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Abstract

We prove the KKV conjecture expressing Gromov–Witten invariants of K 3 surfaces in terms of
modular forms. Our results apply in every genus and for every curve class. The proof uses the
Gromov–Witten/Pairs correspondence for K 3-fibered hypersurfaces of dimension 3 to reduce
the KKV conjecture to statements about stable pairs on (thickenings of) K 3 surfaces. Using
degeneration arguments and new multiple cover results for stable pairs, we reduce the KKV
conjecture further to the known primitive cases. Our results yield a new proof of the full Yau–
Zaslow formula, establish new Gromov–Witten multiple cover formulas, and express the fiberwise
Gromov–Witten partition functions of K 3-fibered 3-folds in terms of explicit modular forms.
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0. Introduction

0.1. Reduced Gromov–Witten theory. Let S be a nonsingular projective
K 3 surface, and let

β ∈ Pic(S) = H 2(S,Z) ∩ H 1,1(S,C)
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be a nonzero effective curve class. The moduli space M g(S, β) of genus g stable
maps (with no marked points) has expected dimension

dimvir
C M g(S, β) =

∫
β

c1(S)+ (dimC(S)− 3)(1− g) = g − 1.

However, as the obstruction theory admits a 1-dimensional trivial quotient, the
virtual class [M g(S, β)]vir vanishes. The standard Gromov–Witten theory is
trivial.

Curve counting on K 3 surfaces is captured instead by the reduced Gromov–
Witten theory constructed first via the twistor family in [8]. An algebraic
construction following [2, 3] is given in [36]. The reduced class

[M g(S, β)]red ∈ Ag(M g(S, β),Q)

has dimension g. Let λg be the top Chern class of the rank g Hodge bundle

Eg → M g(S, β)

with fiber H 0(C, ωC) over the moduli point

[ f : C → S] ∈ M g(S, β).

(The Hodge bundle is pulled back from M g if g > 2. See [13, 18] for a
discussion of Hodge classes in Gromov–Witten theory.) The reduced Gromov–
Witten integrals of S,

Rg,β(S) =
∫
[Mg(S,β)]red

(−1)gλg ∈ Q, (0.1)

are well defined. Under deformations of S for which β remains a (1, 1)-class,
the integrals (0.1) are invariant.

Let ε : X → (B, b) be a fibration of K 3 surfaces over a base B with special
fiber

Xb
∼= S over b ∈ B.

Let U ⊂ B be an open set containing b ∈ B over which the local system of
second cohomology R2ε∗(Z) is trivial. The class β ∈ Pic(S) determines a local
Noether–Lefschetz locus

NL(β) ⊂ U

defined as the subscheme where β remains a (1, 1)-class. (While NL(β) is
locally defined on U by a single equation, the locus may be degenerate (equal to
all of U ).)
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Let (∆, 0) be a nonsingular quasiprojective curve with special point 0 ∈ ∆.
The integral Rg,β(S) computes the local contribution of S to the standard
Gromov–Witten theory of every K 3-fibered 3-fold

ε : T → (∆, 0) (0.2)

with special fiber S and local Noether–Lefschetz locus NL(β) ⊂ ∆ equal to the
reduced point 0 ∈ ∆; see [36].

0.2. Curve classes. The second cohomology of S is a rank 22 lattice with
intersection form

H 2(S,Z) ∼= U ⊕U ⊕U ⊕ E8(−1)⊕ E8(−1), (0.3)

where

U =
(

0 1
1 0

)
and

E8(−1) =



−2 0 1 0 0 0 0 0
0 −2 0 1 0 0 0 0
1 0 −2 1 0 0 0 0
0 1 1 −2 1 0 0 0
0 0 0 1 −2 1 0 0
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 1
0 0 0 0 0 0 1 −2


is the (negative) Cartan matrix. The intersection form (0.3) is even.

The divisibility m(β) is the maximal positive integer dividing the lattice
element β ∈ H 2(S,Z). If the divisibility is 1, β is primitive. Elements with equal
divisibility and norm square are equivalent up to orthogonal transformation of
H 2(S,Z); see [47]. By straightforward deformation arguments using the Torelli
theorem for K 3 surfaces, Rg,β(S) depends, for effective classes, only on the
divisibility m(β) and the norm square

〈β, β〉 =
∫

S
β2.

We will omit the argument S in the notation,

Rg,β = Rg,β(S).
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0.3. BPS counts. The KKV conjecture concerns BPS counts associated to
the Hodge integrals (0.1). Throughout this paper we let

α ∈ Pic(S)

denote a nonzero class which is both effective and primitive. The Gromov–Witten
potential Fα(λ, v) for classes proportional to α is

Fα =
∑
g>0

∑
m>0

Rg,mαλ
2g−2vmα. (0.4)

The BPS counts rg,mα are uniquely defined by the following equation:

Fα =
∑
g>0

∑
m>0

rg,mαλ
2g−2

∑
d>0

1
d

(
sin(dλ/2)
λ/2

)2g−2

vdmα. (0.5)

Equation (0.5) defines BPS counts for both primitive and divisible classes.
The string theoretic calculations of Katz et al. [24] via heterotic duality yield

two conjectures.

CONJECTURE 1. The BPS count rg,β depends upon β only through the norm
square 〈β, β〉.

Conjecture 1 is rather surprising from the point of view of Gromov–Witten
theory. From the definition, the invariants Rg,β and rg,β depend upon both
the divisibility m of β and the norm square 〈β, β〉. Assuming the validity of
Conjecture 1, let rg,h denote the BPS count associated to a class β of arithmetic
genus h,

〈β, β〉 = 2h − 2.

CONJECTURE 2. The BPS counts rg,h are uniquely determined by the following
equation:∑

g>0

∑
h>0

(−1)grg,h(y1/2 − y−1/2)2gqh =
∏
n>1

1
(1− qn)20(1− yqn)2(1− y−1qn)2

.

As a consequences of Conjecture 2, rg,h ∈ Z, rg,h vanishes if g > h, and

rg,g = (−1)g(g + 1).

The integrality of rg,h and the vanishing for high g (when h is fixed) fit in the
framework of the Gopakumar–Vafa conjectures. The first values are tabulated
below:
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rg,h h = 0 1 2 3 4
g = 0 1 24 324 3200 25650

1 −2 −54 −800 −8550
2 3 88 1401
3 −4 −126
4 5

The right side of Conjecture 2 is related to the generating series of Hodge
numbers of the Hilbert schemes of points Hilbn(S). The genus 0 specialization
of Conjecture 2 recovers the Yau–Zaslow formula∑

h>0

r0,hqh =
∏
n>1

1
(1− qn)24

related to the Euler characteristics of Hilbn(S).
The main result of the present paper is a proof of the KKV conjecture for all

genera g and all β ∈ H2(S,Z).

THEOREM 3. The BPS count rg,β depends upon β only through 〈β, β〉 = 2h−2,
and the Katz–Klemm–Vafa formula holds:∑

g>0

∑
h>0

(−1)grg,h(y1/2 − y−1/2)2gqh =
∏
n>1

1
(1− qn)20(1− yqn)2(1− y−1qn)2

.

0.4. Past work. The enumerative geometry of curves on K 3 surfaces has
been studied since the 1995 paper of Yau and Zaslow [48]. A mathematical
approach to the genus 0 Yau–Zaslow formula can be found in [4, 11, 14]. The
Yau–Zaslow formula was proven for primitive classes β by Bryan and Leung [8].
The divisibility 2 case was settled by Lee and Leung in [32]. A complete proof
of the Yau–Zaslow formula for all divisibilities was given in [28]. Our approach
to Theorem 1 provides a completely new proof of the Yau–Zaslow formula for
all divisibilities (which avoids the mirror calculation of the STU model and the
Harvey–Moore identity used in [28]).

Conjecture 2 for primitive classes β is connected to Euler characteristics of
the moduli spaces of stable pairs on K 3 surfaces by the GW/P correspondence
of [40, 41]. A proof of Conjecture 2 for primitive classes is given in [37] relying
upon the Euler characteristic calculations of Kawai and Yoshioka [25]. For cases
where g > 0 and β is not primitive, Theorem 1 is a new result.
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The cases understood before are very special. If the genus is 0, the calculation
can be moved via Noether–Lefschetz theory to the genus 0 Gromov–Witten
theory of toric varieties using the hyperplane principle for K 3-fibrations [28]. If
the class β is irreducible, the moduli space of stable pairs is nonsingular [25], and
the calculation can be moved to stable pairs [37]. The difficulty for positive genus
imprimitive curves – which are essentially all curves – lies in the complexity of
the moduli spaces. There is no effective hyperplane principle in higher genus,
and the moduli spaces of stable maps and stable pairs are both highly singular.

Toda has undertaken a parallel study of the Euler characteristic (following
Joyce) of the moduli spaces of stable pairs on K 3 surfaces [46]. His results
– together with further multiple cover conjectures which are still open – are
connected to an Euler characteristic version of the KKV formula. Our methods
and results essentially concern the virtual class and thus do not imply (nor are
implied by) Toda’s paper [46]. In fact, the motivation of [46] was the original
KKV conjecture proven here.

0.5. GW/P correspondence. The Katz–Klemm–Vafa formula concerns
integrals over the moduli space of stable maps. Our strategy is to transform the
calculation to the theory of stable pairs. Let P̃2 × P1 be the blow-up of P2×P1 in
a point. Consider a nonsingular anticanonical Calabi–Yau 3-fold hypersurface,

X ⊂ P̃2 × P1 × P1.

The projection onto the last factor,

π3 : X→ P1, (0.6)

determines a 1-parameter family of anticanonical K 3 surfaces in P̃2 × P1. The
interplay between the Gromov–Witten, stable pairs, and Noether–Lefschetz
theories for the family π3 will be used to transform Theorem 3 to nontrivial
claims of the moduli of sheaves on K 3-fibrations.

The KKV formula (conjecturally) evaluates the integrals Rg,β occurring in the
reduced Gromov–Witten theory of a K 3 surface S. If we view S as a fiber of π3,
then

β ∈ Pic(S) ⊂ H 2(S,Z) ∼= H2(S,Z)

determines a fiber class in H2(X,Z) by push-forward. We consider both the
Gromov–Witten and stable pairs invariants of X in π3-fiber curve classes. The
GW/NL correspondence of [36] precisely relates the Gromov–Witten theory of
X in fiber classes with the Noether–Lefschetz numbers of the family and the
integrals Rg,β . We prove a P/NL correspondence which establishes a parallel
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relationship between the stable pairs theory of X in fiber classes with the same
Noether–Lefschetz numbers and the invariants R̃n,β defined as follows.

0.6. Stable pairs and K3 surfaces. Let S be a nonsingular projective K 3
surface with a nonzero effective curve class β ∈ Pic(S). We define here the
stable pairs analogue R̃n,β of the reduced Gromov–Witten invariants Rg,β of S.

For Gromov–Witten invariants, we defined Rg,β directly (0.1) in terms of the
moduli of stable maps to S and observed the result calculated the contributions
of the special fiber S to the Gromov–Witten theories of all families (0.2)
appropriately transverse to the local Noether–Lefschetz locus corresponding to β.
The geometry of stable pairs is more subtle. While the support of a stable pair
may probe thickenings of the special fiber S ⊂ T of (0.2), the image of a stable
map does not. As a result, we will define R̃n,β via the geometry of appropriately
transverse families of K 3 surfaces. Later in Section 6.11, we will see how to
define R̃n,β via the intrinsic geometry of S.

Let α ∈ Pic(S) be a nonzero class which is both effective and primitive. Let T
be a nonsingular 3-dimensional quasiprojective variety,

ε : T → (∆, 0),

fibered in K 3 surfaces over a pointed curve (∆, 0) satisfying:

(i) ∆ is a nonsingular quasiprojective curve;

(ii) ε is smooth, projective, and ε−1(0) ∼= S;

(iii) the local Noether–Lefschetz locus NL(α) ⊂ ∆ corresponding to the class
α ∈ Pic(S) is the reduced point 0 ∈ ∆.

The class α ∈ Pic(S) is m-rigid with respect to the family ε if the following
further condition is satisfied:

(?) for every effective decomposition

mα =
l∑

i=1

γi ∈ Pic(S),

the local Noether–Lefschetz locus NL(γi) ⊂ ∆ corresponding to each class
γi ∈ Pic(S) is the reduced point 0 ∈∆. (An effective decomposition requires
all parts γi to be effective divisors.)

Let Eff(mα) ⊂ Pic(S) denote the subset of effective summands of mα.
Condition (?) implies (iii).
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Assume α is m-rigid with respect to the family ε. By property (?), there is a
compact, open, and closed component

P?
n (T, γ ) ⊂ Pn(T, γ )

parameterizing stable pairs supported set-theoretically over the point 0 ∈ ∆ for
every effective summand γ ∈ Eff(mα). (For any class γ ∈ Pic(S), we denote the
push-forward to H2(T,Z) also by γ . Let Pn(T, γ ) be the moduli space of stable
pairs of Euler characteristic n and class γ ∈ H2(T,Z).)

DEFINITION. Let α ∈ Pic(S) be a nonzero class which is both effective and
primitive. Given a family ε : T → (∆, 0) satisfying conditions (i), (ii), and (?)
for mα, let

∑
n∈Z

R̃n,mα(S) qn = Coeffvmα

log

1+
∑
n∈Z

∑
γ∈Eff(mα)

qnvγ
∫
[P?n (T,γ )]vir

1

 .
(0.7)

In Section 6.12, we will prove R̃n,mα depends only upon n, m and 〈α, α〉, and
not upon S nor the family ε. The dependence result is nontrivial and requires
new techniques to establish. The existence of m-rigid families ε for suitable S
and α (primitive with fixed 〈α, α〉) then defines R̃n,mα for all m. (Constructions
are given in Section 6.2.)

The appearance of the logarithm in (0.7) has a simple explanation. The
Gromov–Witten invariants Rg,mα are defined via moduli spaces of stable maps
with connected domains. Stable pairs invariants count sheaves with possibly
disconnected support curves. The logarithm accounts for the difference.

The stable pairs potential F̃α(q, v) for classes proportional to the primitive
class α is

F̃α =
∑
n∈Z

∑
m>0

R̃n,mαqnvmα. (0.8)

By the properties of R̃n,mα, the potential F̃α depends only upon the norm square
〈α, α〉.

Via the correspondences with Noether–Lefschetz theory, we prove that the
GW/P correspondence [39, 40] for suitable 3-folds fibered in K 3 surfaces
implies the following basic result for the potentials (0.4) and (0.8).

THEOREM 4. After the variable change −q = eiλ, the potentials are equal:

Fα(λ, v) = F̃α(q, v).
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In order to show the variable change of Theorem 4 is well defined, a rationality
result is required. In Section 7, we prove for all m > 0,

[F̃α]vmα =
∑
n∈Z

R̃n,mαqn

is the Laurent expansion of a rational function in q .

0.7. Multiple covers. While Theorem 4 transforms Theorem 3 to a statement
about stable pairs, the evaluation must still be carried out.

The logarithm in definition (0.7) plays no role for the vα coefficient,

[F̃α]vα =
∑
n∈Z

qn
∫
[P?n (T,α)]vir

1.

If α is irreducible (which can be assumed by deformation invariance), P?
n (T, α)

is a nonsingular variety of dimension 〈α, α〉 + n + 1. If T is taken to be Calabi–
Yau, the obstruction theory on P?

n (T, α) is self-dual and∑
n∈Z

qn
∫
[Pn(T,α)]vir

1 =
∑
n∈Z

qn(−1)〈α,α〉+n+1χtop
(
P?

n (T, α)
)
.

The Euler characteristic calculations of Kawai and Yoshioka [25] then imply the
stable pairs KKV prediction for primitive α ∈ Pic(S). A detailed discussion can
be found in [41, Appendix C].

In order to prove the KKV conjecture for [F̃α]vmα for all m > 1, we find new
multiple cover formulas for stable pairs on K 3 surfaces. In fact, the multiple
cover structure implicit in the KKV formula is much more natural on the stable
pairs side.

By degeneration arguments and deformation to the normal cone, we reduce
the stable pairs multiple cover formula to a calculation on the trivial K 3-fibration
S × C, where C∗-localization applies. A crucial point here is a vanishing result:
for each k only the simplest k-fold multiple covers contribute – those stable pairs
which are a trivial k-times thickening in the C-direction of a stable pair on S.
The moduli space of such trivial thickenings is isomorphic to the moduli space
of stable pairs supported on S. This simple geometric relationship provides the
key to the stable pairs multiple cover formula.

0.8. Guide to the proof. The main steps in our proof of the Katz–Klemm–
Vafa formula are summarized as follows:
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(i) We express the Gromov–Witten invariants of the anticanonical
hypersurface,

X ⊂ P̃2 × P1 × P1,

in terms of the Noether–Lefschetz numbers of π3 and the reduced
invariants Rg,β via the GW/NL correspondence.

(ii) We express the stable pairs invariants of X in terms of the Noether–
Lefschetz numbers of π3 and the stable pairs invariants R̃n,β via the P/NL
correspondence.

(iii) The GW/P conjecture, proved for the complete intersection X in [39],
relates the Gromov–Witten and stable pairs invariants of the 3-fold X.

(iv) By inverting the relations (i) and (ii) and using the correspondence (iii),
we establish the equivalence between the sets of numbers Rg,β and R̃n,β

stated in Theorem 4.

(v) The invariant R̃n,β(S) is defined via an appropriately transverse family

ε : T → (∆, 0), ε−1(0) ∼= S.

Degenerating the total space T to the normal cone of S ⊂ T , we reduce
R̃n,β(S) to a calculation of stable pairs integrals over a rubber target. After
further geometric arguments, the calculation is expressed in terms of the
reduced stable pairs invariants of the trivial K 3-fibration S×P1. A careful
analysis of several different obstruction theories is required here.

(vi) By C∗-localization on S × P1, we reduce further to a calculation on the
moduli space of C∗-fixed stable pairs on S × C.

(vii) We prove a vanishing result: for each k only the simplest k-fold multiple
covers contribute. We only need to calculate the contributions of stable
pairs which are a trivial k-times thickening (in the C-direction) of a stable
pair scheme-theoretically supported on S.

(viii) The resulting moduli spaces are isomorphic to Pn(S, β), the moduli space
of stable pairs on S.

(ix) The resulting integral is calculated in [29, 30] in terms of universal
formulas in topological constants. In particular, the result does not depend
on the divisibility of β.
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(x) We may therefore assume β to be primitive, and moreover, by deformation
invariance, to be irreducible. The moduli space Pn(S, β) is then
nonsingular. The integrals R̃n,β(S) can be expressed in terms of those
evaluated by Kawai–Yoshioka, as explained in [37, 41].

The paper starts with a discussion of Noether–Lefschetz theory for Gromov–
Witten invariants of K 3-fibrations. The GW/NL correspondence of [36] and
Borcherds’ results are reviewed in Section 1. A crucial property of the family
(0.6) is established in Proposition 6 of Section 2: the BPS states and the Noether–
Lefschetz numbers for the family (0.6) uniquely determine all the integrals Rg,β

in the reduced Gromov–Witten theory of K 3 surfaces. The result follows by
finding a triangularity in the GW/NL correspondence.

Theorem 4 constitutes half of our proof of the KKV conjecture. In Section 3,
we prove Theorem 4 assuming the P/NL correspondence. In fact, Theorem 4 is
an easy consequence of the GW/NL correspondence, the P/NL correspondence,
and the invertibility established in Proposition 6. The precise statement of the
P/NL correspondence is given in Section 3.5, but the proof is presented later in
Section 8.

Sections 4–8 mainly concern the geometry of the moduli of stable pairs on
K 3 surfaces and K 3-fibrations. The first topic is a detailed study of the trivial
fibration S×C. In Sections 4 and 5, an analysis of the perfect obstruction theory
of the C∗-fixed loci of the moduli space of stable pairs on S×C is presented. We
find that only the simplest C∗-fixed stable pairs have nonvanishing contributions.
Moreover, these contributions directly yield multiple cover formulas. The move
from Gromov–Witten theory to stable pairs was made precisely to exploit the
much simpler multiple cover structure on the sheaf theory side.

The main results of Sections 6 and 7 concern the expression of R̃n,β in terms
of the stable pair theory of S × C. A careful study of the obstruction theory is
needed. The outcome is a multiple cover formula for R̃n,β .

After we establish the P/NL correspondence for the family X in Section 8,
the proof of the Katz–Klemm–Vafa conjecture is completed in Section 9 by
transforming the multiple cover formula to the Gromov–Witten invariants Rg,β .
As a consequence of the KKV formula, the Gromov–Witten theory of K 3-
fibrations in vertical classes can be effectively computed. As an example, the
classical pencil of quartic K 3 surfaces is treated in Section 10.

A summary of our notation for the various Gromov–Witten and stable
pairs invariants for K 3 surfaces and K 3-fibrations is given in Appendix A.
Appendix B contains a discussion of degenerations of X needed for the Gromov–
Witten/Pairs correspondence of [39]. Appendix C contains results about cones,
the Fulton total Chern class, and virtual cycles.
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1. Noether–Lefschetz theory

1.1. Lattice polarization. Let S be a nonsingular K 3 surface. A primitive
class L ∈ Pic(S) is a quasipolarization if

〈L , L〉 > 0 and 〈L , [C]〉 > 0

for every curve C ⊂ S. A sufficiently high tensor power Ln of a quasipolarization
is base point free and determines a birational morphism

S→ S̃

contracting A–D–E configurations of (−2)-curves on S. Hence, every
quasipolarized K 3 surface is algebraic.

Let Λ be a fixed rank r primitive sublattice

Λ ⊂ U ⊕U ⊕U ⊕ E8(−1)⊕ E8(−1)

with signature (1, r−1), and let v1, . . . , vr ∈Λ be an integral basis. (A sublattice
is primitive if the quotient is torsion free.) The discriminant is

∆(Λ) = (−1)r−1 det

〈v1, v1〉 · · · 〈v1, vr 〉
...

. . .
...

〈vr , v1〉 · · · 〈vr , vr 〉

 .
The sign is chosen so ∆(Λ) > 0.

A Λ-polarization of a K 3 surface S is a primitive embedding

j : Λ→ Pic(S)

satisfying two properties:

(i) the lattice pairs Λ ⊂ U 3 ⊕ E8(−1)2 and Λ ⊂ H 2(S,Z) are isomorphic via
an isometry which restricts to the identity on Λ;

(ii) Im( j) contains a quasipolarization.

By (ii), every Λ-polarized K 3 surface is algebraic.
The period domain M of Hodge structures of type (1, 20, 1) on the lattice

U 3⊕E8(−1)2 is an analytic open set of the 20-dimensional nonsingular isotropic
quadric Q,

M ⊂ Q ⊂ P
(
(U 3 ⊕ E8(−1)2)⊗Z C

)
.

Let MΛ ⊂ M be the locus of vectors orthogonal to the entire sublattice Λ ⊂
U 3 ⊕ E8(−1)2.
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Let Γ be the isometry group of the lattice U 3 ⊕ E8(−1)2, and let

ΓΛ ⊂ Γ
be the subgroup restricting to the identity on Λ. By global Torelli, the moduli
space MΛ of Λ-polarized K 3 surfaces is the quotient

MΛ = MΛ/ΓΛ.

We refer the reader to [12] for a detailed discussion.
Let S̃ be a K 3 surface with A–D–E singularities, and let

j̃ : Λ→ Pic(S̃)

be a primitive embedding. Via pull-back along the desingularization,

S→ S̃,

we obtain a composition j : Λ→ Pic(S). If (S, j) satisfies (i) and (ii), we define
(S̃, j̃) to be a Λ-polarized singular K 3 surface. Then (S, j) is a Λ-polarized
nonsingular K 3 surface canonically associated to (S̃, j̃).

1.2. Families. Let X be a nonsingular projective 3-fold equipped with line
bundles

L1, . . . , Lr → X

and a map
π : X → C

to a nonsingular complete curve.
The tuple (X, L1, . . . , Lr , π) is a 1-parameter family of Λ-polarized K 3

surfaces if

(i) the fibers (Xξ , L1,ξ , . . . , Lr,ξ ) are Λ-polarized K 3 surfaces with at worst a
single nodal singularity via

vi 7→ L i,ξ

for every ξ ∈ C ;

(ii) there exists a λπ ∈ Λ which is a quasipolarization of all fibers of π
simultaneously.

The family π yields a morphism,

ιπ : C →MΛ,

to the moduli space of Λ-polarized K 3 surfaces.
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Let λπ = λπ1 v1 + · · · + λπr vr . A vector (d1, . . . , dr ) of integers is positive if

r∑
i=1

λπi di > 0.

If β ∈ Pic(Xξ ) has intersection numbers

di = 〈L i,ξ , β〉,

then β has positive degree with respect to the quasipolarization if and only if
(d1, . . . , dr ) is positive.

1.2.1. Noether–Lefschetz divisors. Noether–Lefschetz numbers are defined
in [36] by the intersection of ιπ (C) with Noether–Lefschetz divisors in MΛ.
We briefly review the definition of the Noether–Lefschetz divisors.

Let (L, ι) be a rank r + 1 lattice L with an even symmetric bilinear form 〈, 〉
and a primitive embedding

ι : Λ→ L.

Two data sets (L, ι) and (L′, ι′) are isomorphic if and only if there exist an
isometry relating L and L′ which takes ι to ι′. The first invariant of the data
(L, ι) is the discriminant ∆ ∈ Z of L.

An additional invariant of (L, ι) can be obtained by considering any vector
v ∈ L for which

L = ι(Λ)⊕ Zv. (1.1)

(Here, ⊕ is used just for the additive structure, not orthogonal direct sum.) The
pairing

〈v, ·〉 : Λ→ Z

determines an element of δv ∈ Λ∗. Let G = Λ∗/Λ be the quotient defined via the
injection Λ→ Λ∗ obtained from the pairing 〈, 〉 on Λ. The group G is abelian
of order given by the discriminant |∆(Λ)|. The image

δ ∈ G/±

of δv is easily seen to be independent of v satisfying (1.1). The invariant δ is the
coset of (L, ι).

By elementary arguments, two data sets (L, ι) and (L′, ι′) of rank r + 1 are
isomorphic if and only if the discriminants and cosets are equal.
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Let v1, . . . , vr be an integral basis ofΛ as before. The pairing of L with respect
to an extended basis v1, . . . , vr , v is encoded in the matrix

Lh,d1,...,dr =


〈v1, v1〉 · · · 〈v1, vr 〉 d1
...

. . .
...

...

〈vr , v1〉 · · · 〈vr , vr 〉 dr

d1 · · · dr 2h − 2

 .
The discriminant is

∆(h, d1, . . . , dr ) = (−1)r det(Lh,d1,...,dr ).

The coset δ(h, d1, . . . , dr ) is represented by the functional

vi 7→ di .

The Noether–Lefschetz divisor P∆,δ ⊂MΛ is the closure of the locus of Λ-
polarized K 3 surfaces S for which (Pic(S), j) has rank r + 1, discriminant
∆, and coset δ. By the Hodge index theorem, P∆,δ is empty unless ∆ > 0.
By definition, P∆,δ is a reduced subscheme. (The intersection form on Pic(S)
is nondegenerate for an algebraic K 3 surface. Hence, a rank r + 1 sublattice
of Pic(S) which contains a quasipolarization must have signature (1, r) by the
Hodge index theorem.)

Let h, d1, . . . , dr determine a positive discriminant

∆(h, d1, . . . , dr ) > 0.

The Noether–Lefschetz divisor Dh,(d1,...,dr ) ⊂ MΛ is defined by the weighted
sum

Dh,(d1,...,dr ) =
∑
∆,δ

m(h, d1, . . . , dr |∆, δ) · [P∆,δ]

where the multiplicity m(h, d1, . . . , dr |∆, δ) is the number of elements β of the
lattice (L, ι) of type (∆, δ) satisfying

〈β, β〉 = 2h − 2, 〈β, vi 〉 = di . (1.2)

If the multiplicity is nonzero, then ∆|∆(h, d1, . . . , dr ) so only finitely many
divisors appear in the above sum.

If ∆(h, d1, . . . , dr ) = 0, the divisor Dh,(d1,...,dr ) has a different definition. The
tautological line bundle O(−1) is Γ -equivariant on the period domain MΛ and
descends to the Hodge line bundle

K→MΛ.
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We define Dh,(d1,...,dr ) = K∗ if there exists v ∈ Λ satisfying

〈v1, v〉 = d1, 〈v2, v〉 = d2, . . . , 〈vr , v〉 = dr . (1.3)

(If ∆(h, d1, . . . , dr ) = 0 and (1.3) holds, then 〈v, v〉 = 2h − 2 is forced. Since
the di do not simultaneously vanish, v 6= 0.) If v satisfies (1.3), v is unique. If no
such v ∈ Λ exists, then

Dh,(d1,...,dr ) = 0.

In caseΛ is a unimodular lattice, such a v always exists. See [36] for an alternate
view of degenerate intersection.

If ∆(h, d1, . . . , dr ) < 0, the divisor Dh,(d1,...,dr ) on MΛ is defined to vanish by
the Hodge index theorem.

1.2.2. Noether–Lefschetz numbers. Let Λ be a lattice of discriminant l =
∆(Λ), and let (X, L1, . . . , Lr , π) be a 1-parameter family of Λ-polarized K 3
surfaces. The Noether–Lefschetz number N Lπh,d1,...,dr

is the classical intersection
product

N Lπh,(d1,...,dr )
=
∫

C
ι∗π [Dh,(d1,...,dr )]. (1.4)

Let Mp2(Z) be the metaplectic double cover of SL2(Z). There is a canonical
representation [5] associated to Λ,

ρ∗Λ : Mp2(Z)→ End(C[G]),
where G =Λ∗/Λ. The full set of Noether–Lefschetz numbers N Lπh,d1,...,dr

defines
a vector valued modular form

Φπ (q) =
∑
γ∈G

Φπ
γ (q)vγ ∈ C[[q1/2l]] ⊗ C[G],

of weight (22− r)/2 and type ρ∗Λ by results of Borcherds and Kudla–Millson [5,
31]. (While the results of the papers [5, 31] have considerable overlap, we will
follow the point of view of Borcherds.) The Noether–Lefschetz numbers are the
coefficients of the components of Φπ ,

N Lπh,(d1,...,dr )
= Φπ

γ

[
∆(h, d1, . . . , dr )

2l

]
where δ(h, d1, . . . , dr ) = ±γ . (If f is a series in q , f [k] denotes the coefficient
of qk .) The modular form results significantly constrain the Noether–Lefschetz
numbers.
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1.2.3. Refinements. If d1, . . . , dr do not simultaneously vanish, refined
Noether–Lefschetz divisors are defined. If ∆(h, d1, . . . , dr ) > 0,

Dm,h,(d1,...,dr ) ⊂ Dh,(d1,...,dr )

is defined by requiring the class β ∈ Pic(S) to satisfy (1.2) and have divisibility
m > 0. If ∆(h, d1, . . . , dr ) = 0, then

Dm,h,(d1,...,dr ) = Dh,(d1,...,dr )

if there exists v ∈ Λ of divisibility m > 0 satisfying

〈v1, v〉 = d1, 〈v2, v〉 = d2, . . . , 〈vr , v〉 = dr .

If v satisfies the above degree conditions, v is unique. If no such v ∈ Λ exists,
then

Dm,h,(d1,...,dr ) = 0.

A necessary condition for the existence of v is the divisibility of each di by m.
In caseΛ is a unimodular lattice, v exists if and only if m is the greatest common
divisor of d1, . . . , dr .

Refined Noether–Lefschetz numbers are defined by

N Lπm,h,(d1,...,dr )
=
∫

C
ι∗π [Dm,h,(d1,...,dr )]. (1.5)

The full set of Noether–Lefschetz numbers N Lπh,(d1,...,dr )
is easily shown to

determine the refined numbers N Lπm,h,(d1,...,dr )
; see [28].

1.3. GW/NL correspondence. The GW/NL correspondence intertwines
three theories associated to a 1-parameter family

π : X → C

of Λ-polarized K 3 surfaces:

(i) the Noether–Lefschetz numbers of π ;

(ii) the genus g Gromov–Witten invariants of X ;

(iii) the genus g reduced Gromov–Witten invariants of the K 3 fibers.

The Noether–Lefschetz numbers (i) are classical intersection products while the
Gromov–Witten invariants (ii)–(iii) are quantum in origin. For (ii), we view

https://doi.org/10.1017/fmp.2016.2 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2016.2


R. Pandharipande and R. P. Thomas 20

the theory in terms the Gopakumar–Vafa invariants [16, 17]. (A review of the
definitions will be given in Section 2.2.)

Let nX
g,(d1,...,dr )

denote the Gopakumar–Vafa invariant of X in genus g for π -
vertical curve classes of degrees d1, . . . , dr with respect to the line bundles L1,

. . . , Lr . (The invariant nX
g,(d1,...,dr )

may be a (finite) sum of nX
g,γ for π -vertical

curve classes γ ∈ H2(X,Z).) Let rg,β denote the reduced K 3 invariant defined
in Section 0.3 for an effective curve class β. Since rg,β depends only upon the
divisibility m and the norm square

〈β, β〉 = 2h − 2,

we will use the more efficient notation

rg,m,h = rg,β .

The following result is proven in [36] by a comparison of the reduced and
usual deformation theories of maps of curves to the K 3 fibers of π . (The result
of the [36] is stated in the rank r = 1 case, but the argument is identical for
arbitrary r .)

THEOREM 5. For degrees (d1, . . . , dr ) positive with respect to the
quasipolarization λπ ,

nX
g,(d1,...,dr )

=
∞∑

h=0

∞∑
m=1

rg,m,h · N Lπm,h,(d1,...,dr )
.

For fixed g and (d1, . . . , dr ), the sum over m is clearly finite since m must
divide each di . The sum over h is also finite since, for fixed (d1, . . . , dr ),
N Lπm,h,(d1,...,dr )

vanishes for sufficiently high h by [36, Proposition 3]. By [36,
Lemma 2], rg,m,h vanishes for h < 0 (and is therefore omitted from the sum in
Theorem 5).

2. Anticanonical K3 surfaces in P̃2 × P1

2.1. Polarization. Let P̃2 × P1 be the blow-up of P2 × P1 at a point,

P̃2 × P1 → P2 × P1.

The Picard group is of rank 3:

Pic(P̃2 × P1) ∼= ZL1 ⊕ ZL2 ⊕ ZE,
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where L1 and L2 are the pull-backs of O(1) from the factors P2 and P1,
respectively and E is the exceptional divisor. The anticanonical class 3L1+2L2−
2E is base point free.

A nonsingular anticanonical K 3 hypersurface S ⊂ P̃2 × P1 is naturally lattice
polarized by L1, L2, and E . The lattice is

Λ =
2 3 0

3 0 0
0 0 −2

 .
A general anticanonical Calabi–Yau 3-fold hypersurface,

X ⊂ P̃2 × P1 × P1,

determines a 1-parameter family of anticanonical K 3 surfaces in P̃2 × P1,

π3 : X→ P1, (2.1)

via projection π3 onto the last P1. The fibers of π3 have at worst nodal
singularities. (There are 192 nodal fibers. We leave the elementary classical
geometry here to the reader.) The Noether–Lefschetz theory of the Λ-polarized
family

(X, L1, L2, E, π3)

plays a central role in our proof of Theorem 3. The quasipolarization λπ3

(condition (ii) of Section 1.1) can be taken to be any very ample line bundle
on P̃2 × P1.

2.2. BPS states. Let (X, L1, L2, E, π3) be the Λ-polarized family of

anticanonical K 3 surfaces of P̃2 × P1 defined in Section 2.1. The vertical
classes are the kernel of the push-forward map by π3,

0→ H2(X,Z)π3 → H2(X,Z)→ H2(P1,Z)→ 0.

Let M g(X, γ ) be the moduli space of stable maps from connected genus g
curves to X of class γ . Gromov–Witten theory is defined by integration against
the virtual class,

N X
g,γ =

∫
[Mg(X,γ )]vir

1. (2.2)

The expected dimension of the moduli space is 0.

https://doi.org/10.1017/fmp.2016.2 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2016.2


R. Pandharipande and R. P. Thomas 22

The full genus Gromov–Witten potential FX for nonzero vertical classes is the
series

FX =
∑
g>0

∑
0 6=γ∈H2(X,Z)π3

N X
g,γλ

2g−2vγ ,

where v is the curve class variable. The BPS counts nX
g,γ of Gopakumar and Vafa

are uniquely defined by the following equation:

FX =
∑
g>0

∑
0 6=γ∈H2(X,Z)π3

nX
g,γλ

2g−2
∑
d>0

1
d

(
sin(dλ/2)
λ/2

)2g−2

vdγ .

Conjecturally, the invariants nX
g,γ are integral and obtained from the cohomology

of an as yet unspecified moduli space of sheaves on X . We do not assume the
conjectural properties hold.

Using the Λ-polarization, we label the classes γ ∈ H2(X,Z)π3 by their
pairings with L i and E ,

γ 7→
(∫

γ

[L1],
∫
γ

[L2],
∫
γ

[E]
)
.

We write the BPS counts as nX
g,(d1,d2,d3)

. Since γ 6= 0, not all the di can vanish.

2.3. Invertibility of constraints. Let P ⊂ Z3 be the set of triples (d1, d2,

d3) 6= (0, 0, 0) which are positive with respect to the quasipolarization λπ3 of the
Λ-polarized family

π3 : X→ P1.

Theorem 5 applied to (X, L1, L2, E, π3) yields the equation

nX
g,(d1,d2,d3)

=
∞∑

h=0

∞∑
m=1

rg,m,h · N Lπ3
m,h,(d1,d2,d3)

(2.3)

for (d1, d2, d3) ∈ P . We view (2.3) as linear constraints for the unknowns rg,m,h

in terms of the BPS states on the left and the refined Noether–Lefschetz degrees.
The integrals rg,m,h are very simple in case h 6 0. By [36, Lemma 2], rg,m,h = 0

for h < 0,
r0,1,0 = 1,

and rg,m,0 = 0 otherwise.

PROPOSITION 6. The set of invariants {rg,m,h}g>0,m>1,h>0 is uniquely determined
by the set of constraints (2.3) for (d1, d2, d3) ∈ P and the integrals rg,m,h60.
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Proof. A certain subset of the linear equations will be shown to be upper-
triangular in the variables rg,m,h .

Let us fix in advance the values of g > 0, m > 1, and h > 0. We proceed
by induction on h assuming the reduced invariants rg,m′,h′ have already been
determined for all h′ < h. If 2h − 2 is not divisible by 2m2, then we have
rg,m,h = 0 by definition, so we can further assume

2h − 2 = m2(2s − 2)

for an integer s > 0.
Consider the fiber class γ ∈ H2(X,Z)π3 given by the lattice element msL1 +

mL2 + m(s + 1)E ,

γ = (ms[L1] + m[L2] + m(s + 1)[E]) ∩ [S],
where S is a K 3-fiber of π3. Since L1, L2 and E are effective on S, the class γ
is effective and hence positive with respect to the quasipolarization of Λ. The
degrees of γ are

(d1, d2, d3) = (2ms + 3m, 3ms,−2m(s + 1)), (2.4)

and γ is of divisibility exactly m in the lattice Λ.
Consider Equation (2.3) for (d1, d2, d3) given by (2.4). By the Hodge index

theorem, we must have

0 6 ∆(h′, 2ms + 3m, 3ms,−2m(s + 1))
= 18(2− 2h′ + m2(2s − 2))
= 36(h − h′) (2.5)

if N Lπ3
m′,h′,(2ms+3m,3ms,−2m(s+1)) 6= 0. Inequality (2.5) implies h′ 6 h. If h′ = h,

then
∆(h′ = h, 2ms + 3m, 3ms,−2m(s + 1)) = 0.

By the definition of Section 1.2.3,

N Lπ3
m′,h′=h,(2ms+3m,3ms,−2m(s+1)) = 0

unless there exists v ∈ Λ of divisibility m ′ with degrees

(2ms + 3m, 3ms,−2m(s + 1)).

But γ ∈ Λ is the unique such lattice element, and γ has divisibility m. Therefore,
the constraint (2.3) takes the form

nX
g,(2ms+3m,3ms,−2m(s+1)) = rg,m,h N Lπ3

m,h,(2ms+3m,3ms,−2m(s+1)) + · · · ,
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where the dots represent terms involving rg,m′,h′ with h′ < h. The leading
coefficient is given by

N Lπ3
m,h,(2ms+3m,3ms,−2m(s+1)) = N Lπ3

h,(2ms+3m,3ms,−2m(s+1)) = −2.

As the system is upper-triangular, we can invert to solve for rg,m,h .
The calculation of N Lπ3

h,(2ms+3m,3ms,−2m(s+1) is elementary. In the discriminant
∆= 0 case, we must determine the degree of the dual of the Hodge line bundle K
on the base P1. The relative dualizing sheaf ωπ3 is the pull-back of OP1(2) from
the base. Hence, the dual of the Hodge line has degree −2. See [36, Section 6.3]
for many such calculations.

The proof of Proposition 6 does not involve induction on the genus. The same
argument will be used later in the theory of stable pairs.

3. Theorem 2

3.1. Strategy. We will prove Theorem 4 via the GW/P and Noether–
Lefschetz correspondences for the family (X, L1, L2, E, π3) of K 3 surfaces
defined in Section 2.1. While all of the necessary Gromov–Witten theory has
been established in Sections 1 and 2, our proof here depends upon stable pairs
results proven later in Sections 7 and 8.

3.2. Stable pairs. Let V be a nonsingular, projective 3-fold, and let β ∈
H2(V,Z) be a nonzero class. We consider the moduli space of stable pairs

[OV
s→ F] ∈ Pn(V, β)

where F is a pure sheaf supported on a Cohen–Macaulay subcurve of V , s is a
morphism with 0-dimensional cokernel, and

χ(F) = n, [F] = β.
The space Pn(V, β) carries a virtual fundamental class of dimension

∫
β

c1(TV )

obtained from the deformation theory of complexes with trivial determinant in
the derived category [40].

We specialize now to the case where V is the total space of a K 3-fibration
(with at worst nodal fibers),

π : V → C,

over a nonsingular projective curve and β ∈ H2(V,Z)π is a vertical class. Then
the expected dimension of Pn(V, β) is always 0. For nonzero β ∈ H2(V,Z)π ,
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define the stable pairs invariant

Ñ •n,β =
∫
[Pn(V,β)]vir

1.

The partition function is

ZP(V ; q)β =
∑

n

Ñ •n,β qn.

Since Pn(V, β) is empty for sufficiently negative n, the partition function is a
Laurent series in q . The following is a special case of [40, Conjecture 3.26].

CONJECTURE 7. The partition function ZP(V ; q)β is the Laurent expansion of
a rational function in q.

If the total space V is a Calabi–Yau 3-fold, then Conjecture 7 has been proven
in [6, 45]. In particular, Conjecture 7 holds for the anticanonical 3-fold

X ⊂ P̃2 × P1 × P1

of Section 2.1.
In fact, if V is any complete intersection Calabi–Yau 3-fold in a toric variety

which admits sufficient degenerations, Conjecture 7 has been proven in [39]. By
factoring equations, there is no difficulty in constructing the degenerations of X
into toric 3-folds required for [39]. Just as in the case of the quintic in P4, the
geometries which occur are toric 3-folds, projective bundles over K 3 and toric
surfaces, and fibrations over curves. A complete discussion of the degeneration
scheme for X is given in Appendix B.

3.3. GW/P correspondence for X. Following the notation of Section 2.2, let
H2(X,Z)π3 denote the vertical classes of X and let

FX =
∑
g>0

∑
06=γ∈H2(X,Z)π3

N X
g,γ λ

2g−2vγ

be the potential of connected Gromov–Witten invariants. The partition function
(of possibly disconnected) Gromov–Witten invariants is defined via the
exponential,

ZGW(X; λ) = exp(FX).

Let ZGW(X; λ)γ denote the coefficient of vγ in ZGW(X; λ). The main result
of [39] applied to X is the following GW/P correspondence for complete
intersection Calabi–Yau 3-folds in products of projective spaces.
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GW/P correspondence. After the change of variable −q = eiλ, we have

ZGW(X; λ)γ = ZP(X; q)γ .

The change of variables is well defined by the rationality of ZP(X; q)γ of
Conjecture 7. The GW/P correspondence is proven in [39] for every nonzero
class in H2(X,Z), but we only will require here the statement for fiber classes γ .

3.4. K3 integrals. Let S be a nonsingular projective K 3 surface with a
nonzero class α ∈ Pic(S)which is both effective and primitive. By the definitions
of Section 0.3 in Gromov–Witten theory,

Fα =
∑
g>0

∑
m>0

Rg,mαλ
2g−2vmα,

Fα =
∑
g>0

∑
m>0

rg,mαλ
2g−2

∑
d>0

1
d

(
sin(dλ/2)
λ/2

)2g−2

vdmα.

Via K 3-fibrations over a pointed curve

ε : T → (∆, 0)

satisfying the conditions (i), (ii), and (?) of Section 0.5, we have defined in (0.8)
the series

F̃α =
∑
n∈Z

∑
m>0

R̃n,mαqnvmα

in the theory of stable pairs. Using the identity

22g−2sin(dλ/2)2g−2 =
(

eidλ/2 − e−idλ/2

i

)2g−2

= (−1)g−1((−q)d − 2+ (−q)−d)g−1

under the change of variables−q = eiλ, we define the stable pairs BPS invariants
r̃g,mα by the relation

F̃α =
∑
g∈Z

∑
m>0

r̃g,mα

∑
d>0

(−1)g−1

d
((−q)d − 2+ (−q)−d)g−1vdmα.

See [40, Section 3.4] for a discussion of such BPS expansions for stable pairs.
The invariants r̃g,mα are integers.
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Since r̃g,β depends only upon the divisibility m and the norm square

〈β, β〉 = 2h − 2,

we will use, as before, the notation

r̃g,m,h = r̃g,β .

By definition in Gromov–Witten theory, rg,m,h = 0 for g < 0. However, for fixed
m and h, the definitions allow rg,m,h to be nonzero for all positive g. On the stable
pairs side for fixed m and h, r̃g,m,h = 0 for sufficiently large g, but r̃g,m,h may be
nonzero for all negative g.

We will prove Theorem 4 by showing the BPS counts for K 3 surfaces in
Gromov–Witten theory and stable pairs theory exactly match:

rg,m,h = r̃g,m,h (3.1)

for all g ∈ Z, m > 1, and h ∈ Z.

3.5. Noether–Lefschetz theory for stable pairs. The stable pairs potential
F̃X for nonzero vertical classes is the series

F̃X = log

1+
∑

06=γ∈H2(X,Z)π3

ZP(X; q)γ vγ
 ,

where v is the curve class variable. The stable pairs BPS counts ñX
g,γ are uniquely

defined by

F̃X =
∑
g∈Z

∑
0 6=γ∈H2(X,Z)π3

ñX
g,γ

∑
d>0

(−1)g−1

d
((−q)d − 2+ (−q)−d)g−1vdγ ,

following [40, Section 3.4].
The following stable pairs result is proven in Section 8. A central issue in the

proof is the translation of the Noether–Lefschetz geometry of stable pairs to a
precise relation constraining the logarithm F̃X of the stable pairs series.

THEOREM 8. For degrees (d1, d2, d3) positive with respect to the
quasipolarization of the family π3 : X→ P1,

ñX
g,(d1,d2,d3)

=
∞∑

h=0

∞∑
m=1

r̃g,m,h · N Lπ3
m,h,(d1,d2,d3)

.
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3.6. Proof of Theorem 4. We first match the BPS counts of X by using
the GW/P correspondence. Then, the uniqueness statement of Proposition 6
implies (3.1).

PROPOSITION 9. For all g ∈ Z and all γ ∈ H2(X,Z)π3 , we have

nX
g,γ = ñX

g,γ .

Proof. By Corollary 41 of Section 7, r̃g,m,h = 0 if g < 0. Theorem 8 then implies
ñX

g,γ = 0 if g < 0. Hence, there are only finitely many nonzero BPS states for
fixed γ since ñX

g,γ vanishes for sufficiently large g by construction [40]. (The
GW/P correspondence yields an equality of partition functions after the variable
change−q = eiλ whether or not ñg<0,γ vanishes. Proposition 9 asserts a stronger
result: the Gromov–Witten BPS expansion equals the stable pairs BPS expansion.
Since these expansions are in opposite directions, finiteness is needed.) By the
GW/P correspondence, the ñX

g,γ then yield the Gromov–Witten BPS expansion.

PROPOSITION 10. For all g ∈ Z, m > 1, and h ∈ Z, we have

rg,m,h = r̃g,m,h.

Proof. The equality rg,m,h = r̃g,m,h holds in case h 6 0 by following the argument
of [36, Lemma 2] for stable pairs. (A different argument is given in Corollary 40
of Section 7.) For h < 0, the vanishing of r̃g,m,h holds by the same geometric
argument given in [36, Lemma 2]. The h = 0 case is the conifold for which the
equality is well known (and a consequence of GW/P correspondence).

We view relation (2.3) and Theorem 8 as systems of linear equations for the
unknowns rg,m,h and r̃g,m,h , respectively. By Proposition 9, we have

nX
g,γ = ñX

g,γ

for all g. Hence, the two systems of linear equations are the same.
We now apply the uniqueness established in Proposition 6. The initial

conditions and the linear equations are identical. Therefore, the solutions must
also agree.

Theorem 4 follows immediately from Proposition 10 for the K 3 invariants in
Gromov–Witten theory and stable pairs.
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4. K3× C: Localization

4.1. Overview. We begin now our analysis of the moduli spaces of stable
pairs related to K 3 surfaces and K 3-fibrations. Let S be a nonsingular projective
K 3 surface. We first study the trivial fibration

Y = S × C −→ C

by C∗-localization with respect to the scaling action on C. Let t denote the
weight 1 representation of C∗ on the tangent space to C at 0 ∈ C.

We compute here the C∗-residue contribution to the reduced stable pairs theory
of S × C of the C∗-fixed component parameterizing stable pairs supported on S
and thickened uniformly k times about 0 ∈ C. (Throughout we use the term
component to denote any open and closed subset. More formally, a component
for us is a union of connected components in the standard sense.) In Section 5,
all other C∗-fixed components will be shown to have vanishing contributions to
the virtual localization formula.

4.2. Uniformly thickened pairs. Define the following Artinian rings and
schemes:

Ak = C[x]/(x k), Bk = Spec Ak . (4.1)

We have the obvious maps

SpecC Bk
πkoo � � ιk // C = SpecC[x].

For any variety Z , we define

Zk = Z × Bk,

and use the same symbols πk, ιk to denote the corresponding projections and
inclusions,

Z Zk
πkoo � � ιk // Z × C. (4.2)

We will often abbreviate ιk to ι.
Let β ∈ H2(S,Z) be a curve class. Let PS = Pn(S, β) denote the moduli space

of stable pairs on S with universal stable pair (F, s) and universal complex

I•S = {OS×PS

s−→ F}.
Using the maps (4.2) for Z = S × PS (so Z × C = Y × PS) we define

Fk = π∗k F, I•Sk
= {OSk×PS

sk−→ Fk} (4.3)
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on Sk × PS , where sk = π∗k s. Pushing sk forward to Y × PS we obtain

I•Y = {OY×PS

sk−→ ι∗Fk}. (4.4)

Since we have constructed a flat family over PS of stable pairs on Y of class kβ
and holomorphic Euler characteristic kn, we obtain a classifying map from PS

to the moduli space of stable pairs on Y :

f : PS = Pn(S, β) // Pkn(Y, kβ) = PY . (4.5)

(For any class γ ∈ Pic(S), we denote the push-forward to H2(Y,Z) also by γ .)

LEMMA 11. The map (4.5) is an isomorphism onto an open and closed
component of the C∗-fixed locus of PY .

Proof. Let P f denote the open and closed component of (PY )
C∗ containing the

image of f . Certainly, f is a bijection on closed points onto P f . There is a C∗-
fixed universal stable pair on Y × P f . We push down the universal stable pair to
S × P f and then take C∗-invariant sections. The result is flat over P f and hence
classified by a map P f → PS which is easily seen to be the inverse map to f .

4.3. Deformation theory of pairs. Let PY = Pm(Y, γ ) be the moduli space
of stable pairs on Y of class γ ∈ H2(Y,Z) with holomorphic Euler characteristic
m. There is a universal complex I•Y over Y × PY . We will soon take m = kn and
γ = kβ, in which case I•Y pulls back via the classifying map f : PS → PY to
(4.4).

We review here the basics of the deformation theory of stable pairs on the
3-fold Y [40]. Let

πP : Y × PY → PY

be the projection, and define

E•Y = (RHomπP (I•Y , I
•
Y )0)

∨[−1] ∼= RHomπP (I•Y , I
•
Y ⊗ ωπP )0[2]. (4.6)

Here RHomπP = RπP∗RHom, the subscript 0 denotes trace-free
homomorphisms, and the isomorphism is Serre duality down πP . (Although
πP is not proper, the compact support of RHom(I•Y , I•Y )0 ensures that Serre
duality holds. This is proved in [37, Equations (15), (16)], for instance, by
compactifying Y = S×C to Y = C×P1.) Let L denote the truncated cotangent
complex τ>−1 L•. Using the Atiyah class of I•Y , we obtain a map [40, Section
2.3],

E•Y −→ LPY , (4.7)

exhibiting E•Y as a perfect obstruction theory for PY [20, Theorem 4.1].
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In fact, (4.7) is the natural obstruction theory of trivial-determinant objects
I • = {OY

s→ F} of the derived category D(Y ). The more natural obstruction
theory of pairs (F, s) is given by the complex

(RHomπP (I•Y ,FY ))
∨ (4.8)

where FY is the universal sheaf. (This is essentially proved in [21] once combined
with [3, Theorem 4.5]; see [22, Sections 12.3–12.5] for a full account.) However,
(4.8) is not perfect in general. To define stable pair invariants, we must use (4.6).
The two theories give the same tangent spaces, but different obstructions. On
surfaces, however, the analogous obstruction theory

E•S = (RHomπP (I•S,F))
∨ (4.9)

is indeed perfect and is used to define invariants [29]. Here πP denotes the
projection S × PS → PS .

The following result describes the relationship between the above obstruction
theories when pulled back via the map f : PS → PY of (4.5).

PROPOSITION 12. We have an isomorphism

f ∗E•Y ∼= E•S ⊗ A∗k ⊕ (E•S)
∨ ⊗ t−1 Ak[1],

where A∗k = 1 + t + · · · + tk−1 and t−1 Ak = t−1 + t−2 + · · · + t−k . (We ignore
here the ring structure (4.1) on Ak and considering Ak as just a vector space
with C∗-action. As such, A∗k ∼= tk−1 Ak , as we use below.)

Proof. We will need two preliminaries on pull-backs. First, over Sk × PS there
is a canonical exact triangle

Fk ⊗ N ∗k [1] −→ ι∗ι∗Fk −→ Fk, (4.10)

where ι∗ = Lι∗k is the derived pull-back functor, and

Nk
∼= OSk×PS ⊗ tk

denotes the normal bundle of Sk× PS in Y × PS . Second, combine the first arrow
of (4.10) with the obvious map OY×PS → ι∗OSk×PS :

RHom(ι∗Fk,OY×PS ) −→ RHom(ι∗Fk, ι∗OSk×PS )

∼= ι∗RHom(ι∗ι∗Fk,OSk×PS ) −→ ι∗RHom(Fk ⊗ N ∗k [1],OSk×PS ).

A local computation shows the above composition is an isomorphism:

RHom(ι∗Fk,OY×PS )
∼= ι∗RHom(Fk ⊗ N ∗k [1],OSk×PS ). (4.11)
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Now combine (4.10) with ι∗ of the triangle

I•Y → OY×PS → ι∗Fk (4.12)

to give the following diagram of exact triangles on Sk × PS:

ι∗I•Y

��
OSk×PS

��

OSk×PS

��
Fk ⊗ N ∗k [1] // ι∗ι∗Fk

// Fk .

(4.13)

The right hand column defines the complex I•Sk
(4.3), so by the octahedral axiom

we can fill in the top row with the exact triangle

Fk ⊗ N ∗k −→ ι∗I•Y −→ I•Sk
. (4.14)

Again letting πP denote both projections

Sk × PS → PS and Y × PS → PS,

we apply RHomπP (I•Y , ·) to I•Y → OY×PS → ι∗Fk to give the triangle

RHomπP (I•Y , ι∗Fk) −→ RHomπP (I•Y , I
•
Y )[1] −→ RHomπP (I•Y ,O)[1] (4.15)

relating the obstruction theory (4.8) to the obstruction theory (4.6) (without its
trace part removed: we will deal with this presently).

Now use the following obvious diagram of exact triangles on Y × PS:

I•Y //

��

OY×PS
//

��

ι∗Fk

ι∗I•Sk
// ι∗OSk×PS

// ι∗Fk .

This maps the triangle (4.15) to the triangle

RHomπP (I•Y , ι∗Fk) −→ RHomπP (I•Y , ι∗I
•
Sk
)[1] −→ RHomπP (I•Y , ι∗O)[1].

By adjunction this is

RHomπP (ι
∗I•Y ,Fk) −→ RHomπP (ι

∗I•Y , I
•
Sk
)[1] −→ RHomπP (ι

∗I•Y ,O)[1],
which in turn maps to

RHomπP (Fk,Fk)t
k −→ RHomπP (Fk, I•Sk

)tk[1] −→ RHomπP (Fk,O)tk[1]
(4.16)
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by the first arrow Fk ⊗ N ∗k → ι∗I•Y of (4.14). Notice that since I•Sk
and Fk are the

pull-backs of I•S and F by πk : Sk → S, the central term simplifies to

RHomπP (F, I•S)⊗ tk Ak[1] ∼= E•S ⊗ tk Ak[−1],
where E•S is the obstruction theory (4.9).

We next remove the trace component of (4.15) using the diagram
RπP∗OY×PS [1]

id��

RπP∗OY×PS [1]
��

RHomπP (I•Y , ι∗Fk) // RHomπP (I•Y , I•Y )[1] //

��

RHomπP (I•Y ,O)[1]
��

RHomπP (I•Y , I•Y )0[1] // RHomπP (ι∗Fk,O)[2].
(4.17)

Here the right hand column is given by applying RHomπP (· ,O) to (4.12).

The top right hand corner commutes because the composition O id−→Hom(I•Y ,
I•Y )→Hom(I•Y ,O) takes 1 to the canonical map I•Y →O. Therefore, the whole
diagram commutes.

The central row of (4.17) is (4.15), and our map from (4.15) to (4.16) kills the
top row of (4.17) by C∗-equivariance: RπP∗OY×PS [1] has C∗-weights in (−∞,
0] while (4.16) has weights in [1, k]. Therefore, it descends to a map from the
bottom row of (4.17) (completed using the octahedral axiom) to (4.16). The
upshot is the following map of triangles

RHomπP (I•Y , ι∗Fk) //

��

f ∗(E•Y )
∨ //

��

RHomπP (ι∗Fk,O)[2]
��

RHomπP (Fk,Fk)t
k // E•S ⊗ tk Ak[−1] // RHomπP (Fk,O)tk[1].

(4.18)

Recall that the first column was induced from the triangle (4.14), so sits inside a
triangle

RHomπP (I•Sk
,Fk) −→ RHomπP (I•Y , ι∗Fk) −→ RHomπP (Fk,Fk)t

k .

Again we can simplify because I•Sk
and Fk are the pull-backs of I•S and F by

πk : Sk → S. That is,

RHomπP (I•Y , ι∗Fk) ∼= RHomπP (I•S,F)⊗ Ak ⊕ RHomπP (F,F)⊗ tk Ak,

where the splitting follows from the C∗-invariance of the connecting
homomorphism: it must vanish because Ak has weights in [−(k − 1), 0]
while tk Ak has weights in [1, k].
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So this splits the first vertical arrow of (4.18); we claim the last vertical arrow
is the isomorphism induced by (4.11). Altogether this gives the splitting

f ∗(E•Y )
∨ ∼= RHomπP (I•S,F)⊗ Ak ⊕ E•S[−1] ⊗ tk Ak .

Dualizing gives

f ∗E•Y ∼= E•S ⊗ A∗k ⊕ (E•S)∨[1] ⊗ t−1 Ak,

as required.
It remains to prove the claim that the third vertical arrow of (4.18) is induced

by (4.11). By the construction of these maps, it is sufficient to prove the
commutativity of the diagram

RHomπP (I•Y ,OY×PS )
//

∂∗
��

RHomπP (Fk ⊗ N ∗k ,OSk×PS )

RHomπP (ι∗Fk[−1],OY×PS ).

∼
33

Here the vertical arrow is induced by the connecting homomorphism ∂ of the
standard triangle I•Y → OY×PS → ι∗Fk , and the diagonal arrow is RπP∗ applied
to (4.11).

The horizontal arrow is our map from (4.15) to (4.16) (restricted to the right
hand term in each triangle). It is therefore the composition

RHomπP (I•Y ,OY×PS ) −→ RHomπP (I•Y , ι∗OSk×PS )

∼= RHomπP (ι
∗I•Y ,OSk×PS )

(4.14)−→ RHomπP (Fk ⊗ N ∗k ,OSk×PS ).

Via ∂ : ι∗Fk[−1] → I•Y , the above composition maps to the composition

RHomπP (ι∗Fk[−1],OY×PS ) −→ RHomπP (ι∗Fk[−1], ι∗OSk×PS )

∼= RHomπP (ι
∗ι∗Fk[−1],OSk×PS )

(4.10)−→ RHomπP (Fk ⊗ N ∗k ,OSk×PS ).

Therefore, the first two resulting squares commute. The last square is:

RHomπP (ι
∗I•Y ,OSk×PS )

(4.14) //

ι∗∂∗��

RHomπP (Fk ⊗ N ∗k ,OSk×PS )

RHomπP (ι
∗ι∗Fk[−1],OSk×PS )

(4.10) // RHomπP (Fk ⊗ N ∗k ,OSk×PS ).

By the construction of (4.14) from (4.10), the square commutes.

A virtual class on Pkn(Y, kβ)C
∗ induced by (E•Y )

fix is defined in [18]. The
moduli space Pn(S, β) hence carries several virtual classes:
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(i) via the intrinsic obstruction theory E•S;

(ii) via (E•Y )
fix and the local isomorphism

f : Pn(S, β) ↪−→ Pkn(Y, kβ)C
∗

for every k > 1.

PROPOSITION 13. The virtual classes on Pn(S, β) obtained from (i) and (ii) are
all equal.

Proof. By Proposition 12, there is an isomorphism,

f ∗(E•Y )
fix ∼= E•S, (4.19)

in the derived category. Since the virtual class is expressed in terms of the Fulton
total Chern class of Pn(S, β) and the Segre class of the dual of the obstruction
theory, the isomorphism (4.19) implies the equality of the virtual classes. (The
relationship of the virtual class with the Fulton total Chern class and the normal
cone is reviewed in Appendix C.1.)

In fact, Proposition 13 is trivial: the virtual classes of Pn(S, β) obtained from
the obstruction theories E•S and (E•Y )

fix both vanish by the existence of the
reduced theory.

The reduced obstruction theory for Y is constructed in, for instance, [37,
Section 3]. We review the construction in a slightly more general setting in
Section 6.6. For the reduced theory of S, we can either C∗-localize the 3-
fold reduced class, or equivalently, use the construction in [29]. In particular,
[29, Proposition 3.4] shows the two constructions are compatible under the
isomorphism (4.5). They both remove a trivial piece OP [−1] (of C∗-weight 0!)
from the obstruction theory. The nontrivial version of Proposition 13 is the
following.

PROPOSITION 14. The reduced virtual classes on Pn(S, β) obtained from (i)
and (ii) are all equal.

The proof of Proposition 14 is exactly the same as the proof of Proposition 13
given above.

4.4. Localization calculation I. We can now evaluate the residue
contribution of the locus of k-times uniformly thickened stable pairs

Pn(S, β) ⊂ Pkn(Y, kβ)C
∗
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of (4.5) to the C∗-equivariant integral∫
[Pkn(Y,kβ)]red

C∗
1.

We will see in Section 5 that the contributions of all other C∗-fixed loci to the
virtual localization formula vanish.

By Proposition 14, the reduced virtual class on Pkn(Y, kβ)C
∗ obtained

from (E•Y )
fix matches the reduced virtual class of Pn(S, β) obtained from the

obstruction theory E•S . The virtual normal bundles are the same for the reduced
and standard obstruction theories (since the semiregularity map is C∗-invariant
here).

Writing Ak as C⊕ t−1 Ak−1, we can read off the virtual normal bundle to Pn(S,
β) ⊂ Pkn(Y, kβ) from Proposition 12:

N vir = (E•S)∨ ⊗ t−1 Ak−1 ⊕ E•S ⊗ tA∗k[−1].
After writing tA∗k as tA∗k−1 ⊕ tk , the residue contribution of Pn(S, β) to the C∗-
equivariant integral

∫
[Pkn(Y,kβ)]red

C∗
1 is∫

[Pn(S,β)]red

1
e(N vir)

=
∫
[Pn(S,β)]red

e(E•S ⊗ tA∗k−1)

e((E•S ⊗ tA∗k−1)
∨)

e(E•S ⊗ tk).

The rank of E•S is the virtual dimension

〈β, β〉 + n = 2hβ − 2+ n

of Pn(S, β) before reduction. Therefore, the rank of tensor product E•S ⊗ tA∗k−1
is (k − 1)(2hβ − 2+ n), and the quotient in the integrand is

(−1)(k−1)(2hβ−2+n) = (−1)(k−1)n.

Let t denote the C∗-equivariant first Chern class of the representation t. We have
proven the following result.

PROPOSITION 15. The residue contribution of

Pn(S, β) ⊂ Pkn(Y, kβ)C
∗

to the integral
∫
[Pkn(Y,kβ)]red

C∗
1 is:∫

[Pn(S,β)]red

1
e(N vir)

= (−1)(k−1)n
∫
[Pn(S,β)]red

e(E•S ⊗ tk)

= (−1)(k−1)n

kt

∫
[Pn(S,β)]red

c〈β,β〉+n+1(E•S).
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4.5. Dependence. Let S be a K 3 surface equipped with an ample primitive
polarization L . Let β ∈ Pic(S) be a positive class with respect to L ,

〈L , β〉 > 0.

If β is nonzero and effective, β must be positive. The integral∫
[Pn(S,β)]red

c〈β,β〉+n+1(E•S) (4.20)

is deformation invariant as (S, β) varies so long as β remains an algebraic class.
Hence, the integral depends only upon n, the divisibility of β, and 〈β, β〉.

If β is effective, then H 2(S, β) = 0; otherwise −β would also be effective by
Serre duality. Hence, by the results of [30], the integral (4.20) depends only upon
n and

〈β, β〉 = 2hβ − 2

in the effective case.
If β is effective and hβ < 0, then the integral vanishes since the virtual number

of sections of β is negative. A proof is given below in Section 4.6 following [29,
30]. Finally, if hβ > 0, then β must be effective (since β is positive) by Riemann–
Roch.

If β is not effective, then the integral (4.20) vanishes. In the ineffective case,
hβ < 0 must hold. The discussion of cases is summarized by the following result,
whose final statement will be proved in Proposition 17 below.

PROPOSITION 16. For a positive class β ∈ Pic(S), the integral∫
[Pn(S,β)]red

c〈β,β〉+n+1(E•S) (4.21)

depends only upon n and hβ . Moreover, if hβ < 0, the integral vanishes.

4.6. Vanishing. Let S be a K 3 surface with an effective curve class β ∈
Pic(S) satisfying

β2 = 2h − 2 with h < 0.

Let Pβ be the linear system of all curves of class β. Since h is the reduced virtual
dimension of the moduli space

P1−h(S, β) = Pβ,

the corresponding virtual cycle vanishes,

[P1−h(S, β)]red = 0. (4.22)
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We would like to conclude

[P1−h+k(S, β)]red = 0 (4.23)

for all k.
If k < 0, then P1−h+k(S, β) is empty, so (4.23) certainly holds. If k > 0, the

moduli space P1−h+k(S, β) fibers over P1−h(S, β):

P1−h+k(S, β) ∼= Hilbk(C/Pβ)
π−→ Pβ ∼= P1−h(S, β),

where C→ Pβ is the universal curve. By [1] and [29, Footnote 22], the projection
π is flat of relative dimension n. Therefore, the vanishing (4.23) follows from
(4.22) and Proposition 17 below. (The result was implicit in [29] but never
actually stated there, so we provide a proof. The result holds more generally
for any surface S and class β ∈ H 2(S,Z) for which H 2(L) = 0 whenever
c1(L) = β.) Since π is flat, pull-back is well defined on algebraic cycles. Also,
as we have noted, β effective implies H 2(S, β) = 0.

PROPOSITION 17. For H 2(S, β) = 0 and k > 0, we have

[P1−h+k(S, β)]red = π∗[P1−h(S, β)]red.

Proof. In [29, Appendix A], the moduli space P1−h+k(S, β) is described by
equations as follows. (Since H 1(S,OS) = 0 the description here is simpler.)
Let A be a sufficiently ample divisor on S. The inclusion,

Pβ ⊂ Pβ+A,

is described as the zero locus of a section of a vector bundle E . Next,

Hilbk(C/Pβ) ⊂ Pβ × Hilbk S (4.24)

is described as the zero locus of a section of a bundle F which extends to Pβ+A×
Hilbk S.

Let A denote the nonsingular ambient space Pβ+A × Hilbk S which contains
our moduli space

P = P1−h+k(S, β) ∼= Hilbk(C/Pβ).
The above description then defines a natural virtual cycle on P via

[P]red = [s(P ⊂ A)c(π∗E)c(F) ∩ [P]]h+k, (4.25)

the refined top Chern class of π∗E ⊕ F on P . Here,

h + k = dimA− rank E − rank F
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is the virtual dimension of the construction. By the main result of [29,
Appendix A], the class (4.25) is, as the notation suggests, equal to the reduced
virtual cycle of P .

By [1] and [29, Footnote 22], the section of F cutting out (4.24) is in fact
regular. Hence, the resulting normal cone

CP⊂Pβ×Hilbk S
∼= F

is locally free and isomorphic to F . We have the following exact sequence of
cones:

0 −→ CP⊂Pβ×Hilbk S −→ CP⊂A −→ π∗CPβ⊂Pβ+A −→ 0.

(Since H 1(S,OS) = 0 and the Hilbert scheme of curves is just the nonsingular
linear system Pβ , all three terms are locally free. In general only the first is.)
After substitution in (4.25), we obtain

[P]red = [s(F)π∗s(Pβ ⊂ Pβ+A
)
π∗c(E)c(F) ∩ π∗[Pβ]]h+n

= π∗([s(Pβ ⊂ Pβ+A
)
c(E) ∩ [Pβ]]h

)
= π∗[Pβ]red

.

5. K3× C: vanishing

5.1. Overview. We will show the components of (PY )
C∗ which do not

correspond to the thickenings studied in Section 4 do not contribute to the
localization formula.

Recall first the proof of the vanishing of the ordinary (nonreduced) C∗-
localized invariants of

Y = S × C.

Translation along the C-direction in Y induces a vector field on PY which has C∗-
weight 1. By the symmetry of the obstruction theory, such translation induces a
C∗-weight 0 cosection: a surjection from the obstruction sheafΩPY to OPY . Since
the cosection is C∗-fixed, it descends to a cosection for the C∗-fixed obstruction
theory on (PY )

C∗ , forcing the virtual cycle to vanish [26].
To apply the above strategy to the reduced obstruction theory, we need to

find another weight 1 vector field on the moduli space. We will describe such a
vector field which is proportional to the original translational vector field along
(PY )

C∗ ⊂ PY precisely on the components of uniformly thickened stable pairs
of Section 4. On the other components of (PY )

C∗ , the linear independence of the
two weight 1 vector fields forces the reduced localized invariants to vanish.
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5.2. Basic model. Our new vector field will again arise from an action in the
C-direction on Y , pulling apart a stable pair supported on a thickening of the
central fiber S × {0}. The S-direction plays little role, so we start by explaining
the basic model on C itself. For clarity, we will here use the notation

Cx = SpecC[x],
where the subscript denotes the corresponding parameter. The space Cx carries
its usual C∗-action, with the coordinate function x having weight −1.

Consider the k-times thickened origin Bk ⊂ Cx . We wish to fix Bk−1 ⊂ Bk

and move the remaining point away through Cx at unit speed. In other words, we
consider the flat family of subschemes of Cx parameterized by t ∈ Ct given by

Z = {x k−1(t − x) = 0} ⊂ Cx × Ct . (5.1)

Specializing to t = 0 indeed gives the subscheme {x k = 0} = Bk , while for t 6= 0
we have {x k−1 = 0} t {x = t}.

5.3. Extension class. Consider OZ as a flat family of sheaves over
Ct defining a deformation of fiber OBk over t = 0. After restriction to
SpecC[t]/(t2), we obtain a first order deformation OZ/(t2) of the sheaf

OZ/(t) = OBk .

Such deformations are classified by an element e of the group

Ext1
Cx
(OBk ,OBk ) (5.2)

described as follows. The exact sequence

0 −→ OZ/(t)
t−→ OZ/(t2) −→ OZ/(t) −→ 0,

is isomorphic to

0 −→ OBk

t−→ C[x, t]
(t2, x k−1(x − t))

−→ OBk −→ 0. (5.3)

Considering (5.3) as a sequence of C[x]-modules (pushing it down by π2 : Cx ×
SpecC[t]/(t2)→ Cx ) an extension class e in (5.2) is determined.

Using the resolution

0 −→ OCx (−Bk)
xk−→ OCx −→ OBk −→ 0

of OBk we compute (5.2) as

Ext1
Cx
(OBk ,OBk )

∼= Hom(OCx (−Bk),OBk )

∼= H 0(OBk (Bk)) ∼= H 0(OBk )⊗ tk . (5.4)
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PROPOSITION 18. The class e ∈ Ext1
Cx
(OBk ,OBk ) of the first order deformation

OZ/(t2) of OBk is
x k−1 ⊗ tk ∈ H 0(OBk )⊗ tk .

It coincides (to first order) with the deformation given by moving OBk by the
translational vector field (1/k)∂x . In particular, e has C∗-weight 1.

Proof. Consider the generator of Hom(OCx (−Bk),OBk ) multiplied by x k−1.
From the description (5.4), it corresponds to the extension E coming from the
pushout diagram

0 // OCx (−Bk)

xk−1

��

xk
// OCx

//

��

OBk
// 0

0 // OBk
// E // OBk

// 0.

(5.5)

On the other hand, e is defined by the push-down to Cx of the extension (5.3).
The latter sits inside the diagram

0 // C[x]
xk−1

��

xk
// C[x] //

π∗
��

C[x]/(x k) // 0

0 // C[x]/(x k)
t // C[x, t]/(t2, x k−1(x − t)) // C[x]/(x k) // 0.

Here the central vertical arrow π∗ takes a polynomial in x to the same polynomial
in x (with no t-dependence). This is indeed a map of C[x]-modules (though not
C[x, t]-modules) and makes the left hand square commute since x k = x k−1t in
the ring

OZ/(t2) = C[x, t]/(t2, x k−1(x − t)).

Since the second diagram is isomorphic to the first diagram (5.5), we find e is
indeed x k−1 ⊗ tk .

Next we observe that moving OBk by the translation vector field (1/k)∂x yields
the structure sheaf of the different family

{(x − t/k)k = 0} ⊂ Cx × Ct .

Restricting to SpecC[t]/(t2) gives the first order deformation

C[x, t]
(t2, (x − t/k)k)

= C[x, t]
(t2, x k − t x k−1)

,

the same as OZ/(t2).
Finally, the C∗-weight of (1/k)∂x is clearly 1. More directly, x k−1 ⊗ tk has

weight −(k − 1)+ k = 1.
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The conceptual reason for the surprising result of Proposition 18 is that, to
first order, weight 1 deformations only see the corresponding deformation of the
center of mass of the subscheme. The two deformations in Proposition 18 clearly
deform the center of mass in the same way.

We will next apply a version of the above deformation to C∗-fixed stable pairs.
The first order part of the deformation will describe a weight 1 vector field on PY

along (PY )
C∗ ⊂ PY and thus a C∗-invariant cosection of the obstruction theory.

On the stable pairs which are uniformly thickened as in Section 4.2,
Proposition 18 will show the new vector field to be proportional to the standard
vector field given by the translation ∂x . Thus, our cosection is proportional to the
cosection we have already reduced by, and provides us nothing new. Hence, the
nonzero contributions of Section 4.4 are permitted.

For nonuniformly thickened stable pairs, however, the new vector field will be
seen to be linearly independent of the translational vector field.

5.4. Full model. The basic model of Section 5.2 gives a deformation of the
C[x]-modules Ak = C[x]/(x k). We now extend this to describe a deformation of
any C∗-equivariant torsion C[x]-module M which is a (possibly infinite) direct
sum of finite-dimensional C∗-equivariant C[x]-modules. By the classification of
modules over PIDs, M is a direct sum of t j -twists of the standard modules Ak =
C[x]/(x k). Since these were treated in Section 5.2, the extension is a simple
matter. However, by describing our deformations intrinsically, we will be able to
apply the construction to C∗-fixed stable pairs (F, s) on S × Cx . Let

U ⊂ S

be an affine open set. Then, F |U×Cx is equivalent to a C∗-equivariant torsion
C[x]-module carrying an action of the ring O(U ). The model developed here
will sheafify over S and determines a deformation of (F, s).

Since the sheaf F |U×Cx has only finitely many weights (all nonpositive), we
restrict attention to torsion C∗-equivariant C[x]-modules M with weights lying
in the interval [−(k − 1), 0] for some k > 1. Examples include Ak and A j t

−(k− j)

for j 6 k. Write

M =
k−1⊕
i=0

Mi

as a sum of weight spaces, where Mi has weight −i . Multiplication by x is
encoded in the weight (−1) operators

X : Mi −→ Mi+1.
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Since X annihilates the most negative weight space, Mk−1 ⊂ M is an equivariant
C[x]-submodule. We will define a deformation which moves Mk−1 away at unit
speed while leaving the remaining M/Mk−1 fixed.

To do so, notice that the basic model (5.1) of Section 5.2 can be described
as follows. Take the direct sum of the structure sheaves of the two irreducible
components of Z (or, equivalently, the structure sheaf OZ of the normalization
of Z ), then OZ is the subsheaf of sections which agree over the intersection
∆(Bk−1) of the two components:

OZ = ker
(
π∗OBk−1 ⊕∆∗O

(r,−r) // ∆∗OBk−1

)
. (5.6)

Here, ∆∗OBk−1 = ∆∗Ak−1 and r denotes restriction to ∆(Bk−1). Finally

π : Cx × Ct −→ Cx ,

∆ : C ↪−→ Cx × Ct

are the projection and the inclusion of the diagonal, respectively.
We define the C∗-equivariant C[x, t]-module M̃ to be the kernel of the map

π∗(M/Mk−1)⊕∆∗(Mk−1t
k−1 ⊗C C[x])

(ψ ◦ r,−r) // ∆∗(Mk−1t
k−1 ⊗C Ak−1), (5.7)

where ψ is the map

M/Mk−1 =
k−2⊕
i=0

Mi

⊕
i Xk−1−i tk−1⊗x i

// Mk−1t
k−1 ⊗C Ak−1.

By construction this is a weight 0 map of equivariant C[x]-modules.
By splitting M into direct sums of irreducible modules Ant

m , comparing with
(5.6), and using Proposition 18, we obtain the following result.

PROPOSITION 19. The sheaf M̃ defined by (5.7) is flat over Ct and specializes
to M̃/t M̃ = M over t = 0. The first order deformation

e ∈ Ext1
Cx
(M,M) classifying M̃/t2 M̃

is proportional to the first order translation deformation ∂x on any irreducible
module M with weights in [−(k − 1), 0] as follows:

• For M = Ak = OBk we have e = ∂x/k.

• For M = A j t
−(k− j) = OB j t

−(k− j) with j 6 k we have e = ∂x/j .

• For M with Mk−1 = 0 we have e = 0.
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Proposition 19 is the foundation of our localization to uniformly thickened
stable pairs. The above deformation applied to C∗-fixed stable pairs will describe
a weight 1 vector field on PY along (PY )

C∗ ⊂ PY , and thus a C∗-invariant
cosection of the obstruction theory.

For any stable pair which is not uniformly thickened, the new vector field acts
as a translation which operates at different speeds along different parts of the
stable pair. The corresponding cosection is therefore linearly independent of the
pure translation ∂x and descends to give a nowhere vanishing cosection of the
reduced obstruction theory.

5.5. Second cosection. Fix a component of (PY )
C∗ over which the C∗-fixed

stable pairs are k-times thickened, supported on

(PY )
C∗ × S × Bn ⊂ (PY )

C∗ × S × Cx

for n = k but not for any n < k.
We now apply the results of Section 5.4 to the universal sheaf

F on (PY )
C∗ × S × Cx

to produce a flat deformation over (PY )
C∗ × S × Cx × Ct by the formula (5.7).

The universal section s of F also deforms to the C∗-invariant section

([s], X k−1s.tk−1 ⊗ 1)

of (5.7). Restricting to SpecC[t]/(t2) defines a PY tangent vector field along
(PY )

C∗ of weight 1:

v ∈ t∗ ⊗ H 0((PY )
C∗,E xt1

πP
(I•Y , I

•
Y )0
)
.

From v and the isomorphism ωY
∼= t−1, we construct a weight 0 cosection over

(PY )
C∗ :

E xt2
πP
(I•Y , I•Y )0

∪v // E xt3
πP
(I•Y , I•Y )⊗ t−1 tr // O(PY )C

∗ ,

where the final arrow is dual to the identity

O(PY )C
∗ →HomπP (I•Y , I

•
Y )

under the Serre duality of (4.6). Combined with our standard cosection, we
obtain a map

E xt2
πP
(I•Y , I•Y )0

tr ( · ∪v)⊕ tr( · ∪(∂xy At(I•Y ))) // O⊕2
(PY )C

∗ . (5.8)
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PROPOSITION 20. The map (5.8) is surjective over (PY )
C∗ away from stable

pairs which are uniformly thickened as in Section 4.2.

Proof. By the Nakayama Lemma, we can check surjectivity at closed points (F,
s). By Serre duality, we need only show that if our two elements of the Zariski
tangent space to PY at (F, s),

v, ∂xy At(I •Y ) ∈ Ext1(I •Y , I •Y )0,

are linearly dependent then (F, s) is uniformly thickened.
Pick an affine open set U ⊂ S and consider the restriction of (F, s) to U ×Cx

as a C∗-equivariant C[x]-module. Since F is k-times thickened and pure, the
support C of F is also k-times thickened over the open set where OC

s→ F is an
isomorphism. In particular, the equivariant C[x]-module F |U×Cx contains copies
of Ak as summands. By Proposition 18, the deformation v is the same as ∂x/k
on Ak .

Therefore, if v and ∂x are linearly dependent at (F, s) then in fact v must
equal ∂x/k at (F, s). In particular, by Proposition 19 all of the irreducible
equivariant C[x]-submodule summands of F |U×Cx are isomorphic to Ak (for
any U ). Therefore, we get an isomorphism

F
∼−→ Fk−1t

k−1 ⊗C Ak (5.9)

by the map defined in terms of the weight space decomposition of F as

k−1⊕
i=0

Fi
Xk−1−i tk−1⊗ x i

// Fk−1t
k−1 ⊗C Ak .

The isomorphism (5.9) implies F is uniformly thickened.
Finally, the C∗-invariant section maps 1 to a degree 0 element of the module

F |U×Cx
∼= F |U×{0} ⊗C Ak . Such elements are of the form f ⊗ 1. Hence, the

elements are pulled back from S to S × Bk , and the pair (F, s) is uniformly
thickened.

COROLLARY 21. The invariants calculated in Section 4.4 are the only nonzero
contributions to the reduced localized invariants of Y = S × C.

Proof. We work on a component of (PY )
C∗ parameterizing pairs which are not

uniformly thickened. (By C∗-invariance, one pair in a component is uniformly
thickened if and only if they all are.)

Since (5.8) is C∗-invariant it factors through the C∗-fixed part of the
obstruction sheaf, which by [18] is the obstruction sheaf of the induced perfect
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obstruction theory on (PY )
C∗ . The reduced obstruction sheaf is given by taking

the kernel of the first factor of this map:

Obred
(PY )C

∗ = ker
(
E xt2

πP
(I•Y , I

•
Y )

C∗
0

tr( · ∪(∂xy At(I•Y ))) // O(PY )C
∗
)
.

Proposition 20 then states that (5.8) gives a surjection

Obred
(PY )C

∗
tr( · ∪v) // O(PY )C

∗ .

Therefore, the reduced class vanishes.

5.6. Localization calculation II. The results of Sections 4 and 5 together
yield a complete localization calculation.

Let S be a K 3 surface equipped with an ample primitive polarization L . Let
α ∈ Pic(S) be a primitive and positive class. (No further conditions are placed on
α: the Picard rank of S may be high and α may be the sum of effective classes.)
Define

〈1〉red
Y,mα =

∑
n

yn
∫
[Pn(Y,mα)]red

C∗
1. (5.10)

The integral on the right side of (5.10), denoting the C∗-residue, is well
defined since the C∗-fixed loci of Pn(Y,mα) are compact. Since the reduced
virtual dimension of Pn(Y,mα) is 1, the residues are of degree −1 in t (see
Proposition 15),

〈1〉red
Y,mα ∈

1
t
Q((y)).

PROPOSITION 22. Let α ∈ Pic(S) be a primitive and positive class. Then 〈1〉red
Y,α

depends only upon
〈α, α〉 = 2h − 2.

Moreover, if h < 0, then 〈1〉red
Y,α = 0.

Proof. By the vanishing of Corollary 21 and the residue formula of Section 4.4,
we have

〈1〉red
Y,α =

1
t

∑
n

yn
∫
[Pn(S,α)]red

c〈α,α〉+n+1(E•S). (5.11)

By Proposition 16, the integral over [Pn(S, α)]red occurring in (5.11) depends
only upon n and 〈α, α〉 and vanishes if h < 0.
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To isolate the dependence of Proposition 22, we define, for primitive and
positive α,

Ih = 〈1〉red
Y,α, 〈α, α〉 = 2h − 2. (5.12)

In case α is also irreducible (which we may assume), the moduli space Pn(S,
α) is nonsingular [25, 41]. The evaluation of (5.11) reduces to the Euler
characteristic calculation of Kawai and Yoshioka [25] as explained in the [41,
Appendix C] and reviewed in Section 5.7 below.

PROPOSITION 23. The following multiple cover formula holds:

〈1〉red
Y,mα =

∑
k|m

1
k

I(m2/k2)(h−1)+1(−(−y)k).

Proof. The result follows from the vanishing of Corollary 21, the residue
formula of Section 4.4, the dependence result of Proposition 16, and the
definition (5.12).

5.7. Kawai–Yoshioka evaluation. Let Pn(S, h) denote the nonsingular
moduli space of stable pairs for an irreducible class α satisfying

2h − 2 = 〈α, α〉.
The cotangent bundleΩP of the moduli space Pn(S, h) is the obstruction bundle
of the reduced theory. Since the dimension of Pn(S, h) is 2h − 2+ n + 1,

Ih(y) = 1
t

∑
n

(−1)2h−1+ne(Pn(S, h))yn.

The topological Euler characteristics of Pn(S, h) have been calculated by
Kawai–Yoshioka. By [25, Theorem 5.80],

∞∑
h=0

∞∑
n=1−h

e(Pn(S, h))ynqh

=
(√

y − 1√
y

)−2 ∞∏
n=1

1
(1− qn)20(1− yqn)2(1− y−1qn)2

.

For our pairs invariants, we require the signed Euler characteristics,

∞∑
h=0

Ih(y)qh = 1
t

∞∑
h=0

∞∑
n=1−h

(−1)2h−1+ne(Pn(S, h))ynqh.
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Therefore,
∑∞

h=0 t Ih(y)qh equals

−
(√−y − 1√−y

)−2 ∞∏
n=1

1
(1− qn)20(1+ yqn)2(1+ y−1qn)2

.

The above formula implies t Ih(y) is the Laurent expansion of a rational function
of y.

6. Relative theory and the logarithm

6.1. Overview. Our goal here is to define and study the analogue R̃n,β for
stable pairs of the Gromov–Witten integrals Rg,β associated to K 3 surfaces.
Though the definition is via the stable pairs theory of K 3-fibrations, the main
idea is to move the integration to the rubber of an associated relative geometry.
The interplay with various rubber theories allows for a geometric interpretation
of the logarithm occurring in the definition of R̃n,β .

6.2. Definition. Let S be a K 3 surface equipped with an ample primitive
polarization L . Let α ∈ Pic(S) be a primitive, positive class not proportional to
L with norm square

〈α, α〉 = 2h − 2.
(Positivity, 〈L , α〉 > 0, is with respect to the polarization L .) Let m > 0 be an
integer. By replacing L with L̂ = x L + α for large x , we can assume L̂ is ample
and primitive, α is positive with respect to L̂ , and the inequality

〈L̂, L̂〉 > m〈L̂, α〉 (6.1)

holds. Condition (6.1) forbids effective summands of mα to be multiples of L̂ .
Let (S, L̂) ∈ M denote the corresponding moduli point in the associated

moduli space of polarized K 3 surfaces. (We require L̂ to be ample, so M is an
open set of the moduli of quasipolarized K 3 surfaces considered in Section 1.)
Since no effective summand γ of mα is a multiple of L̂ , every such summand
corresponds to a nondegenerate local Noether–Lefschetz locus NL(γ ) near (S,
L̂) of codimension 1. Let

∆ ⊂M
be a quasiprojective curve passing through (S, L̂) and transverse to the local
Noether–Lefschetz loci corresponding to all the (finitely many) effective
summands of mα.

Associated to ∆ is a 3-fold X fibered in polarized K 3 surfaces,

ε : X → (∆, 0). (6.2)

We summarize the conditions we have as follows:
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(i) ∆ is a nonsingular quasiprojective curve;

(ii) ε is smooth, projective, and ε−1(0) ∼= S;

(?) for every effective decomposition

mα =
l∑

i=1

γi ∈ Pic(S),

the local Noether–Lefschetz locus NL(γi) ⊂ ∆ corresponding to each class
γi ∈ Pic(S) is the reduced point 0 ∈ ∆.

The class α ∈ Pic(S) is m-rigid with respect to the K 3-fibration ε.
In Section 0.6, m-rigidity was defined for effective α. The above definition is

for positive α. Since effective implies positive, the definition here extends the
definition of Section 0.6.

At the special fiber ε−1(0) ∼= S, the Kodaira–Spencer class

κ ∈ H 1(TS) (6.3)

associated to ε is the extension class of the exact sequence

0 −→ TS −→ TX |S −→ OS −→ 0.

After fixing a holomorphic symplectic form σ ∈ H 0(Ω2
S), we obtain the (1, 1)

class
κy σ ∈ H 1(ΩS).

The transversality of ∆ to the local Noether–Lefschetz locus corresponding to
the class γ ∈ Pic(S) is equivalent to the condition∫

γ

κy σ 6= 0. (6.4)

Let Eff(mα) ⊂ Pic(S) denote the subset of effective summands of mα. By
property (?), there is a compact, open, and closed component

P?
n (X, γ ) ⊂ Pn(X, γ )

parameterizing stable pairs supported set-theoretically over the point 0 ∈ ∆ for
every effective summand γ ∈ Eff(mα).
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DEFINITION. Let α ∈ Pic(S) be a primitive, positive class. Given a family ε :
X → (∆, 0) satisfying conditions (i), (ii), and (?) for mα, let

∑
n∈Z

R̃n,mα(S)qn = Coeffvmα

log

1+
∑
n∈Z

∑
γ∈Eff(mα)

qnvγ
∫
[P?n (X,γ )]vir

1

 .
(6.5)

An immediate geometric consequence of the above definition is the following
vanishing statement: if mα ∈ Pic(S) is not effective, then R̃n,mα(S) = 0 for all n.

The main result of our study here will be a geometric interpretation of the
logarithm on the right. As a consequence, we will see that R̃n,mα(S) depends
only upon n, m, and 〈α, α〉 and not upon S nor the family ε. We therefore drop
S from the notation. Also, R̃n,mα is well defined for all m by the existence of
m-rigid families ε for suitable L̂ (as we have constructed).

The integrals over P?
n (X,mα) appearing on the right side of (6.5) play a

central role,

P?
n,γ (X) =

∫
[P?n (X,γ )]vir

1, γ ∈ Eff(mα).

6.3. Relative moduli spaces. Let α ∈ Pic(S) be a primitive class. Let ε be a
family of polarized K 3 surfaces

ε : X → (∆, 0)

for which α is positive and m-rigid. We will consider the relative geometry
associated to

X/S = X/ε−1(0).

Let β ∈ Eff(mα) ⊂ Pic(S). We recall the definition [35, 40] of the moduli
space Pn(X/S, β) parameterizing stable relative pairs

OX [k]
s−→ F (6.6)

on k-step degenerations X [k] of X along S [33]. (X [k] is the union of X with a
chain of k > 0 copies of S × P1, where the i th copy of S × P1 is attached along
S×{∞} to the (i + 1)st along S×{0}. Contracting the chain to S ⊂ X defines a
projection X [k] → X with automorphism group (C∗)k . There is a distinguished
divisor S∞ ⊂ X [k] at S × {∞} in the extremal component. If k = 0, then S∞ is
just S ⊂ X .) Here, F is a sheaf on X [k] with

χ(F) = n
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and support [F] which pushes down to the class β ∈ H2(X,Z). The pair (F, s)
satisfies the following stability conditions:

(i) F is pure with finite locally free resolution;

(ii) the higher derived functors of the restriction of F to the singular loci of
X [k], and the divisor at infinity, vanish;

(iii) the section s has 0-dimensional cokernel supported away from the singular
loci of X [k] and away from S∞;

(iv) the pair (6.6) has only finitely many automorphisms covering the
automorphisms of X [k]/X .

The moduli space Pn(X/S, β) is a Deligne–Mumford stack with a perfect
obstruction theory which we describe in Section 6.5.

In our situation, β is a fiber class and the nearby fibers X t 6=0 contain no curves
of class β (by the transversality condition of ε). Hence, there is a compact, open
and closed substack

P?
n (X/S, β) ⊂ Pn(X/S, β)

parameterizing stable pairs (F, s) lying over the central fiber. By condition (ii)
of stability, the target must be bubbled, with (F, s) living on some X [k] with
k > 1. Restricted to the i th bubble S × P1, (F, s) determines a stable pair

(Fi , si) disjoint from S × {0,∞}, (6.7)

with invariants

χ(Fi) = ni , [Fi ] = βi ∈ Eff(mα) ⊂ H2(S,Z).

(For the class of the supports [Fi ], we always push down to S.) Since F is a
disjoint union of the Fi ,

k∑
i=1

ni = n,
k∑

i=1

βi = β. (6.8)

Let B denote the stack of (n, β)-marked expanded degenerations [33, 35] of
X/S, with universal family

X → B.

(To emphasize the marking, we will sometimes denote B by Bn,β .) Over a closed
point of B with stabilizer (C∗)k , the fiber of X is the scheme X [k] acted on by
(C∗)k , covering the identity on X , with markings

(n0, β0) ∈ Z⊕ H2(X,Z), (ni , βi) ∈ Z⊕ H2(S,Z),
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satisfying

n0 +
k∑

i=1

ni = n, β0 +
k∑

i=1

βi = β. (6.9)

All the stable pairs parameterized by P?
n (X/S, β) lie over the substack where

(n0, β0) = (0, 0). By (6.9), we see the (ni , βi) are required to satisfy (6.8).
We view P?

n (X/S, β) as a moduli space of stable pairs on the fibers of X →B
with a map

P?
n (X/S, β)→ B

taking a pair to the marked support.

6.4. Rubber. The universal family over the divisor of B corresponding to a
nontrivial degeneration of X over S with

(n0, β0) = (0, 0)

is called rubber.
Alternatively, rubber geometry arises from the following construction.

Consider the stack B0,∞ of (n, β)-marked expanded degenerations of

S × P1/S × {0,∞}. (6.10)

The markings (ni , βi) on the components are required to satisfy (6.8). Let

B∞ ⊂ B0,∞

be the open substack where S × {0} has not been bubbled. The standard C∗-
action on P1 induces a C∗-action on B∞ and the associated universal family.
Quotienting by the C∗-action yields the rubber target: the universal family

S −→ Br (6.11)

over the rubber stack
Br = B∞/C∗.

The universal family S carries the canonical divisors

S0 ×Br , S∞ ×Br ⊂ S.

Gluing S0 of the rubber target to the central fiber S of X embeds the rubber
stack into the stack of (n, β)-marked expanded degenerations of X . We obtain
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the commutative diagram
S �
� //

��

X

��
Br
� � // B.

(6.12)

Let R(n, β) denote the moduli space of stable pairs on the fibers of (6.11).
Concretely, R(n, β) is the moduli space of relative stable pairs on

S × P1/S × {0,∞}
with Euler characteristic n, class β, and no bubbling over S×{0} – all modulo the
action of C∗. The compactness of R(n, β) is a consequence of the C∗-quotient
geometry.

We have seen that relative stable pairs on X/S near 0 ∈ ∆ are in fact supported
on the rubber target (6.12). Pushing forward from rubber to the expanded
degenerations of X/S yields a morphism

ι : R(n, β)→ P?
n (X/S, β) (6.13)

which is a closed embedding of Deligne–Mumford stacks and a bijection on
closed points. The equation which cuts out R(n, β) ⊂ P?

n (X/S, β) is the
smoothing parameter of the first bubble.

We will prove ι is almost an isomorphism: ι satisfies the curvilinear lifting
property. To prove ι is an isomorphism, the smoothing parameter of the first
bubble must be shown to vanish in all flat families associated to the moduli space
P?

n (X/S, β). We leave the isomorphism question open.

6.5. Deformation theory. Following Section 6.1, let

ε : X → (∆, 0)

be a K 3-fibration for which α is m-rigid. Let β ∈ Eff(mα). We study here the
deformation theory of

P = P?
n (X/S, β) −→ B,

the moduli space of stable pairs on the fibers of the right hand side of the diagram
(6.12). Identical arguments apply to the left hand side of (6.12), replacing B by
the substack Br and P by R(n, β) to give the deformation theory of stable pairs
on the rubber target.
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Over X ×B P there is a universal stable pair

I• = {OX×B P
s−→ F},

where the complex I• has O in degree 0. Let πP denote the projection X×B P→
P and

E• = (RHomπP (I•, I•)0[1])∨. (6.14)

(Here RHomπP = RπP∗RHom is the right derived functor of HomπP =
πP∗Hom.) By [20, 35], P → B admits a relative perfect obstruction theory

E• −→ LP/B (6.15)

described as follows. Under the map LX×B P → L(X×B P)/B, the Atiyah class
At(I•) of I• projects to the relative Atiyah class:

Ext1 (I•, I• ⊗ LX×B P
)

// Ext1
(
I•, I• ⊗ (LX /B ⊕ LP/B

))
,

At(I•) � // (AtX /B(I•),AtP/B(I•)).

(6.16)

The map (6.15) is given by the partial Atiyah class AtP/B(I•) via the following
identifications:

Ext1(I•, I• ⊗ π∗PLP/B) = H 1(RHom(I•, I•)⊗ π∗PLP/B
)

= H 0(RπP∗RHom(I•, I•)[1] ⊗ LP/B
)

−→H 0(RπP∗RHom(I•, I•)0[1] ⊗ LP/B
)

= Hom
(
E•,LP/B

)
. (6.17)

Defining E• to be the cone on the induced map E•[−1] → LB, we obtain a
commutative diagram of exact triangles:

E• //

��

E• //

��

LB[1]

LP
// LP/B

// LB[1].

(6.18)

The Artin stack B is smooth with LB a 2-term complex of bundles supported in
degrees 0 and 1. The induced map

ΩP = h0(E•) −→ h1(LB)

is onto because the points of P all have finite stabilizers by condition (iv) above.
Therefore, the long exact sequence of sheaf cohomologies of the top row of
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(6.18) shows E• has cohomology in degrees −1 and 0 only. The complex E•
is perfect because E• and LB are. Since the Deligne–Mumford stack P is
projective, E• is quasiisomorphic to a 2-term complex of locally free sheaves
on P . Finally, the 5-Lemma applied to the long exact sequences in cohomology
of (6.18) implies

E• −→ LP (6.19)

is an isomorphism on h0 and onto on h−1. Therefore, (6.19) is a perfect
obstruction theory for P .

The virtual dimension of Pn(X/S, β) is 0. The open and closed component
P?

n (X/S, β) ⊂ Pn(X/S, β) hence carries a virtual class of dimension 0. We
define

P?
n,β(X/S) =

∫
[P?n (X/S,β)]vir

1.

LEMMA 24. We have P?
n,β(X) = P?

n,β(X/S).

Proof. Consider the degeneration of the total space X to the normal cone of the
special fiber S = ε−1(0). By the degeneration formula for stable pairs invariants,
P?

n,β(X) is expressed as a product of integrals over P?
n1
(X/S, β1) and Pn2(S ×

P1/S × {0}, β2) where

n = n1 + n2, β = β1 + β2.

Since the virtual class of Pn2(S × P1/S × {0}, β2) vanishes by the existence
of the reduced theory (see Section 6.6 below), the only surviving term of the
degeneration formula is n1 = n and β1 = β.

6.6. Reduced obstruction theory. Let R = R(n, β) be the moduli space of
stable pairs on the rubber target.

The construction of the obstruction theory in Section 6.5 applies to S ×Br R
with the associated universal complex I• and projection πR to R. The result is a
relative obstruction theory for R given by a similar formula:

F• = (RHomπR (I•, I•)0[1])∨ −→ LR/Br , (6.20)

and an absolute obstruction theory

F • = Cone
(
F•[−1] −→ LBr

)
. (6.21)

The relative obstruction sheaf of (6.20) contains H 0,2(S) which can be thought
of as the topological or Hodge theoretic part of the obstruction to deforming a
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stable pair. So long as S remains fixed, H 0,2(S) is trivial and can be removed.
After removal, we obtain the reduced obstruction theory. By now, there are
many approaches to the reduced theory; see [29] for an extensive account and
references. We include here a brief treatment.

We fix a holomorphic symplectic form σ on S. Let the 2-form σ̄ denote the
pull-back of σ to S . The semiregularity map from the relative obstruction sheaf
ObF = h1((F•)∨) to OR plays a central role:

E xt2
πR
(I•, I•)0

∪At(I•)−→ E xt3
πR
(I•, I• ⊗ L(S×Br R)/Br )

−→ E xt3
πR
(I•, I• ⊗ΩS/Br )

∧σ̄−→ E xt3
πR
(I•, I• ⊗Ω3

S/Br
)

tr−→ R3πR∗(Ω3
S/Br

) −→ R3πR∗(ωS/Br )
∼= OR. (6.22)

In the last line, ωS/Br is the fiberwise canonical sheaf. Using the simple
structure of the singularities, we see ωS/Br is the sheaf of fiberwise 3-forms
with logarithmic poles along the singular divisors in each fiber with opposite
residues along each branch. The canonical sheaf ωS/Br inherits a natural map
from Ω3

S/Br
.

PROPOSITION 25. The semiregularity map (6.22) is onto.

Proof. We work at a closed point (F, s) of R where F is a sheaf on S × P1[k].
In (6.22), we replace I• by

I • = {O s→ F}
and each E xtπR sheaf by the corresponding ExtS×P1[k] group. We will show the
result is a surjection

Ext2(I •, I •)0 −→ C. (6.23)

By the vanishing of the higher trace-free Ext sheaves, base change and the
Nakayama Lemma, the surjection (6.23) implies the claimed result.

We use the first order deformation κ ∈ H 1(TS) of S of (6.3) and the
holomorphic symplectic form σ . By (6.4), we have∫

β

κy σ 6= 0. (6.24)

The pull-back of the Kodaira–Spencer class κ to S × P1[k] is
κ̄ ∈ Ext1(LS×P1[k],OS×P1[k]),

the class of the corresponding deformation of S × P1[k]. We consider

κ̄ ◦ At(I •) ∈ Ext2(I •, I •), (6.25)
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which by [9, 21] is the obstruction to deforming I • to first order with the
deformation κ of S. Since det(I •) is trivial, (6.25) lies in the subgroup of trace-
free Exts. We will show the map (6.23) is nonzero on the element (6.25) of
Ext2(I •, I •)0.

The semiregularity map is entirely local to the support

supp(F) ⊂
∐

i

S × {pi},

where the pi lie in the interiors of the P1 bubbles. Using the (C∗)k action, we
may assume the pi are all different points of C∗ = P1\{0,∞}. By moving all of
the pi to a single bubble, we may compute the same map on S × P1.

By [9, Proposition 4.2],

tr
(
κ̄ ◦ At(I •) ◦ At(I •)

) ∈ H 3(ΩS×P1)

equals 2κ̄y ch2(I •). Therefore, the image of κ̄ ◦ At(I •) under the map (6.23) is

2
∫

S×P1
(κ̄y ch2(I •)) ∧ σ̄ = −2

∫
S×P1

(κ̄y σ̄ ) ∧ ch2(I •), (6.26)

by the homotopy formula

0 = κ̄y (ch2(I •) ∧ σ̄ ) = (κ̄y ch2(I •)) ∧ σ̄ + (κ̄y σ̄ ) ∧ ch2(I •). (6.27)

Since ch2(I •) is Poincaré dual to −β, we conclude (6.26) equals

2
∫
β

κy σ,

which is nonzero (6.24) by the choice of κ .

Composing (6.22) with the truncation map (F•)∨ → h1((F•)∨)[−1] and
dualizing gives a map

OR[1] −→ F•. (6.28)

PROPOSITION 26. The map (6.28) lifts uniquely to the absolute obstruction
theory F • of (6.21).

Proof. To obtain a lifting, we must show the composition

OR[1] −→ F• −→ LR/Br −→ LBr [1]
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is zero. In fact, the composition of the second and third arrows is already zero
on R. We will show the vanishing of the dual composition

(LBr )
∨[−1] −→ (LR/Br )

∨ −→ (F•)∨. (6.29)

We work with the universal complex I• on S ×Br R. By (6.16), we have the
diagram (in which we have suppressed some pull-back maps):

L∨Br
[−1] // L∨S/Br

⊕ L∨R/Br
//

AtS/Br (I•)⊕ AtR/Br (I•)
��

L∨S×Br R

At(I•)
��

RHom(I•, I•)0[1] RHom(I•, I•)0[1].
The top row is an exact triangle, so the induced map

L∨Br
[−1] −→ RHom(I•, I•)0[1]

vanishes. (There is no obstruction to deforming as we move through R over the
base Br : there indeed exists a complex I• over all of S ×Br R.) Therefore, the
composition

π∗RL∨Br
[−1] // π∗SL∨S/Br

AtS/Br (I•) // RHom(I•, I•)0[1] (6.30)

equals minus the composition

π∗RL∨Br
[−1] // π∗RL∨R/Br

AtR/Br (I•) // RHom(I•, I•)0[1]. (6.31)

By adjunction the composition (6.31) gives the composition

L∨Br
[−1] // L∨R/Br

AtR/Br (I•) // RπR∗RHom(I•, I•)0[1], (6.32)

which by (6.15), (6.17), (6.20) is precisely the composition (6.29) we want to
show is zero. So it is sufficient to show (6.30) vanishes.

The first arrow of (6.30) is (the pull-back from Br to R of) the Kodaira–
Spencer class of S/Br : the final arrow in the exact triangle

LBr −→ LS −→ LS/Br −→ LBr [1].
Away from the singularities S × {0,∞} in each S × P1-bubble, S is locally a
trivial family over Br : it is isomorphic to

S × C∗ ×Br
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locally over Br . (But not globally due to the nontrivial C∗-action on the C factor
giving a nontrivial line bundle over Br .) Therefore, this Kodaira–Spencer map
vanishes in a neighborhood of the support of the universal sheaf F. But the
second arrow of (6.30) – the Atiyah class AtS/Br (I•) of I• – is nonzero only
on the support of F, so the composition is zero.

Finally, choices of lift are parameterized by Hom(OR[1],LBr ). This vanishes
because LBr is concentrated in degrees 0 and 1. Therefore, the lift is unique.

The relative and absolute reduced obstruction theories are defined,
respectively by:

F•red = Cone
(
OR[1] −→ F•

)
, F •red = Cone

(
OR[1] −→ F •

)
(6.33)

The associated obstruction sheaves

Obred
F = h1((F•red)

∨), Obred
F = h1((F •red)

∨)

are the kernels of the induced semiregularity maps

ObF −→ OR, ObF −→ OR, (6.34)

with the first given by (6.22).
Though not required here, one can show [29, 42] the complexes (6.33) do

indeed define perfect obstruction theories for R. For our purposes of extracting
invariants, the simpler cosection method of Kiem–Li [26] is sufficient to produce
the reduced virtual cycle [R]red as in [37].

We summarize here the cosection method for the reader. Writing

(F •)∨ = {F0 −→ F1}
as a global two-term complex of locally free sheaves on R, Behrend and
Fantechi [3] produce a cone

C ⊂ F1 such that [R]vir = 0!F1
C = [s(C)c(F1)]virdim.

Here, s is the Segre class, c is the total Chern class, and we take the piece in
degree equal to the virtual dimension

virdim = rank F0 − rank F1.

Kiem and Li show the cone C lies cycle theoretically (rather than scheme-
theoretically) in the kernel K of the composition

F1 −→ Ob −→ OR.
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We define the reduced virtual cycle in the reduced virtual dimension (virdim+1)
by

[R]red = 0!K C = [s(C)c(K )]virdim+1. (6.35)

The reduced class is much more interesting than the standard virtual class from
the point of view of invariants: the exact sequence

0 −→ K −→ F1 −→ OR −→ 0

implies the vanishing of the standard virtual class,

[R]vir = c1(OR).[R]red + [s(C)c(K )]virdim = 0.

(The second term vanishes because C is a cycle inside K , so s(C)c(K ) is
a sum of cycles in dimension > rank F0 − rank K = virdim + 1.) In our
particular situation, the vanishing is even more obvious since the standard virtual
dimension is −1. Since the reduced virtual dimension is 0, the reduced virtual
class is nonetheless nontrivial in general.

The vanishing reflects the fact that we can deform S along κS (6.24): β does
not remain of type (1, 1) so there can be no holomorphic curves in class β.

We define the reduced rubber invariants of S via integration over the
dimension 0 class (6.35):

Rred
n,β(S ×R) =

∫
[R(n,β)]red

1. (6.36)

Here R denotes the rubber, the quotient by C∗ of the relative geometry P1/{0,
∞}.

6.7. Comparison of obstruction theories. We have constructed three
obstruction theories:

(i) F • on the rubber moduli space R;

(ii) F •red on the rubber moduli space R;

(iii) E• on the moduli space P? of stable pairs on X/S over 0 ∈ ∆.

Our goal in Sections 6.7–6.9 is to relate (i), (ii), and (iii).
By pushing stable pairs forward from the rubber to the expanded degenerations

of X/S, we get a map (6.13):

ι : R −→ P?.
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Since E• and F• were defined by essentially the same formulas (6.14) and (6.20),
respectively, we see

ι∗E• ∼= F•. (6.37)

The definitions of E• and F • (6.18) and (6.21) then yield the following diagram
of exact triangles on R:

N ∗

��

N ∗

��
ι∗LB

//

��

ι∗E• //

��

ι∗E•

LBr
// F • // F•,

(6.38)

where N ∗ = LBr /B[−1] is the conormal bundle of the divisor Br ⊂ B.
Dualizing the central column and passing to cohomology gives a map

N −→ ObF = h1((F •)∨) (6.39)

which describes the obstruction to deforming a pair in the image of ι off the
rubber and into the bulk of X/S. Composing with the semiregularity map (6.34)
gives

N −→ OR. (6.40)

The rest of Section 6.7 will be devoted to proving the following result.

PROPOSITION 27. The maps (6.39), (6.40) are injections of sheaves on R.
Moreover, (6.39) has no zeros.

Connected case. We first work at a stable pair (F, s) with connected support.
The sheaf F is therefore supported on S × (P1\{0,∞}) with no further bubbles
in the rubber. (If we view the stable pair as lying in X/S, there is a single bubble
and (F, s) is supported in its interior.) We will show that the composition (6.40)
is an isomorphism at the point (F, s). By the vanishing of the higher trace-free
Exts, base change and the Nakayama lemma, the Proposition will follow in the
connected support case.

A chart for the stack B of (n, β)-marked expanded degenerations of X/S in
a neighborhood of the 1-bubble locus is C/C∗ with universal family X → B
given by [33]

BlS×{0}(X × C)

��

x C∗

C x C∗.

(6.41)
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Here, the trivial C∗-action on X and the usual weight 1 action on C yield a
C∗-action on X × C. The blow-up along the C∗-fixed subvariety S × {0} has
a canonically induced C∗-action. The exceptional divisor S × P1 inherits a C∗-
action. The central fiber is

X [1] = X ∪S (S × P1).

More explicitly, let x denote the coordinate on X pulled back locally at 0 ∈ ∆
from the base of the K 3-fibration

X → ∆, (6.42)

and let t denote the coordinate pulled back from the C-base of (6.41). By
definition,

BlS×{0}(X × Ct) is {t = λx} ⊂ X × Ct × P1
λ, (6.43)

where x has C∗-weight 0 while t and λ have weight −1. Here, λ is the usual
coordinate on P1 which takes the value∞ on the relative divisor S × {∞} in the
central fiber, and the value 0 on the proper transform X × {0} of the central fiber.
Removing these loci, which are disjoint from the support of (F, s), our universal
family over B becomes the quotient by C∗ of

X × C∗λ
t=λx // Ct . (6.44)

The key to Proposition 27 is the following observation: as we move in the
direction ∂t in the base of (6.44), we move away from the central fiber S ⊂ X in
the direction λ−1∂x over the base of the K 3-fibration (6.42). In other words, on
the central fiber S × C∗λ, the Kodaira–Spencer class of the family (6.44) applied
to ∂t is

λ−1κ ∈ Γ (OC∗)⊗ H 1(TS) ∼= H 1(TX |S×C∗). (6.45)

Here, as usual, κ ∈ H 1(TS) is the Kodaira–Spencer class (6.3) of (6.42) on the
central fiber S. Since λ 6= ∞ on the support of (F, s), the (0, 2)-part of the
class β of F immediately becomes nonzero along λ−1∂x , just as in the proof
of Proposition 25. Thus the semiregularity map is nonzero. We now make the
argument more precise.

The semiregularity map (6.34) of Proposition 26 was first defined on F•. After
rearranging (6.38), we see the composition (6.40) we require is induced from the
composition

ι∗L∨B −→ (ι∗E•)∨[1] ∼= (F•)∨[1] −→ OR. (6.46)

The last arrow is (6.28). By (6.38), the first arrow is zero on composition with
L∨Br
→ ι∗L∨B, so the first arrow factors through the cone N as required. In fact,

we even have a splitting
ι∗L∨B ∼= N ⊕ L∨Br

, (6.47)
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obtained from expressing B locally as C/C∗, with the substack Br given by
{0}/C∗. Therefore,

LB
∼= {ΩC→ g∗ ⊗OB},

where g is the Lie algebra of C∗, and, in the standard trivialization, the map takes
dt to t . On applying ι∗ the map therefore vanishes, leaving

ι∗ΩC ⊕ (g∗ ⊗OBr )[−1] = N ∗ ⊕ LBr

as claimed.
By the same argument as in (6.30)–(6.32), the first arrow of (6.46) is (up to a

sign) the composition of the following Kodaira–Spencer and Atiyah classes:

ι∗L∨B // RπR∗(ι∗L∨X /B)[1]
AtX/B(I•) // RπR∗RHom(I•, I•)0[2].

Together with the splitting (6.47) and the description (6.46) of our map, we find
that at a point I • the map (6.40) is the composition

N |I • −→ Ext1(LX [1],OX [1]) −→ Ext2(I •, I •)0 −→ C. (6.48)

The first arrow is the Kodaira–Spencer class of the family (6.41) on the central
fiber X [1]. The connected support of our stable pair (F, s) is contained in S×{1},
without loss of generality. On restriction to this support, the Kodaira–Spencer
class is κ (6.44), (6.45). (If we act by λ ∈ C∗ the relevant statement becomes that
for a stable pair supported in S × {λ}, the value of the Kodaira–Spencer class on
λ∂t is λ.λ−1κ = κ (6.45). The point is that there is no natural trivialization of N ,
and λ ∈ C∗ takes the trivialization ∂t to the trivialization λ∂t .)

The second arrow is composition with the Atiyah class of the complex I • on
X [1]. The Atiyah class vanishes on the complement of the support S × {1}. We
may restrict I • to the bubble S × P1

λ and calculate there. The final arrow is the
semiregularity map (6.22). So (6.48) simplifies to the composition

C κ // H 1(TS×P1)
At(I •) // Ext2

S×P1(I •, I •)0
tr( · ◦At(I •)∧σ̄ ) // C, (6.49)

where again we have trivialized N by the section ∂t . The composition is therefore∫
S×P1

tr(κ ◦ At(I •) ◦ At(I •)) ∧ σ̄ .

By [9, Proposition 4.2], this is

2
∫

S×P1
κy ch2(I •) ∧ σ̄ = −2

∫
S×P1

(κy σ̄ ) ∧ ch2(I •) = 2
∫
β

κy σ,

just as in (6.26). Since κy σ is nonzero on β by design (6.4), the composition
(6.49) is nonzero. Proposition 27 is established in the connected case.
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Disconnected case. To deal with the case of arbitrary support, we write a stable
pair (F, s) on the rubber target as a direct sum of stable pairs with connected
supports:

(F, s) =
⊕

i

(Fi , si). (6.50)

By stability we may assume, without loss of generality, that (F1, s1) is supported
on the interior of the first bubble.

The decomposition (6.50) holds in a neighborhood of (F, s) in the moduli
space R (though the i th summand need not have connected support for pairs
not equal to (F, s)). The obstruction sheaf ObF is additive with respect to the
decomposition: E xt2

πR
(I•, I•)0 splits into a corresponding direct sum. We will

prove (6.40) is an isomorphism on the summand (F1, s1). The isomorphism will
follow from the connected case after we have set up appropriate notation. Since
the map (6.39) is linear, the result will prove (6.39) has no zeros. We will address
the injectivity claim for the map (6.40) in the statement of Proposition 27 at the
end of the proof.

Suppose (F, s) is supported on X [k]. In a neighborhood of X [k], a chart for
the stack of (n, β)-marked expanded degenerations of X is given by

Ck/(C∗)k (6.51)

where the group acts diagonally [33]. We let t1, . . . , tn denote the coordinates
on the base Ck . Let x be the coordinate pulled back from the base ∆ of the
K 3-fibration X .

The universal family
X → B, (6.52)

restricted to the chart (6.51), is constructed by the following sequence of (C∗)k-
equivariant blow-ups of X × Ck :

• Blow up X × Ck along x = 0 = t1 (the product of the surface S ⊂ X and the
first coordinate hyperplane).

• Blow up the result along the proper transform of x = 0 = t2, (the proper
transform of S times the second coordinate hyperplane).

• At the i th stage, blow up the result of the previous step in the proper transform
of x = 0 = ti .

After k steps, we obtain the universal family (6.52) over the chart (6.51).
The fiber of the universal family over the origin of (6.51) is X [k]with marking

(n0, β0) ∈ Z⊕ H2(X,Z)
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on the first component and marking (ni , βi) ∈ Z ⊕ H2(S,Z) on the i th bubble
for 1 6 i 6 k. The data satisfy (6.9):

n0 +
k∑

i=1

ni = n, β0 +
k∑

i=1

βi = β.

Over a point of Ck with precisely j of the coordinates ti vanishing, the fiber is
X [ j]. The j vanishing coordinates are in bijective ordered correspondence with
the j bubbles and the j creases of X [ j]. (The i th crease of X [ j] is the copy of S
at the bottom of the i th bubble: the intersection of the (i−1)th and i th bubbles of
X [ j].) Moving away from this point of the base, a crease smooths if and only if
the corresponding coordinate becomes nonzero. If the i th and (i+1)th vanishing
coordinates are ta and tb, then the marking on the i th bubble of X [ j] is(

b−1∑
i=a

ni ,

b−1∑
i=a

βi

)
∈ Z⊕ H 2(S).

Similarly, if the first vanishing coordinate is tc, then the marking on X ⊂ X [ j] is(
n0 +

tc−1∑
i=1

ni , β0 +
tc−1∑
i=a

βi

)
∈ Z⊕ H 2(X). (6.53)

Relative stable pairs – which cannot lie in X – all lie over the locus

t1 = 0, n0 = 0, β0 = 0,

where c = 1 in (6.53) and the marking on X vanishes. The inclusion of the
hyperplane t1 = 0,

ι : Ck−1/(C∗)k = {t1 = 0}/(C∗)k ↪−→ Ck/(C∗)k (6.54)

describes the inclusion (6.12) of the corresponding chart of the stack Br ⊂ B
over which the rubber target S lies.

On the chart (6.51),

LB = {ΩCk −→ (g∗)k ⊗OB},
where the map is diag (t1, . . . , tk) in the natural trivializations. Pulling back by
(6.54) gives

ι∗LB = (N ∗ ⊕ g∗ ⊗OBr [1])⊕
{
ΩCk−1

diag(t2,...,tk ) // (g∗)k−1 ⊗OBr

}
= N ∗ ⊕ LBr .
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Thus ι∗L∨B ∼= N ⊕ L∨Br
just as in (6.47). The element ∂t1 lies in – and generates

– the first summand (but, just as before, is not a global trivialization as it is not
C∗-invariant).

We have to work out the composition (6.48) as before, replacing ∂t by ∂t1 . The
stable pair (F1, s1) is supported on some S × {1} of the first bubble of X [k] just
as before. Restricting to the first bubble, the Kodaira–Spencer class evaluated on
the section ∂t1 of N is κ just as in the single bubble case: all further blow-ups
in the construction of X → B occur at S × {∞} in the bubble and hence do
not affect the interior of the first bubble or its Kodaira–Spencer class. The same
calculation then shows the map (6.40) at the point (F1, s1) takes ∂t1 to

2
∫
β1

κy σ, (6.55)

where β1 = [F1]. Since (6.55) is nonzero by (6.4), the map (6.40) is an
isomorphism on the first summand (F1, s1) as claimed. As explained above, this
implies that (6.39) has no zeros.

Consider now the summand (F2, s2). If the support of (F2, s2) is in the first
bubble, the support lies in S×{λ} for some λ 6= 1, and the work we have already
done shows that applied to (F2, s2) the map (6.40) takes ∂t1 to

2λ−1
∫
β2

κy σ 6= 0. (6.56)

Here, the nonvanishing is by (6.4) applied to β2 = [F2].
For summands (Fi , si) not in the first bubble we can do a similar calculation,

blowing up (6.43) once more and using local coordinates again. The result is
that the Kodaira–Spencer class in the higher bubbles is 0 (this is effectively the
λ→∞ limit of the above calculation).

To prove the injectivity claim for the map (6.40) in the statement of
Proposition 27, we consider two possibilities.

• If (F1, s1) is the only summand in the first bubble, all others contribute zero to
(6.40), so in total (6.40) is nonzero by (6.55).

• If there is another summand (F2, s2) in the first bubble, then, by linearity, the
nonzero contribution (6.56) of (F2, s2) is added to that of the other summands,
and can be varied by perturbing its support

λ ∈ C∗ ⊂ P1.

Therefore, even though the map (6.40) might be zero at (F, s), the map (6.40)
is nonzero at a nearby perturbation. Since the perturbation by moving the
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support λ is along an étale trivial factor in the moduli space R, the map (6.40)
must be injective as a morphism of sheaves.

The proof of Proposition 27 is complete.

6.8. Curvilinear lifting. Proposition 27 does not imply the moduli spaces
R and P? are isomorphic. Our analysis of R̃n,β is crucially dependent upon a
weaker curvilinear lifting relationship between R and P? which does follow from
Proposition 27.

LEMMA 28. The map ι : R→ P? of (6.13) induces an isomorphism ι∗ΩP?
∼=ΩR

of cotangent sheaves.

Proof. The obstruction theories E•, F • are related by the exact triangle

N ∗ −→ ι∗E• −→ F •

of (6.38), giving the exact sequence

h−1(F •) −→ N ∗ −→ h0(ι∗E•) −→ h0(F •) −→ 0.

Since E• vanishes in strictly positive degrees and ι∗ is right exact, h0(ι∗E•) =
ι∗h0(E•). Therefore, we obtain

h−1(F •) −→ N ∗ −→ ι∗ΩP? −→ ΩR −→ 0. (6.57)

By Proposition 27, the first map is surjective.

COROLLARY 29. Suppose A is a subscheme of B with ideal J satisfying

d : J → ΩB |A injective. (6.58)

(In particular J 2 = 0.) Then any extension f̃ : B → P? of a map f : A → R
factors through R.

Proof. Let I denote the ideal of R inside P . To show the factorization of f̃
through R, we must show the image of

f̃ ∗ I → J

vanishes. Since J 2 = 0, the above image can be evaluated after restriction to A,

f̃ ∗ I |A = f ∗ I → J. (6.59)
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By Lemma 28, the first map d vanishes in the exact sequence of Kähler
differentials

I
d−→ ι∗ΩP? −→ ΩR −→ 0.

Pulling back via f gives the top row of the following commutative diagram with
exact rows.

f ∗ I

f̃ ∗
��

0 // f ∗ι∗ΩP?

f̃ ∗
��

∼ // f ∗ΩR

f ∗
��

// 0

0 // J d // ΩB |A // ΩA
// 0.

Here, the central map uses the isomorphism f ∗ι∗ΩP?
∼= ( f̃ ∗ΩP?)|A. As a result,

the first vertical arrow (given by (6.59)) is zero. Hence, f̃ has image in R.

The basic relationship between R and P? which we need is the curvilinear
lifting property proven in the following corollary.

COROLLARY 30. Every map SpecC[x]/(x k)→ P? factors through R.

Proof. Since R ⊂ P? is a bijection of sets, we have the result for k = 1. Since

A = Spec
C[x]
(x k)

⊂ Spec
C[x]
(x k+1)

= B

satisfies (6.58), the result for higher k follows by Corollary 29 and induction.

We summarize the above results in the following proposition.

PROPOSITION 31. The map ι : R → P? of (6.13) is a closed embedding of
Deligne–Mumford stacks which satisfies the curvilinear lifting property.

The complexes ι∗E•, F •, and F •red on R are related by the exact triangles

(F •red)
∨

��

(F •red)
∨

��
N [−1] // (F •)∨ //

��

(ι∗E•)∨

��
N [−1] // OR[−1] // OD[−1].

(6.60)

Here, D is the Cartier divisor on which the injection N → OR (6.40) vanishes.
In particular, in K -theory the classes of (ι∗E•)∨ and (F •red)

∨ differ by OD[−1].
The K -theory classes determine the corresponding virtual cycles via the formula
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of [15, 44]. For the virtual class [P?]vir associated to E•, the formula is

[P?]vir = [s((E•)∨) ∩ cF(P?)]virdim, (6.61)

where cF(P?) is the Fulton total Chern class [15, 4.2.6.(a)] of the scheme P?,
s denotes the total Segre class, and the subscript denotes the term in degree
specified by the virtual dimension (equal to 0 here). The homology class cF(P?)

is not of pure degree. The expression (6.61) is a sum of different degree parts of
the cohomology class s((E•)∨) capped with the different degree parts of cF(P?)

to give the virtual class.
Since the reduced scheme structure of R and P? is the same, we may

view cF(P?) and [P?]vir as cycles on R. The curvilinear lifting property of
Proposition 31 implies a basic relation between the Fulton Chern classes of R
and P? explained in Appendix C.2,

cF(R) = cF(P?) ∈ A∗(R). (6.62)

Formulas (6.61) and (6.62) allow us to study [P?]vir via the geometry of R.
Since s(OD) = 1− D, the rightmost column of (6.60) yields the identity

s
(
(ι∗E•)∨

) = s
(
(F •red)

∨)+ D. s
(
(ι∗E•)∨

)
.

After substituting in (6.61), we obtain

[P?]vir = [s((F •red)
∨) ∩ cF(P?)

]
0 +

[
s
(
(ι∗E•|D)∨

) ∩ cF(P?)|D
]

0

= [s((F •red)
∨) ∩ cF(R)

]
0 +

[
s
(
(ι∗E•|D)∨

) ∩ cF(R)|D
]

0

= [R]red + [s((ι∗E•|D)∨) ∩ cF(R)|D
]

0. (6.63)

We may replace D in the rightmost term by any other Cartier divisor in the same
linear equivalence class, since the replacement leaves the K -theory class [OD]
unchanged. We will work on a cover of the rubber moduli space R on which D
becomes linearly equivalent to a rather more tractable divisor.

6.9. Rigidification. Let R = R(n, β) be the moduli space of stable pairs on
the rubber target. Let

π : U (n, β) = S ×Br R→ R (6.64)

be the universal target over the rubber moduli space R. Let

W (n, β) ⊂ U (n, β) (6.65)

denote the open set on which the morphism π is smooth.
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We view U as a moduli of pairs (r, p) where r ∈ R and p is a point in the
rubber target associated to r . For pairs (r, p) ∈ W , the point p is not permitted
to lie on any creases. Hence, the restriction

π : W → R

is a smooth morphism. The rubber target admits a natural map,

ρ : W → S,

to the underlying K 3 surface.
Viewing [R]red and [P?]vir as cycle classes on R, we define classes [W ]red and
[W ]vir on W by flat pull-back:

[W ]red = π∗[R]red, [W ]vir = π∗[P?]vir.

By the definitions of the cones and the Fulton class,

[W ]red = [s((π∗F •red)
∨)s(Tπ) ∩ cF(W )

]
3, (6.66)

where Tπ on W is the relative tangent bundle of π . Similarly,

[W ]vir = [s((π∗ι∗E•)∨)s(Tπ) ∩ cF(W )
]

3. (6.67)

Integrals over R may be moved to W by the following procedure. To a class
δ ∈ H 2(S,Q), we associate a primary insertion

T0(δ) = ch2(F) ∪ ρ∗(δ) ∈ H 6(U,Q),
where F is the universal sheaf. The key identity is the divisor formula obtained
by integrating down the fibers of (6.64):

π∗
(
T0(δ)

) = 〈δ, β〉 = ∫
β

δ ∈ H 0(R,Q). (6.68)

The push-forward π∗ is well defined since ch2(F) and T0(δ) are supported on
Supp(F) which is projective over R via π .

The derivation in Section 6.8 of (6.63) can be pulled back via π to W to yield:

[W ]vir = [W ]red + [s((π∗ι∗E•|D)∨)s(Tπ) ∩ cF(W )|D
]

3. (6.69)

As before, D is any divisor representing the first Chern class of the pull-back of
N ∗, the conormal bundle of the divisor Br ⊂ B. By integration against (6.69),
formula (6.68) yields

P?
n,β(X)− Rred

n,β(S×R) = 1
〈δ, β〉

∫
D

(
s
(
(π∗ι∗E•|D)∨

)
s
(
Tπ
)∩ cF(W )|D

)
· T0(δ).

(6.70)
We describe next a geometric representative for D.
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Attaching the infinity section S∞ of the rubber over R(n1, β1) to the zero
section S0 of rubber over W defines a divisor

Dn1,β1 = R(n1, β1)×W (n2, β2) ⊂ W (n, β), (6.71)

whenever (n1, β1) + (n2, β2) = (n, β). The following result is a form of
topological recursion.

LEMMA 32. The line bundle π∗N ∗ has a section with zeros given by the divisor

D =
∑
n1,β1

Dn1,β1 .

The sum is over the finitely many (n1, β1) ∈ Z ⊕ H2(S,Z) for which Dn1,β1 is
nonempty.

Proof. The universal family X →B has smooth total space. Moving normal to
Br smooths the first crease in the expanded degeneration X : the crease where X
joins the rubber S across S ⊂ X and the 0-section S0 of the rubber. Therefore,
the normal bundle N , pulled back to X and restricted to the first crease, is
isomorphic to

NS⊂X ⊗ NS0⊂S .

Fixing once and for all a trivialization of NS⊂X , we find that

N ∼= ψ∗0
is isomorphic to the tangent line to P1 on the zero section. (More precisely, fix
any point s ∈ S. Then the corresponding point of the zero section S0 of S defines
a section s0 of S → Br . The first bubble is S0 × P1, and the conormal bundle
to S0 is the restriction of T ∗P1 ⊂ T ∗S0×P1 . Pulling back by s0 gives the cotangent
line ψ0.)

Now pull back to W (n, β) via (6.64). By forgetting S (but remembering
the Z ⊕ H2(S,Z) marking), W (n, β) maps to the stack B p

n,β of (n, β)-marked
expanded degenerations of P1/{0,∞},

W (n, β)→ B p
n,β . (6.72)

The moduli space W (n, β) parameterizes pairs (r, p). The map (6.72) is defined
by using p to select the rigid component and to determine 1 ∈ P1. The cotangent
line at the relative divisor 0 defines a line bundle on B p

n,β which we also call ψ0.
On W (n, β), ψ0 pulls back to

π∗ψ0
∼= π∗N ∗

above.
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Pick a nonzero element of T ∗P1 |0, pull back to any expanded degeneration, and
restrict to the new 0-section. We have constructed a section of ψ0 over B p

n,β
which vanishes precisely on the divisor where 0 has been bubbled. The latter
divisor is the sum of the divisors Dn1,β1 as required.

After combining Lemma 32 with (6.70), we obtain the formula:

P?
n,β(X)− Rred

n,β(S ×R)

= 1
〈δ, β〉

∑
n1,β1

∫
Dn1,β1

(
s
(
(π∗ι∗E•)∨

)
s
(
Tπ
)|Dn1,β1

∩ cF(W )|Dn1,β1

)
· T0(δ).

(6.73)

To proceed, we must compute the restriction of π∗ι∗E• to the divisor Dn1,β1 .
The relative obstruction theory is given by the same formula (6.15) on the

moduli spaces R and P?. On R, the relative obstruction theory was denoted
F• (6.20). Since the relative obstruction theory is additive over the connected
components of a stable pair,

π∗ι∗E•|Dn1,β1
∼= ι∗E•R(n1,β1)

⊕ π∗F•W (n2,β2)
, (6.74)

where we have split Dn1,β1 as R(n1, β1)×W (n2, β2) using (6.71).
As in (6.18), (6.21) the relationship of the relative to the absolute obstruction

theories E•W and F • is through the usual exact triangles:

ι∗E• −→ ι∗E• −→ ι∗LBn,β [1] (6.75)

on the moduli space R and

ι∗E•R(n1,β1)
⊕ π∗F •W (n2,β2)

−→ ι∗E•R(n1,β1)
⊕ π∗F•W (n2,β2)

−→ ι∗LBn1,β1
[1] ⊕ π∗LBr [1] (6.76)

on Dn1,β1 = R(n1, β1)×W (n2, β2). In K -theory, the isomorphism (6.74) and the
exact sequences (6.75)–(6.76) yield[

π∗ι∗E•|Dn1,β1

] = [ι∗E•R(n1,β1)
] + [π∗F •W (n2,β2)

]
− [ι∗LBn1,β1

] − [π∗LBr ] + [ι∗LBn,β ]. (6.77)

Since Dn1,β1 is pulled back from Bn,β , the standard divisor conormal bundle
sequence yields

[LBn1,β1
] + [LBr ] − [LBn,β ] = −[ODn1,β1

(−Dn1,β1)].
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(More precisely, Dn1,β1 ⊂ W is an open and closed component of the pull-back.)
Hence, we obtain

s
((
π∗ι∗E•

∣∣
Dβ1,n1

)∨)
c
(
ODn1,β1

(Dn1,β1)
) = s

(
(ι∗E•R(n1,β1)

)∨
)
s
(
(π∗F •W (n2,β2)

)∨
)
.

(6.78)
By the basic properties of cones and the embedding Dn1,β1 ⊂ W (n, β)

discussed in Appendix C.3, we have

cF(W (n, β))|Dn1,β1
= cF(Dn1,β1)c(ODn1,β1

(Dn1,β1)). (6.79)

We replace cF(W (n, β))|Dn1,β1
by (6.79) in (6.73). After using (6.78) to cancel

the c(ODn1,β1
(Dn1,β1)) term, we obtain

1
〈δ, β〉

∑
n1,β1

∫
R(n1,β1)

s((ι∗E•)∨) ∩ cF(R(n1, β1))

×
∫

W (n2,β2)

(
s((π∗F •)∨)s

(
Tπ
) ∩ cF(W (n2, β2))

)
· T0(δ).

(The integration over W (n2, β2) is well defined since the insertions τ0(δ) yields
a complete cycle as before.) Since the two obstruction theories F • and F •red on
W (n2, β2) differ only by the trivial line bundle,

s((F •)∨) = s((F •red)
∨).

By another application of the rigidification formula (6.68), we obtain

P?
n,β(X)− Rred

n,β(S ×R) = 1
〈δ, β〉

∑
n1,β1

P?
n1,β1

(X) · 〈δ, β2〉 Rred
n2,β2

(S ×R).

6.10. Logarithm. Let α ∈ Pic(S) is a primitive class which is positive with
respect to a polarization, and let β ∈ Eff(mα). The only effective decompositions
of β are

β = β1 + β2, βi ∈ Eff(mα).

We formulate the last equation of Section 6.9 as the following result.

THEOREM 33. For the family ε : X → (∆, 0) satisfying conditions (i), (ii), (?)
of Section 6.1 for mα, we have

P?
n,β(X)− Rred

n,β(S×R) = 1
〈δ, β〉

∑
n1+n2=n

∑
β1+β2=β

P?
n1,β1

(X) · 〈δ, β2〉 Rred
n2,β2

(S×R)

for every β ∈ Eff(mα) and δ ∈ H 2(S,Z) satisfying 〈δ, β〉 6= 0.
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The basic relationship between P?
n,β(X) and Rred

n,β(S × R) is an immediate
Corollary of Theorem 33. Let

P?
β (X) =

∑
n∈Z

P?
n,β(X)q

n, Rred
β (S ×R) =

∑
n∈Z

Rred
n,β(S ×R)qn.

COROLLARY 34. For β ∈ Eff(mα),

P?
β (X) = Coeffvβ

exp

 ∑
β̂∈Eff(mα)

vβ̂Rred
β̂
(S ×R)

 .
Proof. Since δ ∈ H 2(S,Z) is arbitrary, Theorem 33 uniquely determines P?

β (X)
in terms of Rred

βi
(S ×R) for βi ∈ Eff(mα). We see Corollary 34 implies exactly

the recursion of Theorem 33 by differentiating the exponential. To write the
differentiation explicitly, let

v1, . . . , v22 ∈ H 2(S,Z)

be a basis. For β =∑22
i=1 bivi , we write

vβ =
22∏

i=1

v
bi
i .

Let 〈δ, vi 〉 = ci . Then, differentiation of the equation of Corollary 34 by

22∑
i=1

civi
∂

∂vi

yields the recursion of Theorem 33.

6.11. Definition of R̃n,β . We now return to the definition of stable pairs
invariants for K 3 surface given in Section 6.2.

Let α ∈ Pic(S) be a primitive class which is positive with respect to a
polarization. Let

ε : X → (∆, 0)

satisfying the conditions of Section 6.1: (i), (ii), and (?) for mα. We have

R̃mα(S) = Coeffvmα

[
log

(
1+

∑
β∈Eff(mα)

vβ P?
β (X)

)]
.
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Let R̃n,mα(S) be the associated q coefficients:

R̃mα(S) =
∑
n∈Z

R̃n,mα(S)qn.

By Corollary 34 of Theorem 33, we can take the logarithm.

PROPOSITION 35. We have R̃mα(S) = Rred
mα(S ×R).

Proof. By Corollary 34 and the above definition,

R̃mα(S) = Coeffvmα

log exp

 ∑
β̂∈Eff(mα)

vβ̂Rred
β̂
(S ×R)


= Coeffvmα

 ∑
β̂∈Eff(mα)

vβ̂Rred
β̂
(S ×R)

 .
Hence, if mα ∈ Pic(S) is effective, R̃mα(S) = Rred

mα(S ×R). If mα ∈ Pic(S) is
not effective, both R̃mα(S) and Rred

mα(S ×R) vanish.

Proposition 35 is the main point of Section 6. The complete geometric
interpretation of the logarithm as integration over a moduli of stable pairs is
crucial for our proof of the KKV conjecture.

6.12. Dependence. Let α ∈ Pic(S) be a primitive class which is positive
with respect to a polarization. As a consequence of Proposition 35, we obtain
a dependence result.

PROPOSITION 36. R̃mα(S) depends only upon m and

〈α, α〉 = 2h − 2

and not upon S or the family ε.

From the definition of R̃mα(S), the dependence statement is not immediate
(since the argument of the logarithm depends upon invariants of effective
summands of mα which may or may not persist in deformations of S for
which α stays algebraic). However, Rred

mα(S ×R) depends only upon m and the
deformation class of the pair (S, α) – and the latter depends only upon 〈α, α〉.
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We finally have a well-defined analogue in stable pairs of the Gromov–Witten
invariants Rn,mα. We drop S from the notation, and to make the dependence clear,
we define

R̃m,m2(h−1)+1 = R̃mα (6.80)

where right side is obtained from any K 3 surface and family ε satisfying
conditions (i), (ii), and (?) for mα. Here, mα is of divisibility m and has norm
square

〈mα,mα〉 = m2(2h − 2) = 2(m2(h − 1)+ 1)− 2.

In case m = 1, we will use the abbreviation

R̃h = R̃1,h. (6.81)

7. Multiple covers

7.1. Overview. By Proposition 35, the stable pairs invariants R̃mα(S) equal
the reduced rubber invariants Rred

mα(S ×R). Our goal here is to express the latter
in terms of the reduced residue invariants 〈1〉red

Y,mα of

Y = S × C

studied in Sections 4 and 5. The explicit calculations of Section 5.6 then
determine R̃mα(S) and can be interpreted in terms of multiple cover formulas.

7.2. Rigidification. Let S be a K 3 surface equipped with an ample
polarization L . Let α ∈ Pic(S) be a primitive, positive class with norm square

〈α, α〉 = 2h − 2.

(Positivity, 〈L , α〉 > 0, is with respect to the polarization L .) Let m > 0 be a
integer. The invariants

Rred
mα(S ×R) =

∑
n∈Z

Rred
n,mα(S ×R)qn

have been defined in Section 6.5 by integration over the rubber moduli spaces
R(n,mα).

Following the notation of Section 6.9, let

π : U (n,mα) = S ×Br R(n,mα)→ R(n,mα)
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be the universal target with virtual class pulled back from R(n,mα). We also
consider here

V (n,mα/0,∞) = Pn(S × P1/S0 ∪ S∞,mα),

the moduli space of stable pairs on S × P1 relative to the fibers over 0,∞ ∈ P1.
There is a standard rigidification map

ρ : U (n,mα)→ V (n,mα/0,∞)
with the point in universal target determining 1 ∈ P1. (We identify the point in the
universal target S with the corresponding distinguished point of S×P1/S0 ∪ S∞
lying over 1 ∈ P1. The resulting identification of the two universal targets (for
the rubber and for S × P1/S0 ∪ S∞) is used to transport stable pairs from the
former to the latter.)

As in Section 6.9, let T0(L) be the primary insertion in the rubber theory
obtained from L ∈ H 2(S,Z). By the divisor property (6.68),

m〈L , α〉 Rred
mα(S ×R) =

∑
n

qn
∫
[U (n,mα)]red

T0(L).

By rigidification, we find∑
n

qn
∫
[U (n,mα)]red

T0(L) =
∑

n

qn
∫
[V (n,mα/0,∞)]red

T0(L)

where L ∈ H 4(S × P1,Z) is dual to the cycle

`× {1} ⊂ S × P1

and ` ⊂ S represents L ∩ [S] ∈ H2(S,Z). We define

V red
mα (S × P1/S0 ∪ S∞) =

∑
n

qn
∫
[V (n,mα/0,∞)]red

T0(L)

and conclude

m〈L , α〉 Rred
mα(S ×R) = V red

mα (S × P1/S0 ∪ S∞). (7.1)

7.3. Degeneration. We now study V red
mα (S × P1/S0 ∪ S∞) on the right side of

(7.1) via the degeneration formula.
We consider the degeneration of the relative geometry S×P1/S∞ to the normal

cone of
S0 ⊂ S × P1.
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The degeneration formula for the virtual class of the moduli of stable pairs under

S × P1/S∞  S0 × P1/S0

⋃
S × P1/S0 ∪ S∞ (7.2)

is easily seen to be compatible with the reduced class (since all the geometries
project to S). Let

V (n,mα/∞) = Pn(S × P1/S∞,mα),

V red
mα (S × P1/S∞) =

∑
n

qn
∫
[V (n,mα/∞)]red

T0(L)

for the insertion T0(L) defined in Section 7.2.

PROPOSITION 37. We have

V red
mα (S × P1/S∞) = V red

mα (S × P1/S0 ∪ S∞).

Proof. By the degeneration formula, the reduced virtual class of the moduli
space V (n,mα/∞) distributes to the products

V (n1, β1/∞)× V (n2, β/0,∞), n1 + n2 = n, β1 + β2 = mα, (7.3)

associated to the reducible target (7.2). If β1 and β2 are both nonzero, then the
product (7.3) admits a double reduction of the standard virtual class. Hence, the
(singly) reduced virtual class of (7.3) vanishes unless β1 or β2 is 0.

When the degeneration formula is applied to V red
mα (S × P1/S∞), the insertion

T0(L) requires β2 to be nonzero. Hence, only the n2 = n and β2 = mα term
contributes to the reduced degeneration formula.

7.4. Localization. The next step is to apply C∗-equivariant localization to
V red

mα (S × P1/S∞).
Let C∗ act on P1 with tangent weight t at 0. We lift the class L to C∗-

equivariant cohomology by selecting the C∗-fixed representative

L × {0} ⊂ S × P1.

The virtual localization formula expresses V red
mα (S × P1/S∞) as a sum over

products of residue contributions over S0 and S∞ in S×P1/S∞. The C∗-fixed loci
admit a double reduction of their virtual class unless mα is distributed entirely
to 0 or ∞. Since the insertion T0(L) requires the distribution to be over 0, we
conclude

V red
mα (S × P1/S∞) = 〈T0(L)〉red

Y,mα(q)

= mt〈L , α〉 〈1〉red
Y,mα(q), (7.4)
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where we have followed the notation of Section 5.6 except for writing 〈1〉red
Y,mα

as a series in q instead of y.

7.5. Multiple cover formula. Sections 7.2–7.4 together with Proposition 23
imply

Rred
mα(S ×R) = t〈1〉red

Y,mα(q)

=
∑
k|m

t
k

I(m2/k2)(h−1)+1(−(−q)k) (7.5)

where 〈α, α〉 = 2h−2. By the formulas of Section 5.7, t I (q) is a rational function
of q . (The variable q here is the variable y in Section 5.7.) Hence, Rred

mα(S ×R)
is a rational function of q .

We define Rred
h to equal the generating series Rred

α (S × R) associated to a
primitive and positive class α with norm square 2h − 2. By (7.5) in the m = 1
case,

Rred
h = t Ih(q),

so Rred
h = 0 for h < 0 by Proposition 22. Rewriting (7.5), we obtain the

fundamental multiple cover formula governing Rred
mα:

Rred
mα(q) =

∑
k|m

1
k

Rred
(m2/k2)(h−1)+1(−(−q)k). (7.6)

The terms on the right correspond to lower-degree primitive contributions to mα.
Finally, we write the multiple cover formula in terms of the invariants R̃mα.

Following the notation (6.81), let R̃h equal the series R̃α(S) associated to a
primitive and positive class α with norm square 2h − 2. By Proposition 35, we
see

R̃h = 0 for h < 0. (7.7)

The multiple cover formula (7.6) implies the following result.

THEOREM 38. The series R̃mα(q) is the Laurent expansion of a rational function
of q, and

R̃mα(q) =
∑
k|m

1
k

R̃(m2/k2)(h−1)+1(−(−q)k).

7.6. Stable pairs BPS counts. The stable pairs potential F̃α(q, v) for classes
proportional to α is

F̃α =
∑
n∈Z

∑
m>0

R̃n,mαqnvmα.
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The stable pairs BPS counts r̃g,mα are uniquely defined [40] by:

F̃α =
∑
g∈Z

∑
m>0

r̃g,mα

∑
d>0

(−1)g−1

d
((−q)d − 2+ (−q)−d)g−1vdmα.

Because R̃mα is a Laurent series in q , we see

r̃g,mα = 0

for sufficiently high g and fixed m. In the primitive case,

r̃g,α = 0 for g < 0 (7.8)

by [41, Equation (2.10)].
Since we know R̃mα only depends upon m and the norm square 〈mα,mα〉, the

same is true for the associated BPS counts. Following the notation (6.80), we
define

r̃g,m,m2(h−1)+1 = r̃g,mα.

PROPOSITION 39. The stable pairs BPS counts do not depend upon the
divisibility:

r̃g,m,m2(h−1)+1 = r̃g,1,m2(h−1)+1.

Proof. By Theorem 38, we can write F̃α as

F̃α =
∑
m>0

R̃mαv
mα

=
∑
m>0

∑
k|m

1
k

R̃(m2/k2)(h−1)+1(−(−q)k)vmα.

Next, using the definition of BPS counts for primitive classes, we find

F̃α =
∑
m>0

∑
k|m

∑
g>0

(−1)g−1

k
r̃g,1,(m2/k2)(h−1)+1((−q)k − 2+ (−q)−k)g−1vmα.

After a reindexing of the summation on the right, we obtain∑
g>0

∑
m>0

r̃g,1,m2(h−1)+1

∑
d>0

(−1)g−1

d
((−q)d − 2+ (−q)−d)g−1vdmα.

By the definition of the BPS counts and the uniqueness statement, we conclude
the r̃g,m,m2(h−1)+1 does not depend upon the divisibility.
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As a corollary of Proposition 39, we obtain basic properties of r̃g,m,h required
in Section 3.

COROLLARY 40. We have r̃g,m,h60 = 0 except for the case

r̃0,1,0 = 1.

Proof. By Proposition 39, we need only consider the m = 1 case. If h < 0, the
vanishing follows from (7.7). If h = 0, the result is the consequence of the stable
pair calculation of the conifold [40].

COROLLARY 41. We have r̃g<0,m,h = 0.

Proof. After reducing to the m = 1 case, the result is (7.8).

8. P/NL correspondence

8.1. Overview. Our goal here is to prove the Pairs/Noether–Lefschetz
correspondence of Theorem 8 in Section 3.5. The main tool needed is
Theorem 33.

Following the definitions of Sections 1.2 and 2.1, let

(π3 : X→ P1, L1, L2, E)

be the 1-parameter family of Λ-polarized,

Λ =
2 3 0

3 0 0
0 0 −2

 ,
K 3 surfaces obtained from a very general anticanonical Calabi–Yau
hypersurface,

X ⊂ P̃2 × P1 × P1.

(Very general here is the complement of a countable set.) For a very general fiber
of the base ξ ∈ P1,

Pic(Xξ ) ∼= Λ. (8.1)

We also assume, for each nodal fiber Xξ , the K 3 resolution X̃ξ satisfies

Pic(X̃ξ ) ∼= Λ⊕ Z[Ẽ] (8.2)

where Ẽ ⊂ X̃ξ is the exceptional −2 curve. (The nodal fibers have exactly
1 node.) Both (8.1) and (8.2) can be satisfied since Λ is the Picard lattice of
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a very general point of MΛ and Λ⊕ Z[Ẽ] is the Picard lattice of a very general
point of the nodal locus in MΛ. (We leave these standard facts about K 3 surfaces
of type Λ to the reader. Huybrechts [19] is an excellent source for the study of
K 3 surfaces.)

The stable pairs potential F̃X for nonzero vertical classes is the series

F̃X = log

1+
∑

0 6=γ∈H2(X,Z)π3

ZP(X; q)γ vγ


=
∑
n∈Z

∑
0 6=γ∈H2(X,Z)π3

Ñ X
n,γqnvγ .

Here, v is the curve class variable, and the second equality defines the connected
stable pairs invariants Ñ X

n,γ . The stable pairs BPS counts ñX
g,γ are then defined by

F̃X =
∑
g∈Z

∑
06=γ∈H2(X,Z)π3

ñX
g,γ

∑
d>0

(−1)g−1

d
((−q)d − 2+ (−q)−d)g−1vdγ .

Let ñX
g,(d1,d2,d3)

denote the stable pairs BPS invariant of X in genus g for π3-
vertical curve classes of degrees d1, d2, d3 with respect to the line bundles L1,

L2, E ∈ Λ, respectively. Let r̃g,m,h be the stable pairs BPS counts associated to
K 3 surfaces in Section 3.4. The Pairs/Noether–Lefschetz correspondence is the
following result.

THEOREM 4. For degrees (d1, d2, d3) positive with respect to the
quasipolarization,

ñX
g,(d1,d2,d3)

=
∞∑

h=0

∞∑
m=1

r̃g,m,h · N Lπ3
m,h,(d1,d2,d3)

.

8.2. Strategy of proof. Since the formulas relating the BPS counts to stable
pairs invariants are the same for X and the K 3 surface, Theorem 8 is equivalent
to the analogous stable pairs statement:

Ñ X
n,(d1,d2,d3)

=
∑

h

∞∑
m=1

R̃n,m,h · N Lπ3
m,h,(d1,d2,d3)

(8.3)

for degrees (d1, d2, d3) positive with respect to the quasipolarization of X.
We denote the base of the fibration π3 by C ∼= P1. Let C◦ ⊂ C be the locus

over which
π3 : X→ C
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is smooth. By condition (i) of Section 1.2 for a 1-parameter family of Λ-
polarized K 3 surfaces, the complement of C◦ consists of finitely many points
over which each fiber of π3 has a single ordinary node. For each ξ ∈ C◦, let

Vξ = H 2(Xξ ,Z).

As ξ ∈ C◦ varies, the fibers Vξ determine a local system

V◦→ C◦.

We denote the effective divisor classes on Xξ by

Effξ = {β ∈ Vξ | β ∈ Pic(Xξ ) and β effective}.
For ξ ∈ C \C◦, we denote the K 3 resolution of singularities of the node of Xξ

by
ρ : X̃ξ → Xξ ,

and we define
Vξ = H 2(X̃ξ ,Z).

As before, let

Effξ = {β ∈ Vξ | β ∈ Pic(X̃ξ ) and β effective}.

The push-forward of a divisor class on X̃ξ to Xξ can be considered in H2(Xξ ,Z)
and, by Poincaré duality (for the quotient singularity), in

1
2 H 2(Xξ ,Z) ⊂ H 2(Xξ ,Q).

We view the push-forward by ρ of the effective divisors classes as:

ρ∗ : Effξ → 1
2 H 2(Xξ ,Z). (8.4)

We will study the contributions of the classes Effξ to both sides of (8.3).
Certainly, only effective curves contribute to the left side of (8.3). Suppose ξ ∈ C
lies on the Noether–Lefschetz divisor

Dm,h,(d1,d2,d3) ⊂MΛ.

(We follow the notation of Section 1.2.1.) Then there exists β ∈ Pic(Xξ ) if ξ ∈ C◦

(or β ∈ Pic(X̃ξ ) if ξ ∈ C \ C◦) of divisibility m,

2h − 2 = 〈β, β〉,
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and degree (d1, d2, d3) positive with respect to the quasipolarization. Let α =
(1/m)β be the corresponding primitive class. If β is not effective on Xξ (or X̃ξ

if ξ ∈ C \C◦), then α is also not effective. Since α is positive with respect to the
quasipolarization, Riemann–Roch implies hα < 0, where

2hα − 2 = 〈α, α〉.
By Theorem 38 and the vanishing (7.7),

R̃n,m,h = 0.

Ineffective classes β therefore do not contribute to the right side of (8.3).

8.3. Isolated contributions. We consider first the simplest contributions. Let
ξ ∈ C◦. A nonzero effective class β ∈ Pic(Xξ ) is completely isolated on X if the
following property holds:

(??) for every effective decomposition

β =
l∑

i=1

γi ∈ Pic(Xξ ),

the local Noether–Lefschetz locus NL(γi) ⊂ C corresponding to each class
γi ∈ Pic(Xξ ) contains ξ as an isolated point. (Nonreduced structure is
allowed at ξ .)

Let γ ∈ Pic(Xξ ) be an effective summand of β which occurs in condition (??).
The stable pairs with set-theoretic support on Xξ form an open and closed
component,

Pξ
n (X, γ ) ⊂ Pn(X, γ )

of the moduli space of stable pairs for every n. (As usual, we denote the push-
forward of γ to H2(X,Z) also by γ .)

We consider now the contribution of Xξ for ξ ∈ C◦ to the stable pairs series F̃X

of a nonzero effective and completely isolated class β ∈ H 2(Xξ ,Z) satisfying

div(β) = m, 〈β, β〉 = 2h − 2

and of degree d with respect to Λ. More precisely, let Cont(Xξ , β, Ñ X
n,d) be

the contribution corresponding to β of all the moduli of stable pairs with set-
theoretic support on Xξ :

Cont(Xξ , β, Ñ X
n,d) = Coeffqnvβ

log

1+
∑
n∈Z

∑
γ∈Eff(β)

qnvγ
∫
[Pξn (X,γ )]vir

1

 ,
(8.5)
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where Effξ (β) ⊂ Pic(Xξ ) is the subset of effective summands of β. By
condition (??), the contribution is well defined.

Let `β be the length of the local Noether–Lefschetz locus NL(β) ⊂ C at ξ ∈ C .
We define

Cont(Xξ , β, N Lπ3
m,h,d) = `β,

the local intersection contribution to the Noether–Lefschetz number.

PROPOSITION 42. For a completely isolated effective class β ∈ Pic(Xξ ) with
ξ ∈ C◦, we have

Cont(Xξ , β, Ñ X
n,d) = R̃n,m,h · Cont(Xξ , β, N Lπ3

m,h,d).

Proof. We perturb the family C locally near ξ to be transverse to all the local
Noether–Lefschetz loci corresponding to effective summands of β on Xξ . In
order to perturb in algebraic geometry, we first approximate C by C ′ near [Xξ ]
to sufficiently high order by a moving family of curves in the moduli space of
Λ-polarized K 3 surfaces. (The order should be high enough to obstruct all the
deformations away from Xξ of the stable pairs occurring on the right side of
(8.5).) Then, we perturb the resulting moving curve C ′ to C ′′ to achieve the
desired transversality. Since transversality is a generic condition, we may take
the perturbation C ′′ to be as small as necessary. Let

π : X′′→ C ′′

be the family of Λ-polarized K 3 surfaces determined by C ′′.
Near [Xξ ] in the moduli of Λ-polarized K 3 surfaces, the local system of

second cohomologies is trivial. In a contractible neighborhood U of [Xξ ], we
have a canonical isomorphism

H 2(S,Z) ∼= H 2(Xξ ,Z) (8.6)

for all [S] ∈ U . We will use the identification (8.6) when discussing H 2(Xξ ,Z).
By deformation invariance of the stable pairs theory, the contribution (8.5) can

be calculated after perturbation. We assume all the intersections of C ′′ with the
above local Noether–Lefschetz loci which have limits tending to [Xξ ] (as C ′′

tends to C) lie in U .
For every γ ∈ Effξ (β), the curve C ′′ intersects the local Noether–Lefschetz

loci associated to γ transversely at a finite set of reduced points

Iγ ⊂ C ′′

near [Xξ ]. The local intersection number at ξ ∈ C of C with the local Noether–
Lefschetz locus corresponding to γ is |Iγ |. Let ξγ ∈ Iγ be one such point of
intersection. Let mγ be the divisibility of γ .
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On the K 3 surface X′′ξγ , the class (1/mγ )γ is primitive and positive since γ is
positive on Xξ . Moreover, the family C ′′ is mγ -rigid for (1/mγ )γ on X′′ξγ since
the effective summands of γ on X′′ξγ all lie in Effξ (β). By upper semicontinuity,
no more effective summands of β can appear near [Xξ ] in the moduli of K 3
surfaces.

By Corollary 34 to Theorem 33, we have a formula for the stable pairs
contribution of γ at X′′ξγ ,

P?,ξγ
γ (X′′) = Coeffvγ

exp

 ∑
γ̂∈Effξγ (γ )

vγ̂ Rred
γ̂ (X

′′
ξγ
×R)

 .
Here, Effξγ (γ ) ⊂ Pic(X′′ξγ ) is the subset of effective summands of γ (which is
empty if γ is not effective).

Finally, consider the original contribution Cont(Xξ , β, Ñ X
n,d). Let

I ⊂ C ′′

be the union of all the Iγ for γ ∈ Effξ (β). For each ξ̂ ∈ I , let

Algξ̂ ,ξ (β) ⊂ Effξ (β)

be the subset of classes of Effξ (β) which are algebraic on X′′
ξ̂
. All elements of

Algξ̂ ,ξ (β) are positive. By semicontinuity

Eff̂ξ (γ ) ⊂ Algξ̂ ,ξ (β)

for all γ ∈ Effξ (β). After perturbation, our formula for (8.5) is

Coeffqnvβ

log

∏
ξ̂∈I

exp

 ∑
γ∈Alĝξ,ξ (β)

vγ Rred
γ (X

′′
ξ̂
×R)

 .
After taking the logarithm of the exponential, we have

Cont(Xξ , β, Ñ X
n,d) = Coeffqnvβ

∑
ξ̂∈I

∑
γ∈Alĝξ,ξ (β)

vγ Rred
γ (X

′′
ξ̂
×R)

 .
Hence, we see only the ξ ∈ I for which β ∈ Algξ̂ ,ξ (β) contribute. We conclude

Cont(Xξ , β, Ñ X
n,d) =

∑
ξ̂∈Iβ

Coeffqn

[
Rred
β (X

′′
ξ̂
×R)

]
= R̃n,m,h · |Iβ |,

where the second equality uses Proposition 35.
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Since Cont(Xξ , β, N Lπm,h,d) = |Iβ | is the local contribution of β to the
Noether–Lefschetz number, the Proposition is established.

We have proven Proposition 42 for our original family π3 of Λ-polarized K 3
surfaces. Definition (??) of a completely isolated class is valid for any family

π : X → C (8.7)

of lattice polarized K 3 surfaces. By the proof given, Proposition 42 is valid for
the contributions of every completely isolated class

β ∈ H 2(Xξ ,Z), ξ ∈ C◦

for any family (8.7). For different lattices Λ̂, the degree index d in Proposition 42
is replaced by the degree with respect to a basis of Λ̂.

8.4. Sublattice Λ̂ ⊂ Λ. For ` > 0, we define

EffX(λ
π , `) ∈ H2(X,Z)π

to be the set of classes of degree at most ` (with respect to the quasipolarization
λπ ) which are represented by algebraic curves on X. By the boundedness of the
Chow variety of curves of X of degree at most `, EffX(λ

π , `) is a finite set.
For any quasipolarization δ given by an ample class of X in Λ, let the set of

effective classes of degree at most ` (with respect to δ) be

EffX(δ, `) ∈ H2(X,Z)π .

Similarly, let
Effξ (δ, `) ⊂ Effξ

be the effective curve classes of δ-degree at most ` over ξ ∈ C . (We follow the
notation of Section 8.2.)

We select a primitive sublattice Λ̂ = Zδ1 ⊕ Zδ2 ⊂ Λ satisfying the following
properties:

(i) δ1 is a quasipolarization with

L = Max{〈δ1, γ 〉 | γ ∈ EffX(λ
π , `)};

(ii) Λ̂ ∩ Effξ (δ1, L) = ∅ for all ξ ∈ C◦;

(iii) 1
2Λ̂ ∩ ρ∗Effξ (δ1, L) = ∅ for all ξ ∈ C \ C◦;
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(iv) the intersection maps

EffX (δ1, L)→ Hom(Λ,Z), γ 7→ 〈?, γ 〉,
EffX (δ1, L)→ Hom(Λ̂,Z), γ 7→ 〈?, γ 〉

have images of the same cardinality.

We will find such δ1, δ2 ∈ Λ by a method explained below: we will first select δ1

and then δ2.
Consider the quasipolarization δ̂ = kλπ3 for k > 2`. Then 1

2 δ̂ has δ̂-degree
(k2/2)〈λπ3, λπ3〉 on the K 3 fibers while

Max{〈̂δ, γ 〉 | γ ∈ EffX (λ
π , `)} 6 k` <

k2

2
6

k2

2
〈λπ3, λπ3〉.

We choose δ1 to be a small shift of kλπ3 in the lattice Λ to ensure primitivity.
Hence, we have met the conditions

Zδ1 ∩ Effξ (δ1, L) = ∅, 1
2Zδ1 ∩ ρ∗Effξ (δ1, L) = ∅ (8.8)

for ξ ∈ C◦ and ξ ∈ C \ C◦, respectively. Conditions (8.8) are required for (ii)
and (iii).

Again by the boundedness of the Chow variety of curves in X, the following
subset of 1

2Λ is a finite set:

⋃
ξ∈C◦

Λ ∩ Effξ (δ1, L) ∪
⋃

ξ∈C\C◦

1
2
Λ ∩ ρ∗Effξ (δ1, L) ⊂ 1

2
Λ.

Since the rank of Λ is 3, we can easily find δ2 ∈ Λ such that

Zδ1 ⊕ Zδ2 ⊂ Λ

is primitive and conditions (ii) and (iii) are satisfied.
Finally, since EffX (δ1, L) is a finite set, condition (iv) is easily satisfied when

δ2 is selected as above. Since

EffX (δ1, L)→ Hom(Λ,Z)→ Hom(Λ̂,Z),

condition (iv) states there is no loss of information for a class in EffX (δ1, L) in
taking degrees in Λ̂ instead of Λ.
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8.5. Nonisolated contributions: smoothing. Let Λ̂ ⊂Λ be the rank 2 lattice
selected in Section 8.4. We consider here the moduli space of Λ̂-polarized
K 3 surfaces which is 1 dimension larger than the moduli of Λ-polarized K 3
surfaces,

MΛ ⊂MΛ̂.

To the curve C ⊂MΛ, we can attach a nonsingular complete curve C ′ ⊂MΛ̂

satisfying the following properties:

(1) C ∪ C ′ is a connected nodal curve with nodes occurring at very general
points of C ;

(2) C ′ does not lie in any of the finitely many Noether–Lefschetz divisors of
MΛ̂ determined by

Λ ∩ Effξ (δ1, L) for ξ ∈ C,

and C ′ is transverse to the Noether–Lefschetz divisor of nodal K 3 surfaces;

(3) C ∪ C ′ smooths in MΛ̂ to a nonsingular curve

C ′′ ⊂MΛ̂

which also does not lie in any of the finitely many Noether–Lefschetz
divisors listed in (2) and is also transverse to the nodal divisor.

Let ξ ∈ C and let β ∈ Λ∩Effξ (δ1, L). By the construction of Λ̂ in Section 8.4,
β /∈ Λ̂. Let

e1 = 〈δ1, β〉, e2 = 〈δ2, β〉, 2h − 2 = 〈β, β〉.
By the Hodge index theorem, the intersection form on the lattice generated by Λ̂
and β is of signature (1, 2). In particular, the discriminant

∆(Λ̂⊕ Zβ) = (−1)2 det

〈δ1, δ1〉 〈δ1, δ2〉 e1

〈δ2, δ1〉 〈δ2, δ2〉 e2

e1 e2 2h − 2


is positive. Hence, by the construction of Section 1.2.1, the Noether–Lefschetz
divisor

Dm,h,(e1,e2) ⊂MΛ̂

is of pure codimension 1. Conditions (2) and (3) require C ′ and C ′′, respectively,
not to lie in the Noether–Lefschetz divisors obtained from

Λ ∩ Effξ (δ1, L), for ξ ∈ C
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and the nodal Noether–Lefschetz locus D1,0,(0,0). Together, these are finitely
many proper divisors in MΛ̂.

There is no difficulty in finding C ′ and the smoothing C ′′ since the moduli
space MΛ̂ has a Satake compactification as a projective variety of dimension 18
with boundary of dimension 1. We first find a nonsingular projective surface

Y ⊂MΛ̂ (8.9)

which contains C and does not lie in any of the Noether–Lefschetz divisors listed
in (2). Then C ′ is chosen to be a very ample section of Y whose union with C
smooths to a very ample section C ′′ of Y . As divisor classes

[C] + [C ′] = [C ′′] ∈ Pic(Y ),

and the smoothing occurs as a pencil of divisors in the linear series on Y .

8.6. Nonisolated contributions: degeneration. Let X , X ′, and X ′′ denote
the families of Λ̂-polarized K 3 surfaces

π : X → C, π ′ : X ′→ C ′, π ′′ : X ′′→ C ′′

obtained from the curves C,C ′,C ′′ ⊂ MΛ̂. By the transversality conditions
in (2) and (3) of Section 8.5 with respect to the nodal Noether–Lefschetz divisor,
the families X ′ and X ′′ are nonsingular and have only finitely many nodal fibers.
Of course, π is just

π3 : X→ C

viewed with a different lattice polarization. As C ′′ degenerates to the curve C ∪
C ′, we obtain a degeneration of 3-folds

X ′′  X ∪ X ′

with nonsingular total space.
Consider the degeneration formula for stable pairs invariants of X ′′ in fiber

classes. The degeneration formula expresses such stable pairs invariants of X ′′ in
terms of the relative stable pairs invariants of

X/π−1(C ∩ C ′) and X ′/(π ′)−1(C ∩ C ′)

in fiber classes. Degeneration to the normal cone of π−1(C ∩ C ′) ⊂ X (together
with usual K 3 vanishing via the reduced theory) shows the relative invariants of
X/π−1(C ∩ C ′) equal the standard stable pairs invariants of X in fiber classes.
Similarly, the relative invariants of X ′/(π ′)−1(C ∩ C ′) equal the standard stable
pairs invariants of X ′.
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We index the fiber class invariants of X , X ′, and X ′′ by the degrees measured
against δ1 and δ2. The stable pairs partition functions are:

ZP(X; q) = 1+
∑

(e1,e2) 6=(0,0)
ZP(X; q)(e1,e2)v

e1
1 v

e2
2 ,

ZP(X ′; q) = 1+
∑

(e1,e2)6=(0,0)
ZP(X ′; q)(e1,e2)v

e1
1 v

e2
2 ,

ZP(X ′′; q) = 1+
∑

(e1,e2)6=(0,0)
ZP(X ′′; q)(e1,e2)v

e1
1 v

e2
2 .

Since δ1 is ample, only terms with e1 > 0 can occur in the above sums. The
degeneration formula yields the following result.

PROPOSITION 43. We have

ZP(X ′′; q) = ZP(X; q) · ZP(X ′; q).

Let F̃ X , F̃ X ′ , and F̃ X ′′ denote the logarithms of the partition functions of X ,
X ′, and X ′′, respectively. Proposition 43 yields the relation:

F̃ X ′′ = F̃ X + F̃ X ′ . (8.10)

We now restrict ourselves to fiber classes of δ1-degree bounded by L (as
specified in the construction of Λ̂ in Section 8.4). For such classes on X ′, we
will divide F̃ X ′ into two summands.

LEMMA 44. There are no curves of X ′ in class β ∈ H2(X ′,Z)π
′

of δ1-degree
bounded by L which move in families dominating X ′.

Proof. If a such a family of curves were to dominate X ′, then every fiber X ′ξ ′ as
ξ ′ varies in C ′ would contain an effective curve class of the family. In particular,
the fibers over ξ ′ ∈ C ∩C ′ would contain such effective curves. By construction,
ξ ′ ∈ C ∩ C ′ is a very general point of C . Therefore,

Pic(X ′ξ ′) = Pic(Xξ ′) ∼= Λ.

Since C ′ was chosen not to lie in any Noether–Lefschetz divisors associated to
effective curves on Xξ ′ inΛ of δ1-degree bounded by L , we have a contradiction.
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By Lemma 44, we can separate the contributions of the components of Pn(X ′,
β) by the points ξ ′ ∈ C ′ over which they lie:

F̃ X ′,L =
∑

ξ ′∈C∩C ′
F̃ X ′,L
ξ ′ + F̃ X ′,L

C ′\(C∩C ′). (8.11)

Here, F̃ X ′,L is the δ1-degree L truncation of F̃ X ′ . For each ξ ′ ∈ C ∩ C ′, F̃ X ′,L
ξ ′ is

the δ1-degree L truncation of log(ZL
P,ξ ′(X

′; q)), the logarithm of the truncated
stable pairs partition functions of moduli component contributions over ξ ′.
Finally, F̃ X ′,L

C ′\(C∩C ′) is the δ1-degree L truncation of log(ZL
P,C ′\(C∩C ′)(X

′; q)), the
logarithm of the truncated stable pairs partition functions of contributions over
C ′ \ (C ∩ C ′).

LEMMA 45. For ξ ′ ∈ C ∩ C ′, we have

F̃ X ′,L
ξ ′ =

∑
β∈Effξ ′ (δ1,L)

∑
n∈Z

qnv
eβ1
1 v

eβ2
2 R̃n,mβ ,hβ · Cont

(
X ′ξ ′, β, N Lπ

′
mβ ,hβ ,(e

β

1 ,e
β

2 )

)
.

Here, mβ denotes the divisibility of β, and

2hβ − 2 = 〈β, β〉, eβ1 = 〈δ1, β〉, eβ2 = 〈δ2, β〉.
Proof. By Lemma 44, every class β ∈ Effξ ′(δ1, L) is completely isolated with
respect to the family π ′. Hence, we may apply Proposition 42 to the contributions
of β to the Λ̂-polarized family π ′.

8.7. Nonisolated contributions: analysis of C ′′. By the construction of C ′′

in Section 8.5,
C,C ′,C ′′ ⊂ Y ⊂MΛ̂

where Y is the nonsingular projective surface (8.9) not contained in any of
the Noether–Lefschetz divisors listed in condition (2). Both C ′ and C ′′ were
constructed as very ample divisors on Y which also do not lie in the Noether–
Lefschetz loci listed in (2). Since

[C] + [C ′] = [C ′′] ∈ Pic(Y ),

we have
〈[C], [C]〉Y + 〈[C], [C ′]〉Y = 〈[C], [C ′′]〉Y > 0.

Let r = 〈[C], [C ′′]〉Y , and let ζ1, . . . , ζr be the r distinct intersection points of C
with C ′′. We can choose C ′′ so the ζi are very general points of C . In particular,

ζi /∈ C ∩ C ′. (8.12)
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The degeneration of C ′′ to C ∪ C ′ occurs in the pencil on Y spanned by C ′′ and
C ∪ C ′.

Let Dm,h,(e1,e2) occur in the finite list of Noether–Lefschetz divisors given in
condition (2) of Section 8.5. Since Y does not lie in Dm,h,(e1,e2), the intersection

Dm,h,(e1,e2) ∩ Y ⊂ Y

is a proper divisor. We write

Dm,h,(e1,e2) ∩ Y = w[C] +
∑

j

w j [T j ], w,w j > 0

where w is the multiplicity of C and the T j ⊂ Y are curves not containing C . By
the genericity hypotheses,

C ∩ C ′ ∩ T j = C ∩ C ′′ ∩ T j = ∅. (8.13)

LEMMA 46. There are no curves of X ′′ in class β ∈ H2(X ′′,Z)π
′′

of δ1-degree
bounded by L which move in families dominating C ′′.

Proof. If a such a family of curves were to dominate C ′′, then every fiber X ′′ξ ′′ as
ξ ′′ varies in C ′′ would contain an effective curve class of the family. In particular,
the fibers over ζ ∈ C ∩C ′′ would contain such effective curves. By construction,
ζ ∈ C ∩ C ′′ is a very general point of C . Therefore,

Pic(X ′′ζ ) = Pic(Xζ ) ∼= Λ.
Since C ′′ was chosen not to lie in any Noether–Lefschetz divisors associated to
effective curves on Xζ in Λ of δ1-degree bounded by L , we have a contradiction.

We now consider the family of nonsingular curves C ′′t in the pencil as C ′′

degenerates to C ∪C ′. Here t varies in ∆, the base of the pencil. The total space
of the pencil is

C ′′→ ∆

with special fiber
C ′′0 = C ∪ C ′ over 0 ∈ ∆.

For fixed t 6= 0, the stable pairs theory in δ1-degree bounded by L for each C ′′t
can be separated, by Lemma 46, into contributions over isolated points of C ′′t .
The union of these support points for the stable pairs theory of C ′′t defines an
algebraic curve

Supp ⊂ C ′′ \ C ′′0 → ∆t 6=0
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in the total space of the pencil. Precisely, Supp equals the set

{(t, p) | t 6= 0, p ∈ C ′′t , X ′′(t,p) carries an effective curve of degree 6 L}.

LEMMA 47. The closure Supp ⊂ C ′′ contains no components which intersect
the special fiber C ′′0 = C ∪ C ′ in C ∩ C ′.

Proof. If a component Z ⊂ Supp meets ξ ′ ∈ C ∩ C ′, then there must be an
effective curve class β ∈ Pic(Xξ ′) which remains effective (and algebraic) on all
of Z . By construction,

Pic(Xξ ′) = Λ.
Hence, Z must be contained in the Noether–Lefschetz divisor at ξ ′ corresponding
to β. The latter Noether–Lefschetz divisor is on the list specified in condition (2)
of Section 8.5 and hence takes the form

Dm,h,(e1,e2) = w[C] +
∑

j

w j [T j ].

The intersection of C ′′t 6=0 with C is always {ζ1, . . . , ζr } since C ′′t is a pencil. By
condition (8.12), ξ ′ is not a limit. The intersection of C ′′t 6=0 with T j can not have
limit ξ ′ by (8.13).

The subvariety Supp ⊂ C ′′ is proper (by Lemma 47) and therefore consists of
finitely many curves and points. Let

Supp1 ⊂ Supp

denote the union of the 1-dimensional components of Supp. By Lemmas 46
and 47 no such component lies in the fibers of the pencil

C ′′→ ∆.

Hence, after a base change ε : ∆̃ → ∆ possibly ramified over 0 ∈ ∆, the pull-
back of S̃upp1 to the pulled-back family

C̃ ′′→ ∆̃

is a union of sections. We divide the sections into two types

S̃upp1 =
⋃

i

Ai ∪
⋃

j

B j
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by the values of the sections over 0 ∈ ∆̃:

Ai(0) ∈ C ⊂ C ′′0 , B j(0) ∈ C ′ ⊂ C ′′0 .

By Lemma 46, no section meets C ∩ C ′ over 0 ∈ ∆̃.
The stable pairs partition functions of every 3-fold

X ′′t → C̃ ′′t , t 6= 0

factors into into contributions over the sections Ai(t) and B j(t),

ZL
P(X

′′
t , q) =

[∏
i

ZL
P,Ai (t)(X

′′
t , q) ·

∏
j

ZL
P,B j (t)(X

′′
t , q)

]
6L

. (8.14)

As before, the partition functions are all δ1-degree L truncations. The finitely
many points of Supp \ Supp1 are easily seen not to contribute to (8.14) by
deformation invariance of the virtual class. We can take the logarithm,

F̃ X ′′t ,L =
∑

i

F̃ X ′′t ,L
Ai (t) +

∑
j

F̃ X ′′t ,L
B j (t) .

Since the sections B j all meet C ′ \C ∩C ′ over 0 ∈ ∆̃, the moduli space of stable
pairs supported over

C̃ ′′ \
(

C ∪
⋃

i

Ai

)
is proper. Again, by deformation invariance of the virtual class,∑

j

F̃ X ′′t ,L
B j (t) = F̃ X ′,L

C ′\C∩C ′ .

Then relations (8.10) and (8.11) imply

F̃ X,L = −
∑

ξ ′∈C∩C ′
F̃ X ′,L
ξ ′ +

∑
i

F̃ X ′′t ,L
Ai (t) (8.15)

for every 0 6= t ∈ ∆̃.

LEMMA 48. For general t ∈ ∆̃, the section Ai(t) does not lie in the nodal
Noether–Lefschetz locus in C̃ ′′t .
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Proof. Suppose Ai(t) is always contained in the nodal Noether–Lefschetz locus
in C̃ ′′t . We can assume by construction that Y meets the nodal Noether–Lefschetz
divisor D1,0,(0,0) at very general points of the latter divisor in MΛ̂. Hence, for
very general t , X ′′t,Ai (t) is a nodal K 3 surface with K 3 resolution

ρ : X̃ ′′t,Ai (t) −→ X ′′t,Ai (t)

with Picard lattice
Pic(X̃ ′′t,Ai (t))

∼= Λ̂⊕ Z[Ẽ] (8.16)

where E is the exceptional −2-curve. (The lattice Λ̂ ⊕ Z[Ẽ] is primitive in
Pic(X̃ ′′t,Ai (t)) since Λ̂ ⊂ Λ is primitive and (8.2) holds. The isomorphism (8.16)
is then immediate at a very general point of the nodal Noether–Lefschetz divisor
of MΛ̂.)

By the definition of Ai(t), there must exist an effective curve

Q ⊂ X ′′t,Ai (t)

of δ1-degree bounded by L on X ′′t,Ai (t). Since X ′′t,Ai (t) is nodal, Q may not be
a Cartier divisor. However, 2Q is Cartier. By pulling back via ρ, using the
identification of the Picard lattice (8.16), and pushing forward by ρ,

2Q ∈ Λ̂. (8.17)

The effective curve Q moves with the K 3 surfaces X ′′t,Ai (t) as t goes to 0. The
condition (8.17) holds for very general t and hence for all t . In particular the
condition (8.17) hold at t = 0. The K 3 surface X ′′0,Ai (0) is a nodal fiber of

X → C.

The existence of an effective curve Q ∈ 1
2Λ̂ directly contradicts condition (iii)

of Section 8.4 of Λ̂.

Let C̃ ′′t be a general curve of the pencil ∆̃. By Lemma 48, the sections Ai(t) ∈
C̃ ′′t are disjoint from the nodal Noether–Lefschetz divisor on C̃ ′′t . We would like
to apply the contribution relation of Proposition 42 to the fiber of

X ′′t → C̃ ′′t

over Ai(t). We therefore need the following result.

LEMMA 49. For general t ∈ ∆̃, the curve C̃ ′′t does not lie in the Noether–
Lefschetz divisor associated to any effective curve

β ∈ Pic(X ′′t,Ai (t))

of δ1-degree bounded by L.
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Proof. If the assertion of the Lemma were false, there would exist a moving
family of effective curves

β ∈ Pic(X ′′t,Ai (t))

such that C̃ ′′t always lies in the Noether–Lefschetz divisor corresponding to β.
Then all of Y would lie in the Noether–Lefschetz divisor corresponding to β.
The limit of β is an effective class in the K 3 fiber over Ai(0) ∈ C of δ1-degree
bounded by L . Hence, the Noether–Lefschetz divisor corresponding to β is listed
in condition (2) of Section 8.5. But C ′′ ⊂ Y was constructed to not lie in any of
the Noether–Lefschetz divisors of the list (2), a contradiction.

We may now apply Proposition 42 to the fiber of

X ′′t → C̃ ′′t

over Ai(t) for a general curve C̃ ′′t of the pencil ∆̃. Just as in Lemma 45, we obtain

F̃ X ′′t ,L
Ai (t) =

∑
β∈EffAi (t)(δ1,L)

∑
n∈Z

qnv
eβ1
1 v

eβ2
2 R̃n,mβ ,hβ · Cont

(
X ′′Ai (t), β, N Lπ

′′
mβ ,hβ ,(e

β

1 ,e
β

2 )

)
.

(8.18)

8.8. Proof of Theorem 8. We now complete the proof of Theorem 8 by
proving the relation

Ñ X
n,(d1,d2,d3)

=
∑

h

∞∑
m=1

R̃n,m,h · N Lπ3
m,h,(d1,d2,d3)

(8.19)

for degrees (d1, d2, d3) positive with respect to the quasipolarization in Λ. The
Noether–Lefschetz divisors lie in the moduli space MΛ.

The degrees (d1, d2, d3) of a class in H2(X,Z)π3 with respect to Λ determine
the degrees (e1, e2) with respect to Λ̂. We first show relation (8.19) is equivalent
for classes of δ1-degree bounded by L to the relation

Ñ X
n,(e1,e2)

=
∑

h

∞∑
m=1

R̃n,m,h · N Lπ3
m,h,(e1,e2)

. (8.20)

The Noether–Lefschetz theory in (8.20) occurs in the moduli space MΛ̂.
The equivalence of (8.19) and (8.20) for classes of δ1-degree bounded by L is

a consequence of condition (4) in Section 8.4 for Λ̂ ⊂ Λ. For effective classes
of δ1-degree bounded by L , condition (4) says the (e1, e2) degrees determine
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the (d1, d2, d3) degrees. The left sides of (8.19) and (8.20) then match since the
stable pairs invariants only involve effective classes. As shown in Section 8.2,
only effective classes contribute to the right sides as well. So the right sides of
(8.19) and (8.20) also match.

We prove (8.20) by the result obtains in Sections 8.6 and 8.7. By
Equations (8.15) and (8.18) and Lemma 45, we have

F̃ X,L = −
∑

ξ ′∈C∩C ′

∑
β∈Effξ ′ (δ1,L)

∑
n∈Z

qnv
eβ1
1 v

eβ2
2 R̃n,mβ ,hβ · Cont

(
X ′ξ ′, β, N Lπ

′
mβ ,hβ ,(e

β

1 ,e
β

2 )

)
+
∑

i

∑
β∈EffAi (t)(δ1,L)

∑
n∈Z

qnv
eβ1
1 v

eβ2
2 R̃n,mβ ,hβ · Cont

(
X ′′Ai (t), β, N Lπ

′′
mβ ,hβ ,(e

β

1 ,e
β

2 )

)
(8.21)

for a general t ∈ ∆̃.
By definition, the qnv

e1
1 v

e2
2 coefficient of the left side of (8.21) is Ñ X

n,(e1,e2)
. The

qnv
e1
1 v

e2
2 coefficients of the right side of (8.21) correspond to intersections with

the Noether–Lefschetz divisors Dm,h,(e1,e2). As in Section 8.7, we write

Dm,h,(e1,e2) ∩ Y = w[C] +
∑

j

w j [T j ], w,w j > 0, (8.22)

where w is the multiplicity of C and the T j ⊂ Y are curves not containing C .
The first sum on the right side of (8.21) concerns C ∩ C ′. The contribution of

Dm,h,(e1,e2) to the qnv
e1
1 v

e2
2 coefficient of the first sum is

−w〈[C], [C ′]〉Y R̃n,m,h (8.23)

if all the instances of β ∈ Pic(X ′ξ ′) associated to the Noether–Lefschetz divisor
Dm,h,(e1,e2) are effective. As we have seen in Section 8.2, if any such instance
of β is not effective, then R̃n,m,h = 0 and the entire Noether–Lefschetz divisor
Dm,h,(e1,e2) contributes 0 to the right sides of both (8.20) and (8.21).

Next, we study the intersection of Dm,h,(e1,e2) with C̃ ′′t . The intersection with C ,

C ∩ C̃ ′′t = {ζ1, . . . , ζr }, r = 〈C,C ′′〉Y ,
is independent of t by the construction of the pencil. The contribution to the
qnv

e1
1 v

e2
2 coefficient of the full intersection C ∩ C̃ ′′t is

w〈[C], [C ′′]〉Y R̃n,m,h (8.24)

if all the instances of
β ∈ Pic(X ′′t,ζk

) = Pic(Xζk )
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associated to the Noether–Lefschetz divisor Dm,h,(e1,e2) are effective. Such an
effective β implies the point ζk ∈ C̃ ′′s is always in S̃upp and hence corresponds to
a section Ai . In the effective case, the contributions (8.24) all occur in the second
sum of (8.21).

On the other hand, if any class β ∈ Pic(X ′′t,ζk
), for any ζk ∈ C ∩C ′, associated

to the Noether–Lefschetz divisor Dm,h,(e1,e2) is not effective, then R̃n,m,h = 0 and
the entire Noether–Lefschetz divisor Dm,h,(e1,e2) contributes 0 to the right sides of
(8.20) and (8.21).

Finally, we consider the intersection of T j with C̃ ′′t . By construction, T j∩C̃ ′′t ⊂
C̃ ′′t is a finite collection of points. We divide the intersection

T j ∩ C̃ ′′t = I j,t ∪ I ′j,t (8.25)

into disjoint subset with the following properties:

• as t → 0, the points of I j,t have limit in C ;

• as t → 0, the points of I ′j,t have limit in C ′.

Since T j does not intersect C ∩ C ′, the disjoint union is well defined and unique
(8.25) for t sufficiently near 0. Moreover, the sum of the local intersection
numbers of T j ∩ C̃ ′′t over I j,t is 〈C, T j 〉Y . The points of I ′j,t , related to the sections
B(t) in the analysis of Section 8.7, do not play a role in the analysis of (8.21).
(The contributions of the sections B(t) is canceled in (8.15).)

If a single instance of a class

β ∈ Pic(X ′′t,ξ ′′) for ξ ′′ ∈ I j,t

associated to the Noether–Lefschetz divisor Dm,h,(e1,e2) is ineffective for t
sufficiently near 0, then R̃n,m,h = 0 and the entire Noether–Lefschetz divisor
Dm,h,(e1,e2) contributes 0 to the right sides of (8.20) and (8.21). Otherwise, every
instance of such a β is effective for all t sufficiently near 0. Then

I j,t ⊂
⋃

i

Ai(t),

and the contribution to the qnv
e1
1 v

e2
2 coefficient of the right side of (8.21) of the

full intersection I j,t is
w j 〈[C], T j 〉Y R̃n,m,h. (8.26)

Summing all the contributions (8.23), (8.24), and (8.26) to the right side of
(8.21) associated to Dm,h,(e1,e2) yields(

−w〈[C], [C ′]〉Y + w〈[C], [C ′′]〉Y +
∑

j

w j 〈[C], T j 〉Y
)
· R̃n,m,h. (8.27)
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Using the relation−[C ′]+[C ′′] = [C] and (8.22), the sum (8.27) exactly matches
contribution

R̃n,m,h · N Lπ3
m,h,(e1,e2)

= R̃n,m,h ·
∫

C
[Dm,h,(e1,e2)]

of Dm,h,(e1,e2) to the right side of (8.20). The proofs of (8.20) and of Theorem 8
are complete.

9. Katz–Klemm–Vafa conjecture

The proof of the P/NL correspondence of Theorem 8 was the last step in the
proof of Proposition 10:

rg,m,h = r̃g,m,h for all g ∈ Z, m > 0, h ∈ Z.

The proof of Theorem 4 is also now complete.
In Section 7.6, several properties of the stable pairs invariants r̃g,m,h were

established (and in fact were used in the proofs of Theorem 8 and Proposition 10).
The most important property of r̃g,m,h is independence of divisibility established
in Proposition 39,

r̃g,β depends only upon g and 〈β, β〉.
Also proven in Section 7.6 were the basic vanishing results

r̃g<0,m,h = 0, r̃g,m,h<0 = 0.

The independence of r̃g,β upon the divisibility of β reduces the Katz–Klemm–
Vafa conjecture to the primitive case.

The stable pairs BPS counts in the primitive case are determined by
Proposition 35, relation (7.5), and the interpretation of the Kawai–Yoshioka
results presented in Section 5.7. Taken together, we prove the Katz–Klemm–
Vafa conjecture in the primitive case and hence in all cases. The proof of
Theorem 3 is complete.

Following the notation of Section 1.3, let

π : X → C

be a 1-parameter family of Λ-polarized K 3 surfaces with respect to a rank r
lattice Λ. Using the independence of divisibility, Theorem 5 in Gromov–Witten
theory takes a much simpler form.

THEOREM 50. For degrees (d1, . . . , dr ) positive with respect to the
quasipolarization λπ ,
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nX
g,(d1,...,dr )

=
∞∑

h=0

rg,h · N Lπh,(d1,...,dr )
.

Theorems 3 and 50 together give closed form solutions for the BPS states in
fiber classes in term of the Noether–Lefschetz numbers (which are expressed in
terms of modular forms by Borcherds’ results). A classical example is given in
the next section.

10. Quartic K3 surfaces

We provide a complete calculation of the Noether–Lefschetz numbers and
BPS counts in fiber classes for the family of K 3 surfaces determined by a
Lefschetz pencil of quartics in P3:

π : X → P1, X ⊂ P3 × P1 of type (4, 1).

Let A and B be modular forms of weight 1/2 and level 8,

A =
∑
n∈Z

qn2/8, B =
∑
n∈Z
(−1)nqn2/8.

Let Θ be the modular form of weight 21/2 and level 8 defined by

222Θ = 3A21 − 81A19 B2 − 627A18 B3 − 14436A17 B4

− 20007A16 B5 − 169092A15 B6 − 120636A14 B7

− 621558A13 B8 − 292796A12 B9 − 1038366A11 B10

− 346122A10 B11 − 878388A9 B12 − 207186A8 B13

− 361908A7 B14 − 56364A6 B15 − 60021A5 B16

− 4812A4 B17 − 1881A3 B18 − 27A2 B19 + B21.

We can expand Θ as a series in q1/8,

Θ = −1+ 108q + 320q9/8 + 50016q3/2 + 76950q2 . . . .

Let Θ[m] denote the coefficient of qm in Θ .
The modular form Θ first appeared in calculations of [27]. The following

result was proven in [36]: the Noether–Lefschetz numbers of the quartic pencil
π are coefficients of Θ ,

N Lπh,d = Θ
[44(h, d)

8

]
,

where the discriminant is defined by
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44(h, d) = − det
(

4 d
d 2h − 2

)
= d2 − 8h + 8.

By Theorem 50, we obtain

nX
g,d =

∞∑
h=0

rg,h ·Θ
[44(h, d)

8

]
,

as predicted in [27]. Similar closed form solutions can be found for all the
classical families of K 3-fibrations, see [36].
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Appendix A. Invariants

We include here a short table of the various invariants associated to a K 3
surface S and a class β ∈ Pic(S).

Rg,β(S) Reduced GW invariants of S Section 0.1
rg,β BPS counts for K 3 surfaces in GW theory Section 0.3

R̃n,β(S) Stable pair invariants of S parallel to Rg,β Sections 0.6, 6.2
r̃n,β BPS counts for K 3 surfaces via stable pairs Sections 3.4, 7.6
Rred

n,β(S ×R) Reduced stable pair invariants of the rubber Section 6.6
〈1〉red

Y,β Reduced stable pair residues of Y = S × C Section 5.6
Ih Ih = 〈1〉red

Y,α for α primitive with 〈α, α〉 = 2h − 2 Section 5.6
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Associated to K 3 fibrations over a curve

X −→ C,

there are several more invariants. Here, β ∈ H2(X,Z) is a fiber class.

N X
g,β Connected GW invariants of the K 3-fibration X Section 2.2

nX
g,β BPS counts for X in GW theory Section 2.2

Ñ X
n,β Connected stable pairs invariants of the K 3-fibration X Section 8.1

ñX
g,β BPS counts for X via stable pairs Sections 3.5, 8.1

When S is a nonsingular K 3 fiber of X → C and β ∈ Pic(S) is a class for
which no effective summand on S deforms over C , we have two invariants.

P?
n,β(X) Contribution of stable pairs supported on S Section 6.2

to the stable pairs invariant of X
P?

n,β(X/S) Contribution of stable pairs over S Section 6.5
to the relative stable pairs invariant of X/S

Appendix B. Degenerations

Let P̃2 × P1 be the blow-up of P2 × P1 at a point. Consider the toric 4-fold

Y = P̃2 × P1 × P1

of Picard group of rank 4,

Pic(Y) ∼= ZL1 ⊕ ZL2 ⊕ ZE ⊕ ZL3.

Here, L1, L2, E are the pull-backs of divisors from P̃2 × P1 and L3 is the pull-
back of O(1) from the last P1. (We follow the notation of Section 2.) The divisors
L1, L2, and L3 are certainly base point free on Y. Since L1 + L2 − E arises on
P̃2 × P1 via the projection from a point of the (1, 1)-Segre embedding

P2 × P1 ↪→ P5,

the divisor L1 + L2 − E determines a map to the quadric Q ⊂ P4,

P̃2 × P1 → Q ⊂ P4.

Hence, L1 + L2 − E is base point free on both P̃2 × P1 and Y.
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The anticanonical series 3L1 + 2L2 − 2E + 2L3 is base point free on Y since
L1, L2, L3, and L1 + L2 − E are all base point free. Let

X ⊂ Y

be a general anticanonical divisor (nonsingular by Bertini). In [39], the Gromov–
Witten/Pairs correspondence is proven for Calabi–Yau 3-fold which admit
appropriate degenerations. To find such degenerations for X, we simply factor
equations.

Let Xa,b,c,d ⊂ Y denote a general divisor of class aL1 + bL2 + cE + d L3. We
first degenerate X = X3,2,−2,2 via the product

X2,1,−1,1 · X1,1,−1,1.

For such a degeneration to be used in the scheme of [39], all of the following
varieties must be nonsingular:

X3,2,−2,2, X2,1,−1,1, X1,1,−1,1,

X2,1,−1,1 ∩ X1,1,−1,1, X3,2,−2,2 ∩ X2,1,−1,1 ∩ X1,1,−1,1.

Since all three divisor classes X3,2,−2,2, X2,1,−1,1, X1,1,−1,1 are base point free, the
required nonsingularity follows from Bertini. Next, we degenerate X2,1,−1,1 via
the product

X1,1,−1,1 · X1,0,0,0.

The nonsingularity of the various intersections is again immediate by Bertini.
Since X1,0,0,0 is a toric 3-fold, no further action must be taken for X1,0,0,0.

We are left with the divisor X1,1,−1,1 which we degenerate via the product

X1,0,0,1 · X0,1,−1,0.

While the divisor classes of X1,1,−1,1 and X1,0,0,1 are base point free, the class
X0,1,−1,0 is not. There is unique effective divisor

X0,1,−1,0 ⊂ Y.

Fortunately X0,1,−1,0 is a nonsingular toric 3-fold isomorphic to P̃2 × P1 where
P̃2 is the blow-up of P2 in a point. The nonsingularity of X0,1,−1,0 is sufficient to
guarantee the nonsingularity of

X1,0,0,1 ∩ X0,1,−1,0, X1,1,−1,1 ∩ X1,0,0,1 ∩ X0,1,−1,0

since X1,1,−1,1 and X1,0,0,1 are both base point free.
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The result of [39] reduces the GW/P correspondence for X to the toric cases

X1,0,0,0, X0,1,−1,0, X0,0,0,1

and the geometries of the various K 3 and rational surfaces and higher
genus curves which occur as intersections in the degenerations. The GW/P
correspondences for all these end states have been established in [39] and earlier
work. Hence, the GW/P correspondence holds for X.

Appendix C. Cones and virtual classes

C.1. Fulton Chern class. Let X be a scheme of dimension d . (The
constructions are also valid for a Deligne–Mumford stack which admits
embeddings into nonsingular Deligne–Mumford stacks.) Let

X ⊂ M

be a closed embedding in a nonsingular ambient M of dimension m > d . Of
course, we also have an embedding

X ⊂ M × C = M̃

where X lies over 0 ∈ C. The normal cones CX M and CX M̃ of X in M and M̃
are of pure dimensions m and m + 1, respectively. Moreover,

CX M̃ = CX M ⊕ 1,

following the notation of [15]. Let q be the structure morphism of the projective
cone

q : P(CX M̃)→ X,

and let [P(CX M̃)] be the fundamental class of pure dimension m. The Segre
class s(X,M) is defined by

s(X,M) = q∗

( ∞∑
i=0

c1(O(1))i ∩ [P(CX M ⊕ 1)]
)

= q∗

( ∞∑
i=0

c1(O(1))i ∩ [P(CX M̃)]
)
.

The Fulton total Chern class,

cF(X) = c(TM |X ) ∩ s(X,M)

= c(TM̃ |X ) ∩ q∗

( ∞∑
i=0

c1(O(1))i ∩ [P(CX M̃)]
)
, (C.1)

is independent of the embedding M ; see [15, 4.2.6].
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Let E• = [E−1 → E0], together with a morphism to the cotangent complex
L•, be a perfect obstruction theory on X . The virtual class associated to E• can
be expressed in terms of Chern classes of E• and the Fulton total Chern class
of X :

[X ]vir = [s((E•)∨) ∩ cF(X)
]

virdim

=
[

c(E1)

c(E0)
∩ cF(X)

]
virdim

,

where E1 = (E−1)∗ and E0 = (E0)∗. The above formula occurs in [44] and
earlier in the excess intersection theory of [15]. As a consequence, the virtual
class depends only upon the K -theory class of E•.

C.2. The curvilinear condition. Let Y ⊂ X be a subscheme satisfying the
curvilinear lifting property:

every map SpecC[x]/(x k)→ X factors through Y .

By the k = 1 case, the curvilinear lifting property implies Y ⊂ X is a bijection
on closed points.

We view the embedding X ⊂ M × C = M̃ also as an embedding of

Y ⊂ X ⊂ M̃ .

Let IX ⊂ IY be the ideal sheaves of X and Y in M̃ . There is a canonical rational
map over M̃ ,

f : Proj

( ∞⊕
i=0

I i
Y

)
−−→ Proj

( ∞⊕
i=0

IX

)
associated to the morphism of graded algebras

∞⊕
i=0

I i
X →

∞⊕
i=0

I i
Y , I 0

X = I 0
Y = OM̃ .

By definition, the source and target of f are the blow-ups of M̃ along Y and X ,
respectively,

BlY (M̃) = Proj

( ∞⊕
i=0

I i
Y

)
πY−→ M̃,

BlX (M̃) = Proj

( ∞⊕
i=0

I i
X

)
πY−→ M̃,
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with exceptional divisors

π−1
Y (Y ) = P(CY M̃), π−1

X (X) = P(CX M̃).

PROPOSITION 51. The rational map has empty base locus and thus yields a
projective morphism

f : BlY (M̃) −→ BlX (M̃).

Moreover, as Cartier divisors on BlY (M̃),

f ∗(P(CX M̃)) = P(CY M̃).

Proof. Away from the exception divisor π−1
Y (Y ), f is certainly a morphism. We

need only study the base locus on the exceptional divisor

P(CY M̃) ⊂ BlY M̃ .

We can reach any closed point q ∈ P(CY M̃) by the strict transform to BlY M̃ of
map of a nonsingular quasiprojective curve

g : (∆, p)→ M̃

with g−1(Y ) supported at p. In other words, the strict transform

gY : (∆, p)→ BlY M̃

satisfies gY (p) = q . Since Y ⊂ X is a bijection on closed points, g−1(X) is also
supported at p.

We work locally on an open affine U = Spec(A) ⊂ M̃ containing g(p) ∈ M̃ .
Let

a1, . . . , ar ∈ IX , a1, . . . , ar , b1, . . . , bs ∈ IY

be generators of the ideals IX ⊂ IY ⊂ A. By definition of the blow-up,

π−1
Y (U ) ⊂ U × Pr+s−1, π−1

X (U ) ⊂ U × Pr−1.

Let t be the local parameter of∆ at p with t (p) = 0. From the map g, we obtain
functions

ai(t) = ai(g(t)), b j(t) = b j(g(t))

in the local parameter t which are regular at 0. Since g(p) ∈ Y ⊂ X , we have
ai(0) = 0 and b j(0) = 0 for all i and j . Let `X be the lowest valuation of t among
all the functions ai(t). Since the ai(t) can not all vanish identically, `x > 0. The
limit

v = lim
t→0

(
a1(t)
t`X

, . . . ,
ar (t)
t`X

)
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is a well-defined nonzero vector v. By definition of the blow-up,

gX (p) = (g(p), [v]) ∈ U × Pr−1.

Similarly, let `Y be the lowest valuation of t among all the functions ai(t) and
b j(t). Then, the limit

w = lim
t→0

(
a1(t)
t`Y

, . . . ,
ar (t)
t`Y

,
b1(t)
t`Y

, . . . ,
bs(t)
t`Y

)
is a well-defined nonzero vector w, and

gY (p) = (g(p), [w]) ∈ U × Pr+s−1.

Certainly, `Y 6 `X since `Y is a minimum over a larger set. If `Y < `X , then
there is a b j(t) with lower valuation than all the ai(t). Such a situation directly
contradicts the curvilinear lifting property for the map

Spec(OD/t`X ) ⊂ D
g−→ X.

Hence, `Y = `X .
The equality of `Y and `X has the following consequence: the first r

coordinates of w are not all 0. As a result, the rational map

f : BlY M̃ // BlX M̃

defined on U × Pr+s−1 by projection

f (q) = f ((g(p), w)) = (g(p), (w1, . . . , wr )) = (g(p), v)
has no base locus at q . Since q was arbitrary, f has no base locus on BlY (M̃).

The exceptional divisors P(CY M̃) and P(CX M̃) are O(−1) on BlY (M̃) and
BlX (M̃), respectively. Since the morphism f respects O(−1), the relation

f ∗(P(CX M̃)) = P(CY M̃)

holds as Cartier divisors.

By Proposition 51 and the push–pull formula for the degree 1 morphism f ,
we find

f∗[P(CY M̃)] = f∗[ f ∗P(CX M̃)]
= deg( f ) · [P(CX M̃)]
= [P(CX M̃)], (C.2)

where [D] denotes the fundamental cycle of a Cartier divisor D. The restriction
of f to the exceptional divisors yields a morphism
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f : P(CY M̃)→ P(CX M̃)

which covers ι : Y → X . Since the morphism on projective cones respects O(1),
relation (C.2) and definition (C.1) together imply

ι∗cF(Y ) = cF(X).

In other words, the Fulton total Chern class is the same for embeddings
satisfying the curvilinear lifting property.

C.3. The divisor Dn1,β1 . Following the notation of Section 6.9, we have

Dn1,β1 ⊂ W (n, β),

and we would like to compare the Fulton total Chern classes of these two moduli
spaces. The subspace Dn1,β1 is the pull-back to W (n, β) of a nonsingular divisor
in the Artin stack B p

n,β . Hence, Dn1,β1 is locally defined by a single equation.
There is no obstruction to smoothing the crease for any stable pair

parameterized by Dn1,β1 . An elementary argument via vector fields moving
points in P1 shows W (n, β) to be étale locally a trivial product of Dn1,β1 with the
smoothing parameter in C. (Consider the versal deformation of the degeneration
of P1 to the chain P1∪P1. Given any finite collection of nonsingular points of the
special fiber P1 ∪ P1, an open set U of the special fiber can be found containing
the points together with a vector field which translates U over the base of the
deformation. In the case the degeneration is a longer chain, such a vector field
can be found for each node.) Hence, the equation of Dn1,β1 is nowhere a zero
divisor. Given an embedding W (n, β) ⊂ M in a nonsingular ambient space, we
consider

W (n, β) ⊂ M × C = M̃

with W (n, β) lying over 0 ∈ C. There is an exact sequence of cones on Dn1,β1 ,

0 −→ N −→ CDn1,β1
M̃ −→ CW (n,β)M̃ |Dn1,β1

−→ 0,

where N = ODn1,β1
(Dn1,β1). As a consequence,

s(W (n, β),M)|Dn1,β1
= s(Dn1,β1,M)c(ODn1,β1

(Dn1,β1)).

By the definition of the Fulton total Chern class

cF(W (n, β))|Dn1,β1
= c(TM |Dn1,β1

) ∩ s(W (n, β),M)|Dn1,β1

= c(TM |Dn1,β1
) ∩ s(Dn1,β1,M)c(ODn1,β1

(Dn1,β1))

= cF(Dn1,β1)c(ODn1,β1
(Dn1,β1)),

which is (6.79) of Section 6.9.
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