SIMPLE QUOTIENTS OF EUCLIDEAN LIE ALGEBRAS

ROBERT V. MOODY

Introduction. In [2], we considered a class of Lie algebras generalizing the classical simple Lie algebras. Using a field Φ of characteristic zero and a square matrix (A_{ij}) of integers with the properties (1) $A_{ii} = 2$, (2) $A_{ij} \leq 0$ if $i \neq j$, (3) $A_{ij} = 0$ if and only if $A_{ji} = 0$, and (4) (A_{ij}) diag $\{\epsilon_1, \ldots, \epsilon_i\}$ is symmetric for some appropriate non-zero rational ϵ_i , a Lie algebra $E = E((A_{ij}))$ over Φ can be constructed, together with the usual accoutrements: a root system, invariant bilinear form, and Weyl group.

For indecomposable (A_{ij}) , E is simple except when (A_{ij}) is singular and removal of any row and corresponding column of (A_{ij}) leaves a Cartan matrix. The non-simple Es, Euclidean Lie algebras, were our object of study in [3] as well as in the present paper. They are infinite-dimensional, have ascending chain condition on ideals, and proper ideals are of finite codimension. Furthermore, there exists a special bijective linear mapping ': $E \to E$ with the property [a'b] = [ab]' for all $a, b \in E$. This shift map is determined only up to a scalar multiple. For $\mu \in \Phi^{\times} = \Phi - \{0\}$, $I(\mu) = \{a' - \mu a | a \in E\}$ is an ideal, and the quotient $E(\mu)$ of E by this ideal is finite-dimensional central simple over Φ . In this paper we are concerned with the structure of these simple quotient algebras.

Every Euclidean Lie algebra has a tier number associated with it (see § 1), and this is one of 1, 2, or 3. In [3] we proved that when the tier number is 1, $E(\mu) \cong E(1)$ for all $\mu \in \Phi^{\times}$ and is a split simple Lie algebra of easily determined type. For 2-tiered Lie algebras (with the exception of $F_{4,2}$) we showed that $E(\mu)$ has type independent of μ but $E(\mu)$ and $E(\nu)$ may fail to be isomorphic for some μ and ν in Φ^{\times} .

The main results of this paper are the following.

THEOREM 1. If E is a 2-tiered Euclidean Lie algebra over a field Φ of characteristic zero, then the shift map can be chosen so that $E(\mu)$ splits over $\Phi(\sqrt{\mu})$ (relative to the Cartan subalgebra $(H + E_{\xi})\pi_{\mu}$) for all $\mu \in \Phi^{\times}$.

THEOREM 3. Under the assumptions of Theorem 1, $E(\mu) \cong E(\nu)$ if and only if $\mu\nu^{-1}$ is a square.

We also see along the way that $F_{4,2}(\mu)$ is of type E_6 for all μ .

In the last section we show that the adjoint group of $E(\mu)$, where μ is a non-square of Φ^{\times} , is the Steinberg twisted group arising from the split algebra $\Phi(\sqrt{\mu}) \otimes_{\Phi} E(\mu)$ relative to the non-trivial automorphism of $\Phi(\sqrt{\mu})$ over Φ .

Received July 21, 1969. This research was supported by a National Research Council grant, No. A-5607.

1. Proof of Theorem 1. Let $\mathbf{L} = \{0, 1, \ldots, l\}$ where l is some positive integer and let Φ be a field of characteristic zero. We identify the integers \mathbf{Z} with the prime subring of Φ . Let E be a 2-tiered Euclidean Lie algebra over Φ with generators $\{e_i, f_i, h_i | i \in \mathbf{L}\}$. We briefly recall the relevant facts about E and refer the reader to [3] for the definitions and further details.

Let Δ be the root system for E relative to the given generators (we consider 0 to be in Δ). For each $\alpha \in \Delta$ let E_{α} denote the corresponding root space. $H \equiv \Phi h_0 + \ldots + \Phi h_l$ is E_0 and forms an abelian subalgebra of E of dimension l (not l + 1).

Denote by II the fundamental system of roots $\{\alpha_0, \alpha_1, \ldots, \alpha_l\}$ and by $\Delta_{\mathbf{Z}}$ the group generated by them. $\Delta_{\mathbf{Z}}$ is a free abelian group of rank l + 1 and the real space $\mathbf{R} \otimes_{\mathbf{Z}} \Delta_{\mathbf{Z}}$ is equipped with a positive semi-definite form (,) of rank l. The reflections r_0, r_1, \ldots, r_l defined by $\alpha_0, \alpha_1, \ldots, \alpha_l$ generate an affine reflection group W which stabilizes Δ . The radical of (,) intersects Δ in a cyclic group Z and we can take as a generator for Z the positive element $\xi = \sum_{i \in \mathbf{L}} \xi_i \alpha_i$ of least height in Z. Our α_0 is chosen (to within symmetries of the diagram of II) by the following conditions: (1) II $-\alpha_0$ is connected, (2) $\xi_0 = 1$, (3) (used only when (1) and (2) do not characterize a root to within diagram symmetries) $\alpha_0 + \xi \in \Delta$.

The hypothesis (2-tiered) on E means that if an element α is in Δ , then so are all its translates by elements of $\mathbb{Z}2\xi$ (but there exist elements α in Δ for which $\alpha + \xi \notin \Delta$). If X is any subset of Δ , \overline{X} will denote the set of equivalence classes represented by the elements of X in Δ taken modulo 2ξ . The shift map ' of E onto itself has the following properties: (1) [ab]' = [a'b]for all $a, b \in E$ and (2) $E_{\alpha}' = E_{\alpha+2\xi}$ for all $\alpha \in \Delta$. These properties characterize it to within a scalar multiple. For each $\mu \in \Phi^{\times}$ let π_{μ} be the natural homomorphism of E onto $E(\mu)$. Then

$$E(\mu) = \sum \bigoplus_{\substack{\alpha \in \Delta \\ 0 \leq h \, t \alpha < h \, t^{2\xi}}} (E_{\alpha}) \, \pi_{\mu},$$

and $(H + E_{\xi})\pi_{\mu}$ is a Cartan subalgebra [3, Lemma 5].

In the following we will be considering E(1) for the most part. We will denote E(1) by \overline{E} and $(E_{\alpha})\pi_1$ by \overline{E}_{α} for all $\alpha \in \Delta$. Since $\overline{E}_{\alpha} = \overline{E}_{\beta}$ if and only if $\alpha \equiv \beta \pmod{2\xi}$, there is no ambiguity in speaking of \overline{E}_{α} , where $\alpha \in \overline{\Delta}$. Since H and \overline{H} are canonically isomorphic, we often consider elements of Δ as functions on \overline{H} . $\overline{H} + \overline{E}_{\xi}$ will be denoted by K. Finally we define some subsets of Δ : $\Delta_0 = \{\alpha \in \Delta - Z | \alpha + \xi \notin \Delta\}$, $\Delta_1 = \{\alpha \in \Delta - Z | \alpha + \xi \in \Delta\}$. For $\alpha = \sum_{i \in \mathbf{L}} z_i \alpha_i$ define $t(\alpha) = z_0$. Let $\Gamma = \{\alpha | t(\alpha) \text{ is odd}\}$.

For each $\beta \in \Delta - Z$ and for each $x \in E_{\beta}$, ad x is nilpotent, and hence $\exp(\operatorname{ad} x)$ is a well-defined automorphism of E. The group \mathfrak{X}_{β} , generated by these as x ranges over E_{β} is isomorphic to Φ^+ . As usual, we call the group G generated by the \mathfrak{X}_{β} , as β ranges over $\Delta - Z$, the adjoint group of E, and see that it is generated by $\mathfrak{X}_{\pm \alpha_0}, \ldots, \mathfrak{X}_{\pm \alpha l}$ [6]. For $x \in E_{\beta}, l \in E, l' \exp(\operatorname{ad} x) = (l \exp(\operatorname{ad} x))'$, whence G commutes with the shift map. Thus G stabilizes

every ideal of E and induces a group of automorphisms on each quotient of E. The group induced on $E(\mu)$ will be denoted G_{μ} .

For each $w \in W$ there is an automorphism $\theta = \theta(w) \in G$ (not unique) such that $E_{\beta}\theta = E_{\beta w}$ for all $\beta \in \Delta$ [1, Theorem 2]. We will need the fact that if $w = r_{i_1} \dots r_{i_k}$, then $\theta(w)$ can be chosen to be a product of the automorphisms exp ad e_j and exp ad f_j , $j = i_1, \dots, i_k$. We will then say that θ is defined over $\alpha_{i_1}, \dots, \alpha_{i_k}$.

LEMMA 1. If $\alpha \in \Delta_1$ and $a \in E_{\alpha}$, $a \neq 0$, then $[aE_{\xi}] \neq (0)$.

Proof. Using a suitable automorphism of W if necessary, we can suppose that $\alpha = \alpha_i \in \Pi$ and $a = e_i$. Let $K_i = \Phi e_i + \Phi h_i + \Phi f_i$ and let $b \in E_{\alpha_i + \xi}$. By [3, Lemma 2], the K_i -module M generated by b is irreducible. Since $(\alpha_i + \xi)(h_i) = 2, M \cap E_{\xi} \neq (0)$, and hence $[e_i E_{\xi}] \cap M \neq (0)$.

Fix $\alpha \in \Delta_1$ and let $V^{(\alpha)} = \bar{E}_{\alpha} + \bar{E}_{\alpha+\xi}$. *V* is a two-dimensional *K*-module, and hence for some finite extension P of Φ , $V_{\mathbf{P}}^{(\alpha)} = \mathbf{P} \otimes_{\Phi} V^{(\alpha)}$ has a weight vector $u_1 \neq 0$, say with weight φ_1 . We suppose that P is chosen to be minimal. Let $a \in \bar{E}_{\alpha} - \{0\}$, $a^* \in \bar{E}_{\alpha+\xi} - \{0\}$. It is a consequence of Lemma 1 that $\mathbf{P} \otimes \bar{E}_{\alpha+\xi}$ is not a weight space for *K*. We can suppose then, that $u_1 = a + \lambda a^*$, with $\lambda \in \mathbf{P}$. It follows that $\varphi_1 | \bar{H} = \alpha$, and for all $k \in \bar{E}_{\xi}$,

(1)
$$\varphi_1(k)a = \lambda[a^*k], \qquad \lambda\varphi_1(k)a^* = [ak].$$

By Lemma 1, choose $k_0 \in \bar{E}_{\xi}$ such that $[ak_0] \neq 0$. Using k_0 in (1), we have $\lambda \neq 0$ and $\varphi_1 | \bar{E}_{\xi} \neq 0$. Again from (1), it is apparent that $u_2 = a - \lambda a^*$ is a weight vector relative to K with weight φ_2 satisfying

$$\varphi_2|\bar{H} = lpha, \qquad \varphi_2|\bar{E}_{\xi} = -\varphi_1|\bar{E}_{\xi}.$$

 $V_{\mathbf{P}}^{(\alpha)} = \mathbf{P}u_1 \oplus \mathbf{P}u_2$. Now, the characteristic polynomial of $\mathrm{ad}_V k_0$ has as its splitting field, Σ , in P either Φ or $\Phi(\sqrt{\mu})$, for some $\mu \in \Phi$. As $a \pm \lambda a^*$ are characteristic vectors for $\mathrm{ad} \ k_0$ considered as a transformation on $V_{\mathbf{P}}^{(\alpha)}$, and $a, a^* \in V^{(\alpha)}$, we find $\lambda \in \Sigma$. With k_0 in (1), we see that $\varphi_1(k_0)/\lambda$ and $\lambda \varphi_1(k_0)$ are in Φ , whence $\lambda^2 \in \Phi$ and $\mathbf{P} = \Phi(\lambda)$ is an extension of degree at most two.

All this depends on our choice of $\alpha \in \Delta_1$ which has played no part up to this point. In the cases $C_{l,2}$, $F_{4,2}$, and $A_{1,2}$, Δ_1 is a single orbit under W, and hence, using suitable automorphisms $\theta(w)$, we obtain immediately that $V_{\mathbf{P}}^{(\beta)}$ decomposes into two weight spaces relative to K for all $\beta \in \Delta_1$. In the case $B_{l,2}$, the two orbits making up Δ_1 are interchanged by the natural automorphism which effects $e_i \leftrightarrow e_{l-i}$, $f_i \leftrightarrow f_{l-i}$, $h_i \leftrightarrow -h_{l-i}$, $i \in \mathbf{L}$. There remains $BC_{l,2}$. Again there are two orbits, and we can take α_{l-1} and α_l as representatives of them (indexing as in [3, Table 2]). Let us suppose that the $\alpha \in \Delta_1$ of the previous discussion was taken to be α_l . Then, since $\alpha_{l-1} + \alpha_l$ and $-\alpha_l$ are in the same orbit as α_l , $V_{\mathbf{P}}^{(\alpha_{l-1}+\alpha_l)}$ and $V_{\mathbf{P}}^{(-\alpha_l)}$ both break into two weight spaces over P. Let $a \pm a^*$ and $b \pm b^*$ be corresponding weight vectors. [3, Lemma 2] shows that neither [ab] nor [a^*b] can be zero. All

841

four of the products $[a \pm a^*, b \pm b^*]$ are weight vectors for K in $V_{\mathbf{P}}^{(\alpha_l-1)}$ and it is easy to pick two independent ones from amongst them. This shows that $V_{\mathbf{P}}^{(\alpha_l-1)}$ decomposes into two weight spaces relative to K, and hence so does $V_{\mathbf{P}}^{(\beta)}$ for all $\beta \in \Delta_1$.

We have proved that if E is a 2-tiered Euclidean Lie algebra over a field Φ of characteristic zero, $\overline{E} = E(1)$ splits relative to $\overline{H} + \overline{E}_{\xi}$ in some extension P of Φ of degree at most two.

We obtain Theorem 1 by judiciously scaling the shift map. Fix $\alpha \in \Delta_1$ and return to the discussion centering around equation (1). If we replace aand a^* by their respective pre-images under π_1 in E_{α} and $E_{\alpha+\xi}$, respectively, and rewrite (1) in E, we obtain

(2)
$$\varphi_1(k)a' = \lambda[a^*k], \qquad \lambda\varphi_1(k)a^* = [ak]$$

for all $k \in E_{\xi}$.

We have seen that $\varphi_1(k)/\lambda$, $\lambda\varphi_1(k)$, and λ^2 are all in Φ for all $k \in E_{\xi}$. Define " to be the shift map ' scaled by λ^{-2} , and define ψ by $\psi(k) = \lambda\varphi_1(k)$. Equations (2) become

(2')
$$\psi(k)a'' = [a^*k], \quad \psi(k)a^* = [ak], \quad k \in E_{\xi}$$

Thus replacing ' by ", the new $\overline{E} = E(1)$ is already split in Φ relative to $K = \overline{H} + \overline{E}_{\xi}$. Theorem 1 follows.

2. The root system of E(1). Let $\Delta' \subset K^*$ be the root system for \overline{E} relative to K. To avoid confusion, we denote the root space for $\varphi \in \Delta'$ by L_{φ} . Each $\alpha \in \overline{\Delta}_0$ yields a non-zero root $\varphi \in \Delta'$ with $L_{\varphi} = \overline{E}_{\alpha}, \varphi | \overline{H} = \alpha, \varphi | \overline{E}_{\xi} = 0$. Each pair $\alpha, \alpha + \xi \in \overline{\Delta}_1$ ($\alpha + \xi$ has an obvious interpretation in $\overline{\Delta}_1$) yields two roots φ and $\tilde{\varphi}$ with $\varphi | \overline{H} = \alpha = \tilde{\varphi} | \overline{H}, \varphi | \overline{E}_{\xi} = -\tilde{\varphi} | \overline{E}_{\xi}$, and $L_{\varphi} + L_{\tilde{\varphi}} = \overline{E}_{\alpha} + \overline{E}_{\alpha+\xi}$. All the roots of $\Delta' - \{0\}$ are obtained in these two ways. For $\psi \in \Delta'$, we define $\tilde{\psi}$ by $\tilde{\psi} | \overline{H} = \psi | \overline{H}, \psi | \overline{E}_{\xi} = -\tilde{\psi} | \overline{E}_{\xi}$. \sim maps Δ' onto itself, is of order two, and extends the use of \sim above.

Define a map ι of \overline{E} into itself by $\iota | \overline{H} = 1$, $\iota | \overline{E}_{\xi} = -1$, $\iota | \overline{E}_{\alpha} = 1$ if $\alpha \in \Delta - (Z \cup \Gamma)$, $\iota | \overline{E}_{\alpha} = -1$ if $\alpha \in \Gamma$. Then ι is an automorphism of period two since its value on any space \overline{E}_{α} depends on whether the number $t(\alpha)$ is even or odd.

Suppose that $\Delta_1 \cap (\Pi - \{\alpha_0\}) = \{\alpha_1, \ldots, \alpha_k\}.$

LEMMA 2. Let e_i^* (f_i^*) be non-zero elements of $E_{\alpha_i+\xi}$ $(E_{-\alpha_i+\xi})$, $i = 1, \ldots, k$. Then $e_1, \ldots, e_l, f_1, \ldots, f_l, e_1^*, \ldots, e_k^*, f_1^*, \ldots, f_k^*$ generate E.

Proof. Let A be the subalgebra of E which they generate. In the cases $E = B_{l,2}, C_{l,2}, F_{4,2}, \alpha_0(r_1, \ldots, r_l)$ is the set of all roots of Δ of the form $\alpha_0 + \sum_{i=1}^{l} \lambda_i \alpha_i$ [3, Lemma 9]. Fix $i \in \{1, \ldots, k\}$. $\alpha_i + \xi \in \Delta$ and is in

$$\alpha_0\langle r_1,\ldots,r_l\rangle - \mathrm{say}\;(\alpha_i+\xi)w = \alpha_0, \qquad w\in \langle r_1,\ldots,r_l\rangle.$$

We can produce a $\theta = \theta(w)$ defined over $\alpha_1, \ldots, \alpha_l$. Then $e_i^* \theta \in A \cap E_{\alpha_0}$. Thus e_0 , and similarly f_0 , is in A; whence A = E. In the cases $BC_{l,2}$ and $A_{1,2}$, with the notation of [3, Table 2], $2\alpha_l + \xi$ and $2\alpha_1 + \xi$ are roots, respectively, and the corresponding root spaces are clearly in A. Using [3, Lemma 11] and the fact that $2\alpha_l + \xi$ and $2\alpha_1 + \xi$ are of weight 4, we see that they are in $\alpha_0(r_1, \ldots, r_l)$. We now proceed as above.

Let $\varphi_1, \ldots, \varphi_s$ be the set of all roots $\psi \in \Delta'$ such that $\psi | \overline{H} \in \Pi - \{\alpha_0\}$ (considered as functions on \overline{H}).

LEMMA 3. $\{\varphi_1, \ldots, \varphi_s\}$ are linearly independent elements of K^* .

Proof. Suppose that the φ s are indexed so that $\varphi_i | \overline{H} = \alpha_i, i = 1, ..., k$. Let $e_i^* (f_i^*)$ be a non-zero element of $E_{\alpha_i + \xi} (E_{-\alpha_i + \xi}), i = 1, ..., k$. Then $[e_1^*f_1], \ldots, [e_k^*f_k]$ is a basis of E_{ξ} [3, Lemma 6 and the discussion in cases (1)-(6) following Proposition 8].

 $\varphi_1|\bar{E}_{\xi},\ldots,\varphi_k|\bar{E}_{\xi}$ are independent functions: for if not, there is $a \in E_{\xi} - \{0\}$ such that $\bar{g} \in \bar{E}_{\xi} - \{0\}$ satisfies $\varphi_i(\bar{g}) = 0$, $i = 1, \ldots, k$. Then by (1), $[e_ig] = 0$ for $i = 1, \ldots, k$, and hence for $i = 1, \ldots, l$. Also from (1), $[e_i^*g] = 0$ for $i = 1, \ldots, k$. Now $-\varphi_i|\bar{H} = -\alpha_i|\bar{H}$ and hence $[f_ig] = 0$, $i \in \mathbf{L}$. For $i = 1, \ldots, k$, $f_i^* = [h_i^*f_i]$ for suitable $h_i^* \in E_{\xi}$, from which $[f_i^*g] = 0$. Lemma 2 implies that g is in the centre of E whence g = 0.

Put $S = \{\varphi_1, \varphi_2, \ldots, \varphi_s\} - \{\varphi_1, \tilde{\varphi}_1, \ldots, \varphi_k, \tilde{\varphi}_k\}$. Now, if

$$\sum_{i=1}^k \lambda_i \varphi_i + \sum_{i=1}^k \lambda_i' \tilde{\varphi}_i + \sum_{\varphi \in S} \lambda_{\varphi} \varphi = 0,$$

where all $\lambda \in \Phi$, then restricting to \overline{H} and \overline{E}_{ξ} in turn, we see that all the λ^{s} are zero. This proves the lemma.

LEMMA 4: If $i \neq j$, $\varphi_i - \varphi_j \notin \Delta'$.

Proof. Suppose that $\varphi_i - \varphi_j \in \Delta'$. $(\varphi_i - \varphi_j)|\bar{H}$ is the function $\alpha_m - \alpha_n$, where $\alpha_m = \varphi_i|\bar{H}, \ \alpha_n = \varphi_j|\bar{H}$. Since $\varphi_i - \varphi_j$ is induced by a non-zero root (or root pair) of $\Delta - Z$, we conclude that $\alpha_m - \alpha_n$ or $\alpha_m - \alpha_n + \xi$ is in Δ . The only possibility is the latter. [3, Lemmas 9 and 11] show that

 $\beta = \alpha_m - \alpha_n + \xi \in \alpha_0 \langle r_1, \ldots, r_l \rangle,$

and since the weight of β is greater than 1 and $l \geq 2$ ($m, n \in \mathbf{L} - \{0\}$), *E* must be $BC_{l,2}$. Then weight β is 4. Now, the proof of [3, Lemma 11] actually shows that there exist $r_{i_1}, \ldots, r_{i_t} \in \{r_1, \ldots, r_l\}$ such that $\alpha_0 = \beta r_{i_1} \ldots r_{i_t}$ and ht $\beta > \text{ht}\beta r_{i_1} > \text{ht}\beta r_{i_1}r_{i_2} \ldots > \text{ht}\alpha_0$. We see that each r_{i_j} must be r_m or r_n . Then l = 2, and a short calculation leads to a contradiction.

THEOREM 2. $\{\varphi_1, \ldots, \varphi_s\}$ is a simple system of roots for \overline{E} relative to K. The automorphism ι is a diagram automorphism of \overline{E} relative to this system.

Proof. The assertion about ι is obvious if $\{\varphi_1, \ldots, \varphi_s\}$ is a simple system. $L_{\pm\varphi_1}, \ldots, L_{\pm\varphi_s}$ generate \overline{E} by Lemma 2. Note that if $i \neq j$, then

$$\varphi_i - \varphi_j \notin \Delta'$$
 (Lemma 4).

Let \langle , \rangle denote the bilinear form on K^* induced by the Killing form on \overline{E} . For all $i \neq j$, $\langle \varphi_i, \varphi_j \rangle \leq 0$ since $\varphi_i - \varphi_j \notin \Delta'$. Thus the integers $B_{ij} = 2\langle \varphi_i, \varphi_j \rangle / \langle \varphi_j, \varphi_j \rangle$ form a generalized Cartan matrix. Let $N = E(\langle B_{ij} \rangle)$ be the Lie algebra defined by $\langle B_{ij} \rangle$. Since $\varphi_1, \ldots, \varphi_s$ are linearly independent, we can use the subset of $\mathbb{Z}\varphi_1 + \ldots + \mathbb{Z}\varphi_s$ obtained from $\varphi_1, \ldots, \varphi_s$ under the maps $R_j: \varphi_i \mapsto \varphi_i - B_{ij}\varphi_j$, $j = 1, \ldots, s$, as the root system of N. Since $\varphi_i - B_{ij}\varphi_j \in \Delta'$, the root system of N is finite, and hence $\langle B_{ij} \rangle$ is a Cartan matrix and N is semi-simple. Choosing $\hat{e}_i \in L_{\varphi_i}, \hat{f}_i \in L_{-\varphi_i}, \hat{h}_i \in K$ such that $[\hat{e}_i \hat{f}_i] = \hat{h}_i, [\hat{e}_i \hat{h}_i] = 2\hat{e}_i, [\hat{f}_i \hat{h}_i] = -2\hat{f}_i$, we obtain a natural homomorphism of N onto \overline{E} . Clearly $N \cong \overline{E}$ and $N_\beta \to L_\beta$ for all $\beta \in \Delta'$, whence each $\beta \in \Delta'$ is either a non-positive or non-negative integral combination of $\varphi_1, \ldots, \varphi_s$.

3. Proof of Theorem 3. If \mathfrak{X} is a semi-simple Lie algebra over a field Φ , split relative to a Cartan subalgebra \mathfrak{H} , and if (B_{ij}) is a Cartan matrix and β_1, \ldots, β_l is a simple root system for \mathfrak{X} , we say that a set of generators $a_i \in \mathfrak{X}_{\beta_i}, b_i \in \mathfrak{X}_{-\beta_i}, i = 1, \ldots, l$, is a standard set of generators for \mathfrak{X} , if, putting $c_i = [a_i b_i]$ we have $[a_i c_j] = B_{ij} a_i$ and $[b_i c_j] = -B_{ij} b_i$.

We use the notation of the previous section. Then $\varphi_1, \ldots, \varphi_s$ is a simple system of roots for Δ' and we can choose $e_i^* \in E_{\alpha_i+\xi}, f_i^* \in E_{-\alpha_i+\xi}, i = 1, \ldots, k$, $\lambda_1, \ldots, \lambda_k \in \Phi^{\times}$ such that

$$\bar{e}_1 \pm \bar{e}_1^*, \ldots, \bar{e}_k \pm \bar{e}_k^*, \bar{e}_{k+1}, \ldots, \bar{e}_l, \lambda_1(\bar{f}_1 \pm \bar{f}_1^*), \ldots, \lambda_k(\bar{f}_k \pm \bar{f}_k^*), \bar{f}_{k+1}, \ldots, \bar{f}_l$$

is a standard set of generators for $\overline{E} = E(1)$. (\overline{a} means $(a)\pi_1$.)

Let $\tilde{\Phi}$ be an algebraic closure of Φ and, for each $\mu \in \Phi^{\times}$, let $\sqrt{\mu}$ be a square root of μ in $\tilde{\Phi}$. Let $\mu \in \Phi^{\times}$ and let $\mathbf{P} = \Phi(\sqrt{\mu})$. Define a linear map $\kappa: E_{\mathbf{P}} \to E_{\mathbf{P}}$ by $e_{\alpha} \mapsto (\sqrt{\mu})^{-\iota_{(\alpha)}} e_{\alpha}$ for all $\alpha \in \Delta$, and $e_{\alpha} \in E_{\alpha}$. κ is an automorphism of Eand maps the ideal I(1) onto $I(\mu)$. Thus there is an induced isomorphism κ' of $E_{\mathbf{P}}(1)$ onto $E_{\mathbf{P}}(\mu)$. If $\sqrt{\mu} \in \Phi$, this shows that $E(1) \cong E(\mu)$.

Suppose now that $\sqrt{\mu} \notin \Phi$. Let τ_0 denote the non-trivial automorphism of P over Φ and τ_0' some extension of τ_0 to an automorphism of $\tilde{\Phi}$ over Φ . The image under κ' of the standard basis of E(1) given above is

$$e_1\pi_{\mu} \pm (\sqrt{\mu})^{-1}e_1^*\pi_{\mu}, \ldots, e_k\pi_{\mu} \pm (\sqrt{\mu})^{-1}e_k^*\pi_{\mu}, e_{k+1}\pi_{\mu}, \ldots, e_l\pi_{\mu},$$

etc. These generate, over Φ , an algebra X isomorphic to the split algebra E(1). The semi-linear automorphism $\tau = \tau_0 \otimes 1_{E(\mu)}$ of $E_P(\mu) = P \otimes_{\Phi} E(\mu)$ fixes $E(\mu)$ while performing a diagram automorphism on X. This is sufficient to prove that $X \not\cong E(\mu)$. In fact, let $\tau_X = \tau | X$, and let $\tilde{\tau}_X$ be the extension of τ_X to an automorphism of $\tilde{X} = X_{\tilde{\Phi}} = E(\mu)_{\tilde{\Phi}}$. Suppose, by way of contradiction, that $\omega: E(\mu) \to X$ is an isomorphism. Let $\tilde{\omega}$ be the extension of ω to an automorphism of \tilde{X} and τ^* the extension of τ to a τ_0' -semi-linear map of \tilde{X} onto itself. From

(3)
$$\tau_X^{-1}\tau_X = \omega^{-1}\mathbf{1}_{E(\mu)}\omega$$

we obtain

(4)
$$\tilde{\tau}_X^{-1}\tau^* = \tilde{\omega}^{-1}\tau^*\tilde{\omega}$$

since each side of (4) is the unique τ_0' -semi-linear extension to \tilde{X} of the corresponding side of (3).

Thus we have $\tilde{\tau}_X = \tau^* \tilde{\omega}^{-1} (\tau^*)^{-1} \tilde{\omega}$. But $\tilde{\tau}_X$ is a diagram automorphism of \tilde{X} , and consequently $\tau^* \tilde{\omega}^{-1} (\tau^*)^{-1} \tilde{\omega}$ is an outer automorphism. This means that $\tilde{\omega}$ must be an outer automorphism. However, it is easy to see that the choice of ω can be made so that $\tilde{\omega}$ is inner. This shows that $E(\mu) \ncong X \cong E(1)$.

The general case $\mu\nu^{-1} \notin \Phi^{\times 2}$ now follows immediately. We can suppose that neither μ nor ν is in $\Phi^{\times 2}$. $\nu \notin P^{\times 2}$, where $P = \Phi(\sqrt{\mu})$, and hence

$$E(\mu)_{\mathbf{P}} = E_{\mathbf{P}}(\mu) \cong E_{\mathbf{P}}(1) \not\cong E_{\mathbf{P}}(\nu) = E(\nu)_{\mathbf{P}}$$

from which $E(\mu) \not\cong E(\nu)$.

COROLLARY. $F_{4,2}(\mu)$ is of type E_6 for all $\mu \in \Phi^{\times}$.

Proof. From [3, p. 1453], $F_{4,2}(\mu)$ is of type B_6 , C_6 , or E_6 . $F_{4,2}(1)$ is split and has a diagram automorphism, and hence is of type E_6 . For other μ , $\Phi(\sqrt{\mu}) \otimes_{\Phi} F_{4,2}(\mu) \cong \Phi(\sqrt{\mu}) \otimes_{\Phi} F_{4,2}(1)$.

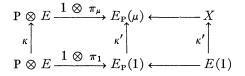
4. Connections with Chevalley groups. Our aim in this section is to prove the following result.

THEOREM 4. If $\mu \notin \Phi^{\times 2}$ and τ_0 is the automorphism of $\mathbf{P} = \Phi(\sqrt{\mu})$ over Φ of period two, then the Steinberg group G_0 of the split simple algebra $E_{\mathbf{P}}(\mu)$ relative to τ_0 is precisely the group of automorphisms G_{μ} of $E(\mu)$ induced by G. (Every automorphism of $E(\mu)$ can obviously be identified with one of $E_{\mathbf{P}}(\mu)$.)

 G_0 is obtained as follows. Let X be a split simple Φ -subalgebra of $E_P(\mu)$ such that $X_P = E_P(\mu)$. Let δ be the diagram automorphism of X and extend it to a semi-automorphism $\bar{\delta}$ of X_P with automorphism τ_0 on P. The elements of the adjoint group of $E_P(\mu)$ invariant by conjugation by $\bar{\delta}$ form G_0 .

For convenience we will denote $(\nu)\tau_0$ by $\overline{\nu}$, for $\nu \in \mathbf{P}$.

We select X as in § 3 so that τ is the semi-automorphism δ . Using the κ and κ' of § 3, we have the diagram



For each root space L_{φ} of E(1), let $L_{\varphi'}$ denote its image in X under κ' . Since we will be working entirely in $E(\mu)$, it is convenient to use e_i , e_i^* , etc., instead of $e_i \pi_{\mu}$, $e_i^* \pi_{\mu}$, etc.

 G_{μ} is generated by the elements $\exp \lambda \operatorname{ad} e_i$, $\exp \lambda \operatorname{ad} f_i$, where $\lambda \in \Phi$ and

 $i = 0, 1, \ldots, l$. These extend uniquely to automorphisms in G_0 , providing us with an injective homomorphism of G_{μ} into G_0 . Conversely, each element of G_0 induces an automorphism of $E(\mu)$, and thus we have an injective homomorphism of G_0 into Aut $E(\mu)$.

X has $e_i \pm (\sqrt{\mu})^{-1}e_i^*$, $i = 1, \ldots, k$, e_{k+1}, \ldots, e_l , $\lambda_i (f_i \pm (\sqrt{\mu})^{-1}f_i)$, $i = 1, \ldots, k$, $\lambda_{k+1}f_{k+1}, \ldots, \lambda_l f_l$ as a standard set of generators. By [5, Lemmas 4.6 and 7.6], G_0 is generated by the following sets of elements:

(1) exp ad νe_i , $i = k + 1, \ldots, l, \nu \in \Phi$;

(2) exp ad $\nu(e_i + (\sqrt{\mu})^{-1}e_i^*)$ exp ad $\overline{\nu}(e_i - (\sqrt{\mu})^{-1}e_i^*)$, $i = 1, \ldots, k$, when $\varphi_i + \tilde{\varphi}_i \notin \Delta' \ (\nu \in \mathbf{P})$;

(3) exp ad $\nu(e_i + (\sqrt{\mu})^{-1}e_i^*)$ exp ad $\overline{\nu}(e_i - (\sqrt{\mu})^{-1}e_i^*)$ exp ad y for $i = 1, \ldots, k$, when $\varphi_i + \tilde{\varphi}_i \in \Delta'$ ($\nu \in P$). Here y is in $P(L'_{\varphi_i + \tilde{\varphi}_i})$ and its precise form is of no importance to us;

(4) the expressions resulting from (1), (2), and (3) when the es are replaced by fs.

Generators of type (1) are clearly in G_{μ} . In the case (2),

$$[e_i + (\sqrt{\mu})^{-1}e_i^*, e_i - (\sqrt{\mu})^{-1}e_i^*] = 0,$$

and so we obtain $(\exp \operatorname{ad}(\nu + \overline{\nu})e_i)(\exp(\sqrt{\mu})^{-1}(\nu - \overline{\nu})e_i^*)$, which is in G_{μ} . In case (3), put $x^+ = e_i + (\sqrt{\mu})^{-1}e_i^*$, $x^- = e_i - (\sqrt{\mu})^{-1}e_i^*$. Using the facts that $2\varphi_i + \tilde{\varphi}_i$ and $\varphi_i + 2\tilde{\varphi}_i$ are not in Δ' , $y \in P(L'_{\varphi_i + \tilde{\varphi}_i})$, and the Campbell-Hausdorff formula [1] we obtain

exp ad νx^+ exp ad $\overline{\nu} x^-$ exp ad $y = \exp \operatorname{ad} (\nu x^+ + \overline{\nu} x^- + \frac{1}{2} \nu \overline{\nu} [x^+ x^-])$ exp ad y

 $= \exp \operatorname{ad}(\nu x^{+} + \overline{\nu} x^{-}) \exp \operatorname{ad}(\frac{1}{2}\nu \overline{\nu} [x^{+} x^{-}] + y).$

Since τ commutes with our generator, $g = \frac{1}{2}\nu\overline{\nu}[x^+x^-] + y$ is in $E(\mu)$. Thus exp ad $g \in G_{\mu}$. Writing $\nu x^+ + \overline{\nu}x^- = a + b$, where $a \in (E_{\alpha_i})\pi_{\mu}$, $b \in (E_{\alpha_i+\xi})\pi_{\mu}$, exp ad a exp ad $b = \exp \operatorname{ad}(a + b + \frac{1}{2}[ab]) = \exp \operatorname{ad}(a + b)$ exp ad $\frac{1}{2}[ab]$, since $3\alpha_i$ and $3\alpha_i + \xi$ are not in Δ . Thus $\exp \operatorname{ad}(a + b) \in G_{\mu}$. Now the homomorphism $G_0 \to \operatorname{Aut} E(\mu)$ maps G_0 into G_{μ} , whence $G_0 = G_{\mu}$ on identification.

References

- 1. N. Jacobson, Lie algebras (Interscience, New York, 1962).
- 2. R. Moody, A new class of Lie algebras, J. Algebra 10 (1968), 211-230.
- 3. Euclidean Lie algebras, Can. J. Math. 21 (1969), 1432-1454.
- 4. J.-P. Serre, Algèbres de Lie semi-simples complexes (Benjamin, New York, 1966).
- 5. R. Steinberg, Variations on a theme of Chevalley, Pacific J. Math. 9 (1959), 875-891.
- 6. Lectures on Chevalley groups, Yale University Lecture Notes, New Haven, Connecticut, 1967.

University of Saskatchewan, Saskatoon, Saskatchewan

846