mu}$ on identification.

References

1. N. Jacobson, Lie algebras (Interscience, New York, 1962).
2. R. Moody, A new class of Lie algebras, J. Algebra 10 (1968), 211-230.
3. -_ Euclidean Lie algebras, Can. J. Math. 21 (1969), 1432-1454.
4. J.-P. Serre, Algèbres de Lie semi-simples complexes (Benjamin, New York, 1966).
5. R. Steinberg, Variations on a theme of Chevalley, Pacific J. Math. 9 (1959), 875-891.
6. --Lectures on Chevalley groups, Yale University Lecture Notes, New Haven, Connecticut, 1967.

University of Saskatchewan,
Saskatoon, Saskatchewan

[^0]: Received July 21, 1969. This research was supported by a National Research Council grant,

