SECOND-ORDER NONCOMMUTATIVE DIFFERENTIAL AND LIPSCHITZ STRUCTURES DEFINED BY A CLOSED SYMMETRIC OPERATOR

S. J. BHATT[™] and MEETAL M. SHAH

(Received 15 January 2015; accepted 6 April 2015; first published online 25 November 2015)

Communicated by G. Willis

Abstract

The Banach *-operator algebras, exhibiting the second-order noncommutative differential structure and the noncommutative Lipschitz structure, that are determined by the unbounded derivation and induced by a closed symmetric operator in a Hilbert space, are explored.

2010 Mathematics subject classification: primary 47L40; secondary 46H99.

Keywords and phrases: second-order noncommutative differential structure, symmetric operator, noncommutative Lipschitz structure.

The aim of the present paper is to understand the noncommutative second-order differential structure and the noncommutative Lipschitz structure defined by a closed symmetric operator in a Hilbert space. Let S be a closed symmetric operator with dense domain D(S) in a Hilbert space \mathcal{H} . Let $\mathcal{B}(\mathcal{H})$ and $\mathcal{K}(\mathcal{H})$ be the C^* -algebras consisting of all bounded operators and all compact operators on \mathcal{H} , respectively. Let \mathcal{H}_S^1 consist of all operators A in $\mathcal{B}(\mathcal{H})$ such that $AD(S) \subset D(S), A^*D(S) \subset D(S)$ and SA - AS extends by closure to a bounded operator on H. Let $A_S := (SA - AS)^-$, where the bar above denotes the closure of the respective operator. Then \mathcal{H}_S^1 is a Banach *-algebra with norm $\|A\|_1 := \|A\| + \|A_S\|$, with $\|\cdot\|$ denoting the operator norm. Let \mathcal{U}_S be the C^* -algebra obtained by completing \mathcal{H}_S^1 in $\|\cdot\|$. Let δ_S be the *-derivation defined by S as $\delta_S(A) = iA_S$ with domain $D(\delta_S) = \mathcal{H}_S^1$ in \mathcal{U}_S . Let $\mathcal{K}_S^1 := \mathcal{H}_S^1 \cap \mathcal{K}(\mathcal{H}), \mathcal{H}_S^1 := \{A \in \mathcal{K}_S^1 : A_S \in \mathcal{K}(\mathcal{H})\}$ and \mathcal{H}_S^1 be the closure in the norm $\|\cdot\|_1$ of all finite rank operators in \mathcal{H}_S^1 . The algebra \mathcal{H}_S^1 is a Banach (D_1^*) -algebra [KS2] in the sense that it is a Banach *-algebra that is a dense *-subalgebra of a C^* -algebra satisfying $\|TR\|_1 \le \|T\|_1 \|R\|_1 + \|T\|_1 \|R\|_1$ for all T, R in \mathcal{H}_S^1 . The algebras $\mathcal{K}_S^1, \mathcal{H}_S^1, \mathcal{H}_S^1$

The work was carried out under UGC-SAP-DRS programme to the Department of Mathematics, SPU. S. J. Bhatt is thankful to NBHM, DAE for a Visiting Professorship.

^{© 2015} Australian Mathematical Publishing Association Inc. 1446-7887/2015 \$16.00

are closed subalgebras of $(\mathcal{A}_S^1, \|\cdot\|_1)$ and $\mathcal{F}_S^1 \subset \mathcal{J}_S^1 \subset \mathcal{K}_S^1 \subset \mathcal{A}_S^1$. In [KS2, KS3, KS4], Kissin and Shulman have investigated the structure of these algebras, regarding them as noncommutative differential algebras defined by the derivation δ_S .

The classical Banach function algebra $C^1[a,b]$ (consisting of functions $f \in C[a,b]$ such that the derivative f' exists on [a,b] and $f' \in C[a,b]$) as well as the Lipschitz algebra Lip[a,b] (consisting of functions $f \in C[a,b]$ such that the derivative f' exists almost everywhere on [a,b] and $f' \in L^{\infty}[a,b]$) suggest that the algebras $\mathcal{R}_S^1, \mathcal{K}_S^1, \mathcal{T}_S^1$ and \mathcal{F}_S^1 represent the noncommutative Lipschitz structure defined by S (more precisely, defined by S relative to $\mathcal{B}(\mathcal{H})$). The noncommutative C^1 -structure defined by S may be described more accurately by the following modified versions of these algebras. Let

$$\mathcal{A}_{S}^{(1)} := \{ A \in \mathcal{U}_{S} : AD(S) \subset D(S), A^{*}D(S) \subset D(S), (SA - AS)^{-} \in \mathcal{U}_{S} \},$$

 $\mathcal{K}_S^{(1)} := \mathcal{K}(H) \cap \mathcal{A}_S^{(1)}, \mathcal{J}_S^{(1)} := \{A \in \mathcal{K}_S^{(1)} : A_S \in \mathcal{K}(\mathcal{H})\}$ and $\mathcal{F}_S^{(1)}$ be the $\|\cdot\|_1$ -closure of finite rank operators in $\mathcal{A}_S^{(1)}$. These Banach algebras, together with the Banach algebras considered in the previous paragraph, exhibit the first-order differential structure defined by S and described in terms of the derivation δ_S . We consider the second-order differential structure defined by S, which is exhibited by the algebras and is defined as follows.

Let $\mathcal{A}_S^2 := \{A \in \mathcal{A}_S^1 : \delta_S(A) \in \mathcal{A}_S^1\}$, which is a Banach *-algebra with norm $\|A\|_2 = \|A\| + \|\delta_S(A)\| + (1/2)\|\delta_S^2(A)\|$, $\mathcal{K}_S^2 = \mathcal{A}_S^2 \cap \mathcal{K}(H)$ and $\mathcal{J}_S^2 = \{A \in \mathcal{K}_S^1 : \delta_S(A) \in \mathcal{J}_S^1\}$, and let \mathcal{F}_S^2 be the closure in $\|\cdot\|_2$ of finite rank operators in \mathcal{A}_S^2 . Notice that, for A in \mathcal{A}_S^2 , $\delta_S^2(A) \in \mathcal{B}(\mathcal{H})$, and thus the algebra \mathcal{A}_S^2 corresponds to the algebra of C^1 -functions whose derivatives are Lipschitzian. The analogues of the algebra of C^2 -functions are given as follows. Let $\mathcal{A}_S^{(2)} = \{A \in \mathcal{A}_S^{(1)} : \delta_S(A) \in \mathcal{A}_S^{(1)}\}$, which is a closed subalgebra of \mathcal{A}_S^2 , $\mathcal{K}_S^{(2)} = \mathcal{A}_S^{(2)} \cap \mathcal{K}(H)$, $\mathcal{J}_S^{(2)} = \{A \in \mathcal{K}_S^{(1)} : \delta_S(A) \in \mathcal{J}_S^{(1)}\}$, and let $\mathcal{F}_S^{(2)}$ be the closure in $\|\cdot\|_2$ of finite rank operators in $\mathcal{A}_S^{(2)}$. Thus the noncommutative second-order differential structure defined by S is manifested as the following complex of Banach algebras which are dense smooth subalgebras of C^* -algebras.

An algebra of the form \mathcal{B}_S^2 (and, analogously, $\mathcal{B}_S^{(2)}$) should not be confused with $(\mathcal{B}_S)^2$ which is the linear span in \mathcal{B}_S of the set $\{XY:X\in\mathcal{B}_S,Y\in\mathcal{B}_S\}$. Notice that, when S is a bounded operator, all the three norms $\|\cdot\|_2,\|\cdot\|_1$ and $\|\cdot\|$ are equivalent, $\mathcal{A}_S^{(2)}=\mathcal{A}_S^2=\mathcal{A}_S^{(1)}=\mathcal{A}_S^1=\mathcal{U}_S=\mathcal{B}(\mathcal{H})$, and the remaining Banach algebras coincide

with the C^* -algebra $\mathcal{K}(\mathcal{H})$. A comparison with the classical C^1 -algebra and the Lipschitz algebra in real analysis suggests that the noncommutative C^1 -structure is likely to be more rigid than the noncommutative Lipschitz structure. The purpose of the present paper is to contribute to the understanding of the noncommutative second-order differential and Lipschitz structures defined by S using the method adopted in Kissin and Shulman [KS2] and in Weaver [W1, W2] for the investigation of the first-order structures. Throughout the paper, we assume that the closed symmetric operator S is such that the operator S^2 with domain $D(S^2) := \{x \in D(S) : Sx \in D(S)\}$ is a densely defined operator. This would ensure that S^2 is closable.

The paper is organized as follows. In Section 1, we develop basic properties of the Banach *-algebra \mathcal{A}_s^2 , and compute the finite rank operators therein. The densely defined second-order derivation $\delta_S^2: \mathcal{A}_S^1 \to \mathcal{B}(\mathcal{H})$, with domain $D(\delta_S^2) = \mathcal{A}_S^2$, turns out to be a closed operator in the C^1 -norm $\|\cdot\|_1$ on \mathcal{A}^1_S and the operator norm on $\mathcal{B}(\mathcal{H})$. We also discuss the regularity properties, such as spectral invariance and closure, under functional calculi. In Section 2, it is noticed that the derivations δ_S and δ_S^2 are W*-derivations in the sense of Weaver [W1, W2] with the result that \mathcal{A}_S^1 and \mathcal{A}_{S}^{2} are W*-domain algebras [W1] which are duals of Banach spaces. This enables us to discuss Lipschitz functional calculus in these Banach algebras. In Section 3, we discuss approximation properties in \mathcal{A}_{S}^{2} ; the approximation being by a $\|\cdot\|_{1}$ convergence of a $\|\cdot\|_2$ -bounded sequence. In Section 4, closed essential left ideals in the algebra \mathcal{F}_S^2 are determined. As a whole, the paper seeks analogues for secondorder derivation δ_S^2 of results pertaining to first-order operator δ_S in [KS2], and adds a new perspective to a noncommutative Lipschitz structure defined by S. The paper discusses only some basic properties. Many important issues such as duality [KS3], isomorphisms [KS3], second-order analogues of differential Schatten algebras [KS4], analogues of Calkin algebra, as well as higher-order differential structures defined by S remain to be investigated.

1. Noncommutative differential structure

Proposition 1.1.

- (1) The class \mathcal{A}_S^2 is a Banach *-algebra with norm $||A||_2 = ||A|| + ||\delta_S(A)|| + (1/2)||\delta_S^2(A)||$. Also, for any A in \mathcal{A}_S^2 , $AD(S^{*2}) \subset D(S^{*2})$, and $\delta_S^2(A)|_{D(S^{*2})} = -[S^{*2}A 2S^*AS^* + AS^{*2}]$.
- (2) For each i = 1, 2, the algebra $\mathcal{A}_{S}^{(i)}$ is a closed *-subalgebra of \mathcal{A}_{S}^{i} .
- (3) If δ_S is a generator and, in particular, if S is self-adjoint, the algebra \mathcal{A}_S^2 is dense in \mathcal{U}_S . Also, the algebra $\mathcal{A}_S^{(2)}$ is dense in \mathcal{U}_S .

PROOF. (1) First, we note that, for $A \in \mathcal{H}_S^2$, $AD(S^2) \subset D(S^2)$ and $A^*D(S^2) \subset D(S^2)$. Indeed let $A \in \mathcal{H}_S^2$. Then $A \in \mathcal{H}_S^1$ and, as $A^* \in \mathcal{H}_S^1$, $A^*D(S) \subset D(S)$. Let $y \in D(S^2)$.

Then SA^*y is defined. Let $x \in D(S^*)$. Then

$$i(SA^*y, S^*x) = i(SA^*y, S^*x) - i(A^*Sy, S^*x) + i(A^*Sy, S^*x)$$

$$= (\delta_S(A^*)y, S^*x) + i(A^*Sy, S^*x)$$

$$= (\delta_S(A)^*y, S^*x) + i(A^*Sy, S^*x)$$

$$= (S\delta_S(A)^*y, x) + i(A^*Sy, S^*x)$$

because $A \in \mathcal{H}_S^2$, with the result $\delta_S(A)^*D(S) \subset D(S)$. Also, since $y \in D(S^2)$, $A^*Sy \in D(S)$ and SA^*Sy is defined. Hence, in the above expression, $i(SA^*y, S^*x) = (S\delta_S(A)^*y, x) + i(SA^*Sy, x)$. It follows, from the definition of the domain of the adjoint of an unbounded operator, that $SA^*y \in D(S^{**}) = D(S)$, with S being closed. Thus $A^*y \in D(S^2)$. This proves $A^*D(S^2) \subset D(S^2)$. Similarly, it follows that $AD(S^2) \subset D(S^2)$.

Clearly, \mathcal{A}_S^2 is a complex vector space. We assume $A \in \mathcal{A}_S^2$, $B \in \mathcal{A}_S^2$ and verify that $AB \in \mathcal{A}_S^2$. As \mathcal{A}_S^1 is an algebra and $A, B \in \mathcal{A}_S^1$, we have $AB \in \mathcal{A}_S^1$. As $\delta_S(AB) = \delta_S(A)B + A\delta_S(B)$ and $\delta_S(A), \delta_S(B) \in \mathcal{A}_S^1$, we have $\delta_S(AB) \in \mathcal{A}_S^1$. Thus $AB \in \mathcal{A}_S^2$. To show that \mathcal{A}_S^2 is a *-algebra, we show that $A^* \in \mathcal{A}_S^2$ for $A \in \mathcal{A}_S^2$. We have $A \in \mathcal{A}_S^1$, $\delta_S(A) \in \mathcal{A}_S^1$. Since \mathcal{A}_S^1 is a *-algebra and δ_S is a *-derivation, $A^* \in \mathcal{A}_S^1$, $\delta_S(A^*) = \delta_S(A)^* \in \mathcal{A}_S^1$. Thus $A^* \in \mathcal{A}_S^2$.

We show that $(\mathcal{A}_S^2, \|\cdot\|_2)$ is complete. Let (A_n) be a Cauchy sequence in \mathcal{A}_S^2 . Then (A_n) is $\|\cdot\|_1$ -Cauchy in the Banach algebra $(\mathcal{A}_S^1, \|\cdot\|_1)$. Hence there exists A in \mathcal{A}_S^1 such that in the operator norm, both $\|A_n - A\| \to 0$ and $\|\delta_S(A_n) - \delta_S(A)\| \to 0$. Also, since $A_n \in \mathcal{A}_S^2$, $\delta_S(A_n) \in \mathcal{A}_S^1$ and since (A_n) is $\|\cdot\|_2$ -Cauchy, $(\delta_S(A_n))$ is $\|\cdot\|_1$ -Cauchy. Hence, for some $T \in \mathcal{A}_S^1$, $\|\delta_S(A_n) - T\| \to 0$, $\|\delta_S^2(A_n) - \delta_S(T)\| \to 0$. It follows that $T = \delta_S(A)$. Thus $A \in \mathcal{A}_S^2$ and $\|A_n - A\|_2 \to 0$, showing that $(\mathcal{A}_S^2, \|\cdot\|_2)$ is complete. The norm inequality $\|AB\|_2 \le \|A\|_2 \|B\|_2 (A, B \text{ in } \mathcal{A}_S^2)$ follows easily from the derivation property of δ_S . Thus $(\mathcal{A}_S^2, \|\cdot\|_2)$ is a Banach *-algebra.

Let $A \in \mathcal{R}_S^2$. We show that $AD(S^{*2}) \subset D(S^{*2})$ and $\delta_S^2(A)|_{D(S^{*2})} = -[S^{*2}A - 2S^*AS^* + AS^{*2}]$. By [**R**, Theorem 13.2, page 330], $S^{*2} \subset (S^2)^*$. Now let $y \in D(S^2)$, $x \in D(S^{*2})$. Since $A \in \mathcal{R}_S^1$, $AD(S^*) \subset D(S^*)$, by [KS2, Lemma 3.1, page 16], and $\delta_S(A)|_{D(S^*)} = i(S^*A - AS^*)$. Also, $\delta_S(A) \in \mathcal{R}_S^1$. Hence $\delta_S(A)D(S^*) \subset D(S^*)$. Now $x \in D(S^{*2})$, $S^*x \in D(S^*)$, $AS^*x \in D(S^*)$ and

$$-(\delta_S^2(A)x, y) - (AS^{*2}x, y) + 2(S^*AS^*x, y)$$

= $-(x, \delta_S^2(A^*)y) - (x, S^2A^*y) + 2(x, SA^*Sy)$
= $(x, A^*S^2y) = (Ax, S^2y)$.

Hence $y \to (S^2y,Ax)$ is a bounded linear functional on $D(S^2)$ and so $Ax \in D(S^{2*})$. As $x \in D(S^{*2}), x \in D(S^*)$. Since $AD(S^*) \subset D(S^*), Ax \in D(S^*)$ and $y \to (S^*Ax,Sy) = (Ax,S^2y)$ is $\|\cdot\|$ bounded. Thus $S^*Ax \in D(S^*)$ and so $Ax \in D(S^{*2})$. This gives $AD(S^{*2}) \subset D(S^{*2})$ and $\delta_S^2|_{D(S^{*2})} = -[S^{*2}A - 2S^*AS^* + AS^{*2}]$. This completes the proof of (1).

- (2) Is obvious.
- (3) If δ_S is a generator, then the set $C^{\infty}(\delta_S)$ of smooth vectors (in $\mathcal{B}(\mathcal{H})$) of δ_S is dense in \mathcal{U}_S [S1]. Since $C^{\infty}(\delta_S) \subset \mathcal{A}_S^{(2)} \subset \mathcal{A}_S^2$, it follows that each of $\mathcal{A}_S^{(2)}$ and \mathcal{A}_S^2 is dense in \mathcal{U}_S .

Given norms $|\cdot|$ and $|\cdot|$ on a vector space X, $|\cdot|$ is called *closable* with respect to $||\cdot||$ if, for any sequence (x_n) in X, the assumptions (x_n) is $|\cdot|$ -Cauchy and $||x_n|| \to 0$ imply that $|x_n| \to 0$. The following lemma captures, in the present framework, an important property of the C^2 -norm on the commutative Banach algebra $C^2[a,b]$ of C^2 -functions.

Lemma 1.2. On the Banach algebra \mathcal{A}_{S}^{2} , each of the norms $\|\cdot\|_{2}$ and $\|\cdot\|_{1}$ is closable with respect to the operator norm $\|\cdot\|_{2}$ and $\|\cdot\|_{2}$ is closable with respect to $\|\cdot\|_{1}$.

PROOF. First, we show that $\|\cdot\|_1$ is closable with respect to $\|\cdot\|$ on \mathcal{A}_S^1 (and hence also on \mathcal{A}_S^2). As S is closed, δ_S is a closed operator. If $A_n \to 0$ in $\|\cdot\|$ and if A_n is a Cauchy sequence in $\|\cdot\|_1$, then $\delta_S(A_n)$ is Cauchy in $\|\cdot\|_1$. As δ_S is a closed operator, $\|\delta_S(A_n) \to 0$. Hence $\|A_n\|_1 \to 0$. If A_n is Cauchy in $\|\cdot\|_2$, then $\delta_S(A_n)$ and $\delta_S^2(A_n)$ are Cauchy in $\|\cdot\|_1$. As above, $\|\delta_S(A_n)\|_1 \to 0$. Applying this again, $\|\delta_S^2(A_n)\|_1 \to 0$. Hence $\|A_n\|_2 \to 0$. Since $\|\cdot\|_1 \le \|\cdot\|_1 \le \|\cdot\|_2$, $\|\cdot\|_2$ is closable with respect to $\|\cdot\|_1$.

The following follows immediately as in the previous lemma.

PROPOSITION 1.3. The operator δ_S^2 with domain $D(\delta_S^2) = \mathcal{A}_S^2$ is a closed operator from $(\mathcal{A}_S^1, \|\cdot\|_1)$ to $(\mathcal{B}(\mathcal{H}), \|\cdot\|)$.

For x, y in \mathcal{H} , let $x \otimes y$ be the rank one operator defined as $z \to (z, x)y$. For a densely defined operator T, if $y \in D(T)$, $x \in D(T^*)$, then $||x \otimes y|| = ||x|| ||y||$, $(x \otimes y)^* = y \otimes x$, $(x \otimes y)(u \otimes v) = (v, x)(u \otimes y)$, $T(x \otimes y) = x \otimes Ty$, and $(x \otimes y)T$ extends to $(T^*x) \otimes y$. It is shown in [KS2, Lemma 3.1] that $x \otimes y \in \mathcal{H}_S^1$ if and only if $x, y \in D(S)$, and that any finite rank operator $F \in \mathcal{H}_S^1$ is of the form $F = \sum x_i \otimes y_i$, a finite sum, where $x_i, y_i \in D(S)$. We use this to prove the following analogue in the present framework.

PROPOSITION 1.4. Given x, y in \mathcal{H} , the rank one operator $x \otimes y \in \mathcal{A}_S^2$ if and only if both x and y are in $D(S^2)$. Further, any finite rank operator F in \mathcal{A}_S^2 is of the form $F = \sum x_i \otimes y_i$, a finite sum, with all $x_i \in D(S^2)$, $y_i \in D(S^2)$.

PROOF. Let $x \in D(S^2)$, $y \in D(S^2)$. Then for all $z \in \mathcal{H}$, $(x \otimes y)z = (z, x)y \in D(S)$. Also, $\delta_S(x \otimes y) = i\{S(x \otimes y) - (x \otimes y)S\} = i\{x \otimes Sy - S^*x \otimes y\}$. Further,

$$\delta_{S}(\delta_{S}(x \otimes y)) = i\{\delta_{S}(x \otimes Sy) - \delta_{S}(S^{*}x \otimes y)\}\$$

$$= -\{S(x \otimes Sy) - (x \otimes Sy)S - S(S^{*}x \otimes y) + (S^{*}x \otimes y)S\}\$$

$$= -\{x \otimes S^{2}y - S^{*}x \otimes Sy - S^{*}x \otimes Sy + S^{*2}x \otimes y\}.$$

In fact, $S \subset S^*$ and $Sx \in D(S)$, $Sy \in D(S)$. Hence $\delta_S^2(x \otimes y) = -(x \otimes S^2y - 2Sx \otimes Sy + S^2x \otimes y)$. As $y \in D(S)$, $(x \otimes y)D(S) \subset D(S)$, and as $x \in D(S)$, $(x \otimes y)^*D(S) = (y \otimes x)D(S) \subset D(S)$. Also, $\delta_S(x \otimes y) = i\{x \otimes Sy - S^*x \otimes y\} = i\{x \otimes Sy - Sx \otimes y\} \in \mathcal{B}(\mathcal{H})$. Thus $x \otimes y \in \mathcal{A}_S^1$. Moreover, $\delta_S(x \otimes y)D(S) \subset D(S)$, $\{\delta_S(x \otimes y)\}^*D(S) = i\{x \otimes Sy - Sx \otimes y\} \in \mathcal{B}(S)$.

 $\delta_S(y \otimes x)D(S) \subset D(S)$, and $\delta_S(\delta_S(x \otimes y)) = -\{x \otimes S^2y - 2Sx \otimes Sy + S^2x \otimes y\}$ is a bounded linear operator on \mathcal{H} . Hence $x \otimes y \in \mathcal{A}_S^2$.

Conversely, let x, y in \mathcal{H} be such that $x \otimes y \in \overline{\mathcal{A}}_S^2$. We show that $x \in D(S^2)$, $y \in D(S^2)$. Note that $x \otimes y \in \mathcal{A}_S^1$ and $\delta_S(x \otimes y) \in \mathcal{A}_S^1$. By [KS2, Lemma 3.1(ii)], $x \in D(S)$ and $y \in D(S)$. Also $\delta_S(x \otimes y)D(S) \subset D(S)$ and $\{\delta_S(x \otimes y)\}^*D(S) \subset D(S)$. Now, for any $z \in \mathcal{H}$,

$$\delta_S(x \otimes y)z = i\{x \otimes Sy - S^*x \otimes y\}z = i\{(z, x)Sy - (z, S^*x)y\}.$$

Since $\delta_S(x \otimes y)D(S) \subset D(S)$ and $(S^*x \otimes y)D(S) \subset D(S)$ as $y \in D(S)$, it follows that $(x \otimes Sy)D(S) \subset D(S)$, so that, for all $z \in D(S)$, we have $(x \otimes Sy)z = (z, x)Sy \in D(S)$. Choosing z such that (z, x) is nonzero, we get $Sy \in D(S)$, so that $y \in D(S^2)$. Now $x \otimes Sy \in \mathcal{A}_S^1$. Since $\delta_S(x \otimes y) \in \mathcal{A}_S^1$, we get $S^*x \otimes y \in \mathcal{A}_S^1$. Then, by above result stated in [KS2], $Sx = S^*x \in D(S)$. Thus $x \in D(S^2)$.

Now let $F \in \mathcal{H}_S^2$ be a finite rank operator, say $F = \sum x_i \otimes y_i$, a finite sum. We can assume all x_i to be linearly independent, and also all y_i to be linearly independent. For any $z \in \mathcal{H}$, $Fz = \sum (x_i \otimes y_i)z = \sum (z, x_i)y_i$. Since $F \in \mathcal{H}_S^2$, we have $F \in \mathcal{H}_S^1$ and $\delta_S(F) \in \mathcal{H}_S^1$. By [KS2, Lemma 3.1], all $x_i \in D(S)$ and all $y_i \in D(S)$. Also,

$$\delta_{S}(F) = \sum \delta_{S}(x_{i} \otimes y_{i}) = i \sum \{S(x_{i} \otimes y_{i}) - (x_{i} \otimes y_{i})S\}$$

$$= i \sum \{x_{i} \otimes Sy_{i} - S^{*}x_{i} \otimes y_{i}\} = i \sum \{x_{i} \otimes Sy_{i} - Sx_{i} \otimes y_{i}\}.$$

As $\delta_S(F) \in \mathcal{A}_S^1$, again [KS2, Lemma 3.1(ii)] implies that all $Sy_i \in D(S)$ and all $Sx_i \in D(S)$. Thus all $x_i \in D(S^2)$, and all $y_i \in D(S^2)$. This completes the proof.

By [KS2, Lemma 3.1(iii)], \mathcal{K}_S^1 and \mathcal{J}_S^1 are closed *-ideals of $(\mathcal{A}_S^1, \|\cdot\|_1)$ and $(\mathcal{K}_S^1)^2 \subset \mathcal{J}_S^1$. The following contains an analogue of this in the present case.

PROPOSITION 1.5. \mathcal{K}_S^2 and \mathcal{J}_S^2 are closed *-ideals of $(\mathcal{A}_S^2, \|\cdot\|_2)$, and $(\mathcal{K}_S^2 \cap \mathcal{J}_S^1)^2 \subset \mathcal{J}_S^2$.

PROOF. Clearly, \mathcal{K}_S^2 is a closed *-ideal of \mathcal{A}_S^2 . Let $A \in \mathcal{J}_S^2$. Then $A \in \mathcal{K}_S^2$, $\delta_S(A) \in \mathcal{K}(\mathcal{H})$, $\delta_S^2(A) \in \mathcal{K}(\mathcal{H})$. Let $B \in \mathcal{A}_S^2$. Then $\delta_S(B) \in \mathcal{A}_S^1$, $\delta_S^2(B) \in \mathcal{B}(\mathcal{H})$. Then $\delta_S(AB) = \delta_S(A)B + A\delta_S(B) \in \mathcal{K}(\mathcal{H})$ and $\delta_S^2(AB) = A\delta_S^2(B) + 2\delta_S(A)\delta_S(B) + \delta_S^2(A)B \in \mathcal{K}(\mathcal{H})$. Similarly, $BA \in \mathcal{J}_S^2$, $A^* \in \mathcal{J}_S^2$ showing that \mathcal{J}_S^2 is a *-ideal of \mathcal{A}_S^2 . Clearly, \mathcal{J}_S^2 is closed in $(\mathcal{A}_S^2, \|\cdot\|_2)$. Now let $A, B \in \mathcal{K}_S^2 \cap \mathcal{J}_S^1$. Since $B \in \mathcal{K}_S^2$, we have $B \in \mathcal{A}_S^2$ and so $\delta_S(B) \in \mathcal{A}_S^1$. Since $B \in \mathcal{J}_S^1$, B is compact and $\delta_S(B) \in \mathcal{K}(\mathcal{H})$. Thus $\delta_S(B) \in \mathcal{K}_S^1$. Also, $A \in \mathcal{J}_S^1 \subset \mathcal{K}_S^1$. Therefore $A\delta_S(B) \in \mathcal{J}_S^1$. Similarly, $\delta_S(A)B \in \mathcal{J}_S^1$. Thus $\delta_S(AB) = A\delta_S(B) + \delta_S(A)B \in \mathcal{J}_S^1$. We already have $AB \in \mathcal{K}_S^1$. It follows that $AB \in \mathcal{J}_S^2$.

PROPOSITION 1.6. The Banach algebras (\mathcal{A}_S^2) , $\|\cdot\|_2$, $(\mathcal{K}_S^2, \|\cdot\|_2)$, $(\mathcal{J}_S^2, \|\cdot\|_2)$ and $(\mathcal{F}_S^2, \|\cdot\|_2)$ are semisimple, \mathcal{F}_S^2 has no closed two sided ideals, and $\mathcal{F}_S^2 \subset I$ for any closed *-ideal I of $(\mathcal{A}_S^2, \|\cdot\|_2)$.

PROOF. Let I be a closed *-ideal of \mathcal{F}_S^2 . Let $A \in I$. Let $x \in D(S)$ such that A^*x is nonzero. Now $A^*x \otimes y = (x \otimes y)A \in I$ for all $x, y \in D(S^2)$. Then, for all z in $D(S^2)$,

$$(A^*x\otimes y)A^*(z\otimes x)=(A^*x\otimes y)(z\otimes A^*x)=\|A^*x\|^2(z\otimes y).$$

Hence $z \otimes y \in I$. Since I contains all finite rank operators in \mathcal{A}_S^2 , we get $\mathcal{F}_S^2 \subset I$ and, since $I \subset \mathcal{F}_S^2$, $\mathcal{F}_S^2 = I$. If I is a closed *-ideal of \mathcal{A}_S^2 , this argument implies that $\mathcal{F}_S^2 \subset I$. The Banach algebra \mathcal{A}_S^2 is an A^* -algebra (that is, a Banach *-algebra with a C^* -norm). Hence it is *-semisimple, and so is semisimple.

We consider the regularity properties of these Banach algebras. Following [KS1, KS2], a Banach (D_1^*) -subalgebra of a C^* -algebra $(\mathcal{U}, \|\cdot\|)$ is a dense *-subalgebra \mathcal{A} of \mathcal{U} such that \mathcal{A} is a Banach *-algebra with some norm $\|\cdot\|_1$ satisfying $\|xy\|_1 \leq \|x\| \|y\|_1 + \|x\|_1 \|y\|$, for all $x, y \in \mathcal{A}$. This models a noncommutative differential structure of order one, and the algebra \mathcal{A}_S^1 is a Banach $(D_1)^*$ -subalgebra of the C^* -algebra \mathcal{U}_S . A Banach (D_2^*) -subalgebra of \mathcal{U} [KS1] is a dense *-subalgebra \mathcal{A} with seminorms $\|\cdot\|_1, \|\cdot\|_2$ such that:

- (1) for each i = 1, 2 and for each $x, y \in \mathcal{A}$, there exist $D_i > 0$ satisfying $||x||_i = ||x^*||_i, ||xy||_i \le ||x||_i ||y||_i, ||xy||_i \le D_i(||x||_i ||y||_{i-1} + ||x||_{i-1} ||y||_i)$; and
- (2) $\|\cdot\|_2$ is a norm and $(\mathcal{A}, \|\cdot\|_2)$ is a Banach *-algebra.

This is a noncommutative analogue of the Banach algebra of C^2 -functions. The following theorem, which exhibits regularity properties of noncommutative C^2 -structures defined by S, contains analogues in the present set-up of several well-known results on the Banach algebra of C^2 -functions. For terminology, we refer to [BC, BIO, KS1]. A *Q-normed algebra* is a normed algebra in which the set of quasiregular elements is an open set.

Theorem 1.7. For $\mathcal{B} = \mathcal{A}_S^2, \mathcal{K}_S^2, \mathcal{J}_S^2, \mathcal{F}_S^2$, let \mathcal{A} stand for their respective C^* -algebra completions. The following hold.

- (1) \mathcal{B} is a differential Banach algebra of order two and total order less than or equal to two, \mathcal{B} is a Banach (D_2^*) -algebra and \mathcal{B} is a smooth subalgebra of a C^* -algebra.
- (2) \mathcal{B} is a Q-normed algebra in the C^* -norm on \mathcal{A} , and the algebras \mathcal{B} and \mathcal{A} have the same K-theory.
- (3) \mathcal{B} is closed under the holomorphic functional calculus of \mathcal{A} , and is also closed under the C^3 -functional calculus of self-adjoint elements of \mathcal{A} .
- (4) The algebra \mathcal{B} is hermitian and spectrally invariant in \mathcal{A} .
- (5) The map $I \to I \cap \mathcal{B}$ is a one-to-one correspondence between the closed ideals of \mathcal{A} and the C^* -norm closed ideals of \mathcal{B} . The inverse of this correspondence is given by $I \to I^-$, the closure of the ideal I of \mathcal{B} in the C^* -norm $\|\cdot\|$ on \mathcal{A} . Not every ideal in \mathcal{B} closed in $\|\cdot\|_2$ is of this form.
- (6) Let $\pi : \mathcal{B} \to \mathcal{B}(K)$ be a *-representation of \mathcal{B} into bounded operators on a Hilbert space K. Then π is continuous in the C^* -norm on \mathcal{B} , and it extends uniquely to a representation of \mathcal{A} into $\mathcal{B}(K)$.
- (7) Let \mathcal{U}_S be unital. Every completely positive map $\phi: \mathcal{A}_S^2 \to \mathcal{B}(K)$ extends uniquely as a completely positive map $\phi: \mathcal{U}_S \to \mathcal{B}(K)$.

- PROOF. (1) Consider \mathcal{A}_S^2 . Let $T=(T_0,T_1,T_2)$ on \mathcal{A}_S^2 be $T_0(A)=\|A\|$, $T_1(A)=\|\delta_S(A)\|$, $T_2(A)=(1/2)\|\delta_S^2(A)\|$. Clearly, T is a differential norm of order two. Further, $T_1(AB) \leq T_0(A)T_1(B) + T_1(A)T_0(B)$ and $T_2(AB) \leq \|A\|T_2(B) + T_1(A)T_1(B) + T_2(A)\|B\|$ showing that T is of logarithmic order $p=\log_2 1+1=1$ [BC]. By [BC, Proposition 3.10], T is of total order less than or equal to two. Also, the total norm of T is $T_{\text{tot}}:=T_0+T_1+T_2=\|\cdot\|_2$. The same arguments apply to other algebras. Thus $\mathcal B$ is a differential Banach algebra of order two and total order less than or equal to two. By [BC], $\mathcal A_S^2$ is a smooth subalgebra of its C^* -completion in operator norm.
- (2) That \mathcal{B} is a Q-normed algebra with the C^* -norm from \mathcal{A} follows from [BC, Proposition 3.12] or [KS1, Theorem 5], and hence closure under holomorphic functional calculus and K-theory isomorphism follows by [C].
- (3) The closure under C^3 -functional calculus follows from [BC, Proposition 6.4] or [KS1, Theorem 12].
- (4) The fact that \mathcal{B} is a Q-subalgebra of \mathcal{A} gives hermiticity and spectral invariance (see also [KS1, Theorem 5]). Notice that the C^* -norm from \mathcal{A} is the greatest C^* -norm on \mathcal{B} .
- (5) As \mathcal{B} is a Banach D_2^* -subalgebra of \mathcal{U} , the assertion follows from [KS1, Theorem 13]. Let I be a closed ideal of the C^* -algebra \mathcal{U}_S . Then the set $I_S^2 := \{A \in \mathcal{H}_S^2 \cap I : \delta_S(A) \in I, \delta_S^2(A) \in I\}$ is a $\|\cdot\|_2$ -closed ideal of $\mathcal{H}_S^{(2)}$.
- (6) This follows from the fact that every *-representation of a Q-normed algebra into a C*-algebra is norm continuous.
- (7) The completely positive map ϕ on the unital Banach *-algebra \mathcal{A}_S^2 is Stinespring representable [B1] in the sense that it is of form $\phi(T) = V^*\pi(T)V$ where $\pi: \mathcal{A}_S^2 \to \mathcal{B}(\mathcal{K})$ (\mathcal{K} a Hilbert space) is a *-homomorphism and $V: \mathcal{K} \to \mathcal{H}$ is a projection. Now π , and hence ϕ , extends to the C^* -completion of \mathcal{A}_S^2 , and Arveson's famous completely positive extension theorem applies.

2. Noncommutative Lipschitz structure

We consider the Lipschitz structure defined by S following the ideas in [W1, W2]. Let $\mathcal{M} \subset \mathcal{N}$ be von Neumann algebras with same unit. A W^* -derivation $\delta: \mathcal{M} \to \mathcal{N}$ is an unbounded linear map whose domain $\mathrm{dom}(\delta)$ is a unital *-subalgebra of \mathcal{M} such that (i) $\mathrm{dom}(\delta)$ is ultra weakly dense in \mathcal{M} (ii) the graph of δ is ultra weakly closed in $\mathcal{M} \oplus \mathcal{N}$ and (iii) δ is a *-derivation. Then $\mathrm{dom}(\delta)$ is called a W^* -domain algebra. It is a Banach *-algebra with norm $||x||_1 := ||x|| + ||\delta(x)||$. A W^* -domain algebra is envisaged as a noncommutative Lipschitz algebra; equivalently, as a noncommutative metric space. The following brings out an essential difference between the Banach *-algebras $\mathcal{R}_S^{(1)}$ and $\mathcal{R}_S^{(1)}$, illuminating the difference between a noncommutative C^1 -structure and a noncommutative Lipschitz structure. Let $\mathcal{M}_S := W^*(\mathcal{U}_S)$ be the von Neumann algebra generated by the C^* -algebra \mathcal{U}_S . Notice that $\mathcal{M}_S = W^*(\mathcal{R}_S^1)$ and $\mathcal{U}_S = C^*(\mathcal{R}_S^1)$.

Proposition 2.1. Let S be as above.

(1) The derivation $\delta_S : \mathcal{M}_S \to \mathcal{B}(\mathcal{H})$ with domain $dom(\delta_S) = \mathcal{A}_S^1$ is a W^* -derivation.

(2) The Banach *-algebra \mathcal{A}_S^1 is dual of a Banach space, and the weak*-topology σ^1 on \mathcal{A}_S^1 is described as $A_\alpha \to A$ in σ^1 if and only if $A_\alpha \to A$ ultra weakly in \mathcal{M}_S and $\delta_S(A_\alpha) \to \delta_S(A)$ ultra weakly in $\mathcal{B}(\mathcal{H})$.

PROOF. (1) Let \mathcal{M}_* be the predual of \mathcal{M}_S , consisting of all ultra weakly continuous linear functionals on \mathcal{M}_S , so that the ultra weak topology on \mathcal{M}_S is the weak *-topology $\sigma(\mathcal{M}_S, \mathcal{M}_*)$. Clearly, \mathcal{A}_S^1 is ultra weakly dense in \mathcal{M}_S . The graph of δ_S is $G(\delta_S) = \{(A, \delta_S(A)) : A \in \mathcal{A}_S^1\}$, a subspace of $\mathcal{M}_S \oplus \mathcal{B}(\mathcal{H})$. We prove that $G(\delta_S)$ is closed in the ultra weak topology on the direct sum von Neumann algebra $\mathcal{M}_S \oplus \mathcal{B}(\mathcal{H})$. Let (A, B) be in the closure of the graph $G(\delta_S)$ in the ultra weak topology on $\mathcal{M}_S \oplus \mathcal{B}(\mathcal{H})$. Let (A_α) be a net in \mathcal{A}_S^1 such that $A_\alpha \to A$ ultra weakly in \mathcal{M}_S and $\delta_S(A_\alpha) \to B$ ultra weakly in $\mathcal{B}(\mathcal{H})$. We show that $AD(S) \subset D(S)$, $A^*D(S) \subset D(S)$, $\delta_S(A)$ is bounded and $B = \delta_S(A)$.

Notice that, since $A_{\alpha} \in \mathcal{A}_{S}^{1}$, $A_{\alpha}D(S) \subset D(S)$, $A_{\alpha}^{*}D(S) \subset D(S)$ and $\delta_{S}(A_{\alpha})$ are bounded operators. Now, since \mathcal{M}_{S} is ultra weakly closed, the operator $A \in \mathcal{M}_{S}$ is bounded; similarly B is bounded, and for all ψ, η in \mathcal{H} , $((A_{\alpha} - A)\psi, \eta) \to 0$, $((\delta_{S}(A_{\alpha}) - B)\psi, \eta) \to 0$. Now let $\psi \in D(S)$, $\eta \in D(S^{*})$. Then $(B\psi, \eta) = \lim_{\alpha} (\delta_{S}(A_{\alpha})\psi, \eta) = i \lim_{\alpha} ((SA_{\alpha} - A_{\alpha}S)\psi, \eta) = i \lim_{\alpha} (A_{\alpha}\psi, S^{*}\eta) - i(AS\psi, \eta) = i(A\psi, S^{*}\eta) - i(AS\psi, \eta)$. As $S^{**} = S$ since S is closed, we have $A\psi \in D(S^{**}) = D(S)$ and $B\psi = i(SA - AS)\psi$. Thus $AD(S) \subset D(S)$ and (SA - AS) extends to a bounded operator. Next we show that $A^{*}D(S) \subset D(S)$. Let ψ and η be as above. Then $(\eta, (A_{\alpha} - A)^{*}\psi) \to 0$, $(\eta, (\delta_{S}(A_{\alpha}) - B)^{*}) \to 0$. Now $(\eta, B^{*}\psi) = \lim_{\alpha} (\eta, \delta_{S}(A_{\alpha})^{*}\psi) = \lim_{\alpha} (\eta, \delta_{S}(A_{\alpha}^{*})\psi) = \lim_{\alpha} i(\eta, (SA_{\alpha}^{*} - A_{\alpha}^{*}S)\psi) = \lim_{\alpha} i(\eta, SA_{\alpha}^{*}\psi) - \lim_{\alpha} i(\eta, A_{\alpha}^{*}S\psi) = \lim_{\alpha} i(\eta, SA_{\alpha}^{*}\psi) = i(\eta, A^{*}S\psi)$. Thus $(\eta, SA_{\alpha}^{*}\psi) = \lim_{\alpha} (S^{*}\eta, A_{\alpha}^{*}\psi) = (S^{*}\eta, A^{*}\psi)$. Thus $(A^{*}\psi, S^{*}\eta) = i(B^{*}\psi, \eta) + (A^{*}S\psi, \eta)$. Hence $A^{*}\psi \in D(S^{**}) = D(S)$. Thus $A^{*}D(S) \subset D(S)$. It follows that $G(\delta_{S})$ is ultra weakly closed in $\mathcal{M}_{S} \oplus \mathcal{B}(\mathcal{H})$.

(2) This follows from (1) above as in [W1, Proposition 2]. Indeed, the Banach space \mathcal{A}_S^1 is isometrically isomorphic to the graph of δ_S by the map $A \to \{A, \delta_S(A)\}$, and the graph of δ_S is an ultra weakly closed (and hence norm closed) subspace of $\mathcal{M}_S \oplus \mathcal{B}(\mathcal{H})$. Now $\mathcal{M} \oplus \mathcal{B}(\mathcal{K})$ is the dual of the direct sum Banach space $\mathcal{M}_* \oplus C^1(\mathcal{H})$, where \mathcal{M}_* is the predual of \mathcal{M}_S and $C^1(\mathcal{H})$ is the Banach space of trace class operators on \mathcal{H} whose dual is $\mathcal{B}(\mathcal{H})$. Hence it follows that \mathcal{A}_S^1 is a dual space. In fact, it is the dual of $(\mathcal{M}_* \oplus C^1(\mathcal{H}))/\mathcal{L}$, where \mathcal{L} is the annihilator of graph of δ_S in $\mathcal{M}_* \oplus C^1(\mathcal{H})$. \square

The following continues from the above in view of [W1, Corollaries 4 and 5]. For a metric space (X, d), the *Lipschitz algebra* Lip(X) consists of all bounded complex valued Lipschitz functions f on X, where the Lipshitz number L(f) of f is $L(f) = \sup\{|f(x) - f(y)|/d(x,y) : x, y \in X, x \neq y\} < \infty$. It is a Banach *-algebra with norm $||f||_{\infty} + L(f)$, and is a subalgebra of the abelian von Neumann algebra $L^{\infty}(X)$ of essentially bounded Borel measurable functions on X. For an operator T, Sp(T) denotes the spectrum of T.

COROLLARY 2.2. Let S be as above.

(1) Let $X = X^* \in \mathcal{A}_S^1$. Let $f \in Lip(Sp(X))$. Let $\delta_S(X)$ commute with X. Then $f(X) \in \mathcal{A}_S^1$ and $||\delta_S(f(X))|| \le L(f)||\delta_S(X)||$.

- (2) Let \mathcal{J} be a σ^1 -closed *-ideal of \mathcal{A}^1_S . Then \mathcal{J} is the σ^1 -closure of $(\mathcal{J})^2$, where $(\mathcal{J})^2$ is the linear span of $\{AB : A \in \mathcal{J}, B \in \mathcal{J}\}$.
- (3) Let \mathcal{J} be a *-ideal of \mathcal{A}_S^1 . Then $\delta_S(\mathcal{J})$ is contained in the ultra weak closure of $\mathcal{JB}(\mathcal{H}) + \mathcal{B}(\mathcal{H})\mathcal{J}$.
- (4) Let I and \mathcal{J} be *-ideals of \mathcal{A}_S^1 . Then $I \cap \mathcal{J}$ is contained in the σ^1 -closure of $I\mathcal{J}$ and, if I and \mathcal{J} are σ^1 -closed, then $I \cap \mathcal{J}$ is the σ^1 -closure of $I\mathcal{J}$.

We consider the second-order Lipschitz structure. Let $\operatorname{Lip}^2[a,b] := \{f \in \operatorname{Lip}[a,b] : f' \in \operatorname{Lip}[a,b] \} = \{f \in C^1[a,b] : f' \in \operatorname{Lip}[a,b] \}$ a Banach *-algebra with norm $\|f\|_{\operatorname{Lip}^2} = \|f\|_{\infty} + \|f'\|_{\infty} + (1/2) \max\{\|f''\|_{\infty}, L(f')\}$. Let ϕ be the linear operator $\phi : \mathcal{R}_S^2 \to \mathcal{M}_S \oplus \mathcal{M}_S \oplus \mathcal{B}(\mathcal{H}), \phi(A) = (A, \delta_S(A), \delta_S^2(A))$. The operator $\delta_S^2 : \mathcal{R}_S^1 \to \mathcal{B}(\mathcal{H})$ is $\delta_S^2(A) = \delta_S(\delta_S(A))$ with domain $\operatorname{dom}(\delta_S^2) = \mathcal{R}_S^2$. The following theorem gives the Lip^2 -functional calculus in \mathcal{R}_S^2 .

THEOREM 2.3.

- (1) The graph of the operator $\delta_S^2: \mathcal{A}_S^1 \to \mathcal{B}(\mathcal{H})$, $dom\delta_S^2 = \mathcal{A}_S^2$, given by $G(\delta_S^2) = \{(A, \delta_S^2(A)) : A \in \mathcal{A}_S^2\}$ is closed in $\mathcal{A}_S^1 \oplus \mathcal{B}(\mathcal{H})$, where \mathcal{A}_S^1 carries the σ^1 -topology and $\mathcal{B}(\mathcal{H})$ carries the ultra weak topology. The range of the map ϕ is an ultra weakly closed subspace of $\mathcal{M}_S \oplus \mathcal{M}_S \oplus \mathcal{B}(\mathcal{H})$ with the product ultra weak topology.
- (2) The algebra \mathcal{A}_S^2 is dual of a Banach space. The weak *-topology on \mathcal{A}_S^2 , denoted by σ^2 , is given as $A_\alpha \to A$ in σ^2 if and only if $A_\alpha \to A$ ultra weakly, $\delta_S(A_\alpha) \to \delta_S(A)$ ultra weakly and $\delta_S^2(A_\alpha) \to \delta_S^2(A)$ ultra weakly.
- (3) Let $X = X^* \in \mathcal{A}_S^2$. Let $f \in \text{Lip}^2(sp(X))$. Let X commute with $\delta_S(X)$. Then $f(X) \in \mathcal{A}_S^2$ and

$$\|\delta_{S}^{2} f((X))\| \le L(f) \|\delta_{S}^{2}(X)\| + L(f') \|(\delta_{S}(X))^{2}\|.$$

PROOF. (1) Follows by application of Proposition 2.1(1) from which (2) follows as in Proposition 2.1(2). Indeed, \mathcal{A}_S^2 is isometrically isomorphic to a closed subspace of $\mathcal{A}_S^1 \oplus \mathcal{B}(\mathcal{H})$, and the latter is a dual space.

(3) The proof is a second-order analogue of that of [W1, Theorem 1]. The function f can be extended as a Lipschitz function without changing the Lipschitz constant L(f) to the interval [-||X||, ||X||]. Now let f be a polynomial $f(t) = \sum a_n t^n$. Then $f(X) \in \text{dom}(\delta_S^2)$ and, since X and $\delta_S(X)$ commute, we get $\delta_S(f(X)) = \sum na_n X^{n-1} \delta_S(X)$ as well as

$$\begin{split} \delta_S^2(f(X)) &= \sum n a_n \delta_S(X^{n-1} \delta_S(X)) \\ &= \sum n a_n \{X^{n-1} \delta_S^2(X) + \delta_S(X^{n-1}) \delta_S(X)\} \\ &= \sum n a_n \{X^{n-1} \delta_S^2(X) + (n-1)X^{n-2} (\delta_S(X))^2\} \\ &= \sum n a_n X^{n-1} \delta_S^2(X) + \sum n(n-1) a_n X^{n-2} (\delta_S(X))^2 \\ &= f'(X) \delta_S^2(X) + f''(X) (\delta_S(X))^2. \end{split}$$

Hence

$$\|\delta_S^2(f(X))\| \leq L(f)\|\delta_S^2(X)\| + L(f')\|(\delta_S(X))^2\|.$$

Now let I = [-||X||, ||X||]. Let $f \in \operatorname{Lip}^2(I)$. Then $f'' \in L^\infty(I)$. Choose a sequence of polynomials g_n such that $g_n \to f''$ in $L^1(I)$ and $||g_n|_I||_\infty \le ||f''||_\infty = L(f')$. Let $f_n(t) = f'(0) + \int_0^t g_n(t) \, dt$. Then f_n are polynomials and $||f_n - f'||_\infty \to 0$. Hence the L^1 -norm $||f_n - f'||_1 \to 0$ and $||f_n'|_I||_\infty \le L(f')$. Let $h_n(t) = f(0) + \int_0^t f_n(t) \, dt$. Again h_n are polynomials, $||h_n|_I - f||_\infty \to 0$, $||h_n'|_I|_\infty \le ||f'||_\infty = L(f)$. Then, by the above estimates,

$$\begin{aligned} \|\delta_S^2(h_n(X))\| &\leq \|h_n'\|_{\infty} \|\delta_S^2(X)\| + \|h_n''\|_{\infty} \|(\delta_S(X))^2\| \\ &\leq L(f) \|\delta_S^2(X)\| + L(f') \|(\delta_S(X))^2\|. \end{aligned}$$

Therefore there is a subnet (h_{α}) of the sequence (h_n) such that $\delta_S^2(h_{\alpha}(X)) \to Y$ for some Y in the ultra weak topology. Now $h_n(X) \to f(X)$ uniformly, $h'_n(X) \to f'(X)$ uniformly and $\delta_S(h_n(X)) \to \delta_S(f(X))$ uniformly. Since the graph of δ_S^2 is σ^2 -closed, $f(X) \in \text{dom}(\delta_S^2)$ and $\|\delta_S^2(f(X))\| \le L(f) \|\delta_S^2(X)\| + L(f')\|(\delta_S(X))^2\|$.

3. (~)-convergence

Let X be a linear subspace of a normed linear space $(\mathcal{Y}, \|\cdot\|)$. Let $\|\cdot\|_1$ be a norm on X such that $||x|| \le ||x||_1$ for all $x \in X$. Following [KS2], we say that a sequence (x_n) in X (~)-converges to $y \in \mathcal{Y}$ if $\sup ||x_n||_1 < \infty$ and $||x_n - y|| \to 0$ as $n \to \infty$. For a subset M of X, its (\sim)-closure in \mathcal{Y} (respectively, in X) is the set of all elements in \mathcal{Y} (respectively, in X) which are (\sim)-limits of elements from M. Then M is (\sim)-closed in \mathcal{Y} (respectively, in X) if it coincides with its (\sim)-closure in Y (respectively, in X). This auxiliary mode of convergence has been found useful in understanding the first-order structure in [KS2]. By [KS2, Theorem 3.3], the Banach algebra \mathcal{A}_s^1 is (~)-closed in $\mathcal{B}(\mathcal{H})$, and every closed subspace of $(\mathcal{J}_S^1, \|\cdot\|_1)$ is (~)-closed in \mathcal{J}_S^1 . The following gives an analogue of this in the present set-up. We say that a sequence (A_n) in \mathcal{A}_S^2 (~)-converges to $A \in \mathcal{B}(\mathcal{H})$ if $||A_n||_2 < \infty$, $||A_n - A|| \to 0$ in operator norm. Thus (~)convergence in \mathcal{A}_S^2 is an analogue of a sequence of C^2 -functions bounded in C^2 -norm and converges uniformly to a continuous function. In the following, we shall use a technical result [KS2, Corollary 2.7, page 7] that states that if ϕ is a closed linear map from a Banach space $(X, \|\cdot\|_X)$ to a Banach space $(Z, \|\cdot\|_Z)$ with domain dom ϕ such that the set W_{ϕ} consisting of bounded linear functionals f on Z (with $f \circ \phi$ extendable as bounded linear functionals on X) is norm dense in the dual Z^* of Z, then any closed subspace of the Banach space $(\text{dom}\phi, \|\cdot\|_1), \|x\|_1 := \|x\|_X + \|\phi(x)\|_Z$, is (~)-closed in X.

THEOREM 3.1.

- (1) The Banach algebra \mathcal{A}_S^2 is (\sim)-closed in $\mathcal{B}(\mathcal{H})$.
- (2) Every closed subspace of $(\mathcal{J}_S^2, \|\cdot\|_2)$ is (\sim) -closed in (\mathcal{J}_S^2) . In particular, the ideal \mathcal{F}_S^2 is (\sim) -closed in (\mathcal{J}_S^2) .

PROOF. (1) Let $A_n \in \mathcal{H}_S^2$, $A \in \mathcal{B}(\mathcal{H})$ be such that $||A_n - A|| \to 0$, $\sup ||A_n||_2 < \infty$. Then $\sup ||\delta_S^2(A_n)|| = r < \infty$. Now the ball B_r of radius r in $\mathcal{B}(\mathcal{H})$ is weak *-compact. Hence there exists $R \in B_r$ such that each neighbourhood of R contains an infinite number of elements from $\{\delta_S^2(A_n)\}$. Let $x \in D(S^2)$, $y \in D(S^{*2})$. Then there exists a sequence (A_{n_k}) from $\{A_n\}$ such that $(\delta_S^2(A_{n_k})x, y) \to (Rx, y)$. Then

$$(Rx, y) = \lim(\delta_S^2(A_{n_k})x, y)$$

= $-\lim(\{S^2A_{n_k} - 2SA_{n_k}S + AS^2\}x, y)$
= $-\{\lim(S^2A_{n_k}x, y) - 2(SASx, y) + (AS^2x, y)\}.$

Notice that the (\sim)-convergence with $\|\cdot\|_2$ -implies (\sim)-convergence with norm $\|\cdot\|_1$. Since \mathcal{A}_S^1 is (\sim)-closed by [KS1], $A \in \mathcal{A}_S^1$ and $AD(S) \subset D(S)$. Thus

$$(Rx, y) = -\lim(A_{n_k}x, S^{2*}y) + 2(SASx, y) - (AS^2x, y)$$

= -(Ax, S^{2*}y) + 2(SASx, y) - (AS^2x, y).

Thus $Ax \in D(S^{2**}) = D(S^2)$ and $(Ax, S^{2*}y) = (S^{2-}Ax, y)$. Then

$$(Rx, y) = -\{(S^{2-}Ax, y) + 2(SASx, y) - (AS^{2}x, y)\}\$$

for all y in a dense subspace of \mathcal{H} . Thus $Rx = -(S^{2-}Ax + 2SASx - AS^2x) = \delta_S^2Ax$, $A \in \mathcal{A}_S^2$ and \mathcal{A}_S^2 is (\sim)-closed in $\mathcal{B}(\mathcal{H})$.

(2) We shall apply [KS2, Corollary 2.4, page 7] stated above. Let $\phi := \delta_S^2|_{\mathcal{J}_S^2} : D(\phi) = \mathcal{J}_S^2 \subset \mathcal{A}_S^1 \to \mathcal{K}(\mathcal{H})$. By Proposition 1.3, it is a closed linear map in the $\|\cdot\|_1 - \|\cdot\|$ topologies. For x, y in \mathcal{H} , let $F_{x,y}(A) = (Ax, y)$, which is a bounded linear functional on $\mathcal{K}(\mathcal{H})$. Now take $x \in D(S^2)$, $y \in D(S^2)$. Then, for any A in \mathcal{J}_S^2 ,

$$\begin{split} F_{x,y}(\phi(A)) &= (\delta_S^2(A)x, y) = -(\{S^{2-}A - 2SAS + AS^2\}x, y) \\ &= -\{(S^{2-}Ax, y) - 2(SASx, y) + (AS^2x, y)\} \\ &= -\{F_{x,S^2y}(A) - 2F_{Sx,Sy}(A) + F_{S^2x,y}(A)\}. \end{split}$$

Thus $F_{x,y}o\phi$ extends as a bounded linear functional on $\mathcal{K}(\mathcal{H})$. Since $D(S^2)$ is dense in \mathcal{H} , the set span $\{F_{x,y}: x \in D(S^2), y \in D(S^2)\}$ is dense in the dual of $\mathcal{K}(\mathcal{H})$, identified with trace class operators. By [KS2, Corollary 2.4], any closed subspace of $(\mathcal{J}_S^2, \|\cdot\|_2)$ is \sim -closed in \mathcal{J}_S^2 . In particular, \mathcal{F}_S^2 is (\sim) -closed in \mathcal{J}_S^2 .

An estimate for the first-order functional calculus in \mathcal{A}_S^1 is given in [KS2, Lemma 2.6]. The following gives an estimate for the second-order functional calculus in \mathcal{A}_S^2 . Our proof is different: it uses differential algebras as discussed in [BC, BIO].

PROPOSITION 3.2. Let $X = X^* \in \mathcal{A}_S^2$. Let d = ||X|| the operator norm. Let h be a C^3 -function on [-d, d]. Let $||h||_{(3)} := ||h||_{\infty} + ||h'||_{\infty} + ||h''||_{\infty} + ||h'''||_{\infty}$. Then $||h(X)||_2 \le C||h||_{(3)}$.

PROOF. Notice that $h(X) \in \mathcal{A}_S^2$ by Theorem 1.7(3). The Banach algebra norm $\|\cdot\|_2$ is the total norm of the differential norm T considered in the proof of Theorem 1.7(1) above. The differential norm T is of total order less than or equal to two. Thus, by the definition of the derived norm [BC], $\|\cdot\|_2$ is a derived norm of order less than or equal to two. By [BC, Proposition 6.4, page 270], $\|h(X)\|_2 \le C\|h\|_{(3)}$, with the constant C depending only on X.

It is shown in [KS2, Theorem 2.8] that, given $X = X^*$ in \mathcal{A}_S^1 , there exists a sequence ϕ_n of functions in $C^{\infty}(R)$, each vanishing on a neighbourhood of zero, such that $||X^2 - \phi_n(X)||_1 \to 0$ as $n \to \infty$. The following theorem gives a partial analogue of this. The proof follows that given in [KS2] as much as possible.

THEOREM 3.3. Let X consists of all smooth functions f on the real line R, vanishing on a neighbourhood of zero. Let $X = X^* \in \mathcal{A}^2_S$.

- (1) There exists a sequence ϕ_n in X such that $||X^4 \phi_n(X)||_2 \to 0$ as $n \to \infty$.
- (2) X^4 lies in the $\|\cdot\|_2$ -closed ideal of the $\|\cdot\|_2$ -closed subalgebra $\mathcal{A}^2_S(X)$ of \mathcal{A}^2_S generated by X.

PROOF. The following constructions are as in [KS2, proof of Theorem 2.8]. Let $n \ge 3$. Let $u_n = u_n(t)$ be the segment of the straight line u = nt/(n-2) - 2d/(n-2) on the plane joining the points (2d/n, 0) and (d, d). Let T_n be the circle that touches the t-axis at (d/n, 0) and also touches the graph of $u_n(t)$ at point $P_n = P(t_n, u_n)$. Let $v_n(t)$ be the arc of T_n between the points (d/n, 0) and P_n . Now define the following functions $\alpha(\cdot)$, $\beta(\cdot)$, $\gamma(\cdot)$ and $\delta(\cdot)$ to be even as $\alpha_n(t) = 0$ if $0 \le t \le d/n$, $\alpha_n(t) = v_n(t)$ if $d/n \le t \le t_n$ and $\alpha_n(t) = u_n(t)$ if $t_n \le t \le d$.

$$\beta_n(t) = 2 \int_0^t \alpha_n(s) \, ds \quad \text{if } 0 \le t \le d, \beta_n(-t) = \beta_n(t),$$

$$\gamma_n(t) = 3 \int_0^t \beta_n(s) \, ds \quad \text{if } 0 \le t \le d, \gamma_n(-t) = \gamma_n(t),$$

$$\delta_n(t) = 4 \int_0^t \gamma_n(s) \, ds \quad \text{if } 0 \le t \le d, \delta_n(-t) = \delta_n(t).$$

Then $\alpha_n(t) = \beta_n(t) = \gamma_n(t) = \delta_n(t) = 0$ in [-d/n, d/n]. Also, $\alpha_n \in C^1[-d, d], \beta_n \in C^2[-d, d], \gamma_n \in C^3[-d, d], \delta_n \in C^4[-d, d]$. These functions satisfy the following conditions.

- (i) $||t \alpha_n(t)|| \le 2d/n$, $||\alpha'_n|| = ||u'_n|| = n/(n-2) \le 3$.
- (ii) $\lim_{n\to\infty} ||t^2 \beta(t)|| = 0$, $\sup\{||\beta_n||, ||\beta_n'||, ||\beta_n''||\} < \infty$.
- (iii) $\lim_{n\to\infty} ||t^3 \gamma(t)|| = 0$, $\sup\{||\gamma_n||, ||\gamma_n'||, ||\gamma_n''||, ||\gamma_n'''||\} < \infty$.
- (iv) $\lim_{n\to\infty} ||t^4 \delta_n(t)|| = 0.$

Let d = ||X||. By the functional calculus [KS1, Theorem 12], $\beta_n(X) \in \mathcal{A}_S^2$, $\gamma_n(X) \in \mathcal{A}_S^2$ and $\delta_n(X) \in \mathcal{A}_S^2$. It follows from above (i)–(iv) that $||t^4 - \delta_n(t)||_{(3)} \to 0$ as $n \to \infty$. Hence, by Proposition 3.2, $||X^4 - \delta_n(X)||_2 \to 0$. Choose functions $\phi_n \in X$ such that

 $\|\delta_n - \phi_n\|_{(3)} \to 0$ in $C^3[-d,d]$. Then, by Proposition 3.2, $\|\delta_n(X) - \phi_n(X)\|_2 \to 0$, and so $\|X^4 - \phi_n(X)\|_2 \to 0$. Let $\mathcal{H}^2_S(X)$ be the closed subalgebra of \mathcal{H}^2_S generated by X. Let $I_0 = \{\phi(X) : \phi \in X\}$, $I = \|\cdot\|_2$ -closure of I_0 in \mathcal{H}^2_S . As $XI_0 \subset I_0$, I is a $\|\cdot\|_2$ -closed ideal of $\mathcal{H}^2_S(X)$ and, by the above, $X^4 \in I$.

In the above, we do not know whether $X^3 \in I$. Let $(\mathcal{A}, \|\cdot\|_2)$ be a dense Banach *-subalgebra of a C^* -algebra $(\mathcal{U}, \|\cdot\|)$. Let \mathcal{A}_+ be the set of all self-adjoint elements $h=h^*$ of \mathcal{A} such that its spectrum Sp(h) is nonnegative. Let $\mathcal{A}_+^{\text{square}}=\{x^2:x\in\mathcal{A}_+\}$. It is shown in [KS2, Theorem 2.5] that if \mathcal{A} is a Banach (D_1^*) -subalgebra of \mathcal{U} , then $\mathcal{A}_+=(\sim)$ -closure of $\mathcal{A}_+^{\text{square}}$. The following gives a D_2 -analogue of this. It applies to the Banach algebra \mathcal{A}_S^2 . Notice that, in view of [KS1], \mathcal{A}_S^2 is spectrally invariant in its C^* -completion in the operator norm, and hence in \mathcal{U}_S .

THEOREM 3.4. Let \mathcal{A} be a unital Banach (D_2^*) -subalgebra of a C^* -algebra \mathcal{U} . Then $\mathcal{A}_+ = (\sim)$ -closure of $\mathcal{A}_+^{\text{square}}$.

PROOF. We have $\mathcal{A}_+^{\text{square}} \subset \mathcal{A}_+$. Also \mathcal{A}_+ is (\sim)-closed. Hence (\sim)-closure ($\mathcal{A}_+^{\text{square}}$) $\subset \mathcal{A}_+$. To prove the reverse inclusion, let $a \in \mathcal{A}_+$. Then $0 \le a \le \|a\| 1$, and $\operatorname{sp}(a) \subset [0, \|a\|]$. For any $\epsilon > 0$, the function $k_{\epsilon}(t) = (t + \epsilon)^{1/2}$ is analytic on $\operatorname{sp}(a)$. For sufficiently small $\epsilon, k_{\epsilon}(t) \in C^{\infty}[0, \|a\| + 1]$. By the functional calculus in the C^* -algebra $\mathcal{U}, b_{\epsilon} := k_{\epsilon}(a) = (a + \epsilon 1)^{1/2} \in \mathcal{U}$, and by the C^{∞} -functional calculus in D_2 -algebra (Theorem 1.7), $b_{\epsilon} \in \mathcal{A}$. Then $b_{\epsilon}^2 = a + \epsilon 1$ and $\|a - b_{\epsilon}^2\| = \epsilon \to 0$. Also, $\|b_{\epsilon}^2\|_2 \le \|a\|_2 + 1$ showing that b_{ϵ}^2 (\sim)-converges to a.

4. One sided ideals in $(\mathcal{F}_S^2, ||\cdot||_2)$

Since S is closed, its domain D(S) is a Hilbert space with inner product $\langle x,y \rangle_1 = (x,y) + (Sx,Sy)$. Also, S^2 is a densely defined closable operator, and its domain $D(S^2)$ is an inner product space with the inner product $\langle x,y \rangle_2 := (x,y) + (Sx,Sy) + (S^2x,S^2y)$. We show that $D(S^2)$ is a Hilbert space. Let $|x|_2 := ||x|| + ||S^2|| + ||S^2||$ be the norm on $D(S^2)$ defined by the inner product \langle , \rangle_2 . First, notice that $|\cdot|_2$ is closable with respect to the Hilbert space norm $||\cdot||$ on \mathcal{H} . Indeed, let (x_n) be a Cauchy sequence in $|\cdot|_2$ and $||x_n|| \to 0$. Then $||Sx_n - Sx_m|| \to 0$. Since S is closed, $||Sx_n|| \to 0$. Similarly, since S^2 is closable, $||S^2x_n|| \to 0$. Thus $||x_n||_2 \to 0$, showing that $|\cdot|_2$ is closable. This implies that the completion \mathcal{L} of $D(S^2)$ in $|\cdot|_2$ is contained in \mathcal{H} . Now let $x \in \mathcal{L}$. Choose a sequence x_n in $D(S^2)$ such that $||x_n - x||_2 \to 0$. Then $||x_n - x|| \to 0$ and Sx_n is $||\cdot||$ -Cauchy. By the closure of the operator S, $x \in D(S)$ and $Sx_n \to Sx$ in $||\cdot||$. Further, since $Sx_n \in D(S)$ and S^2x_n is $||\cdot||$ -Cauchy, again, by the closure of S, it follows that $Sx \in D(S)$ and $S^2x_n \to S^2x$ in $||\cdot||$. Thus $Sx \in D(S^2)$. It follows that $Sx \in D(S^2)$ is a Hilbert space.

For any $K \subset D(S^2)$, let $I_l(K)$ be the closure, in the norm $\|\cdot\|_2$ of the Banach *-algebra \mathcal{R}_S^2 , of the linear span of $\{x \otimes y : x \in K, y \in D(S^2)\}$, and $I_r(K)$ be the closure in $\|\cdot\|_2$ of the linear span of $\{x \otimes y : x \in D(S^2), y \in K\}$. Since, for any operator T, $T(x \otimes y) = x \otimes Ty$, $(x \otimes y)T = T^*x \otimes y$, and since $(x \otimes y)^* = y \otimes x$, it follows that $I_l(K)$ is a closed left ideal of \mathcal{F}_S^2 , $I_r(K)$ is a closed right ideal of \mathcal{F}_S^2 and $I_l(K) = I_r(K)^*$. Further,

let I be a nontrivial left ideal of \mathcal{F}_S^2 . Let $L(I) = \{x \in D(S^2) : x \otimes y \in I \text{ for all } y \in D(S^2)\}$. Since $D(S^2)$ is dense in \mathcal{H} , for any nonzero A in I, there exists $x \in D(S^2)$ such that A^*x is nonzero. Now $A^*x \in D(S^2)$ and, for all $y \in D(S^2)$, $(A^*x) \otimes y = (x \otimes y)A \in I$. Hence $A^*x \in L(I)$ and L(I) is nonzero. Similarly, if I is a right ideal of \mathcal{F}_S^2 , then $R(I) = \{x \in D(S^2) : y \otimes x \in I \text{ for all } y \in D(S^2)\}$ is nonzero. Recall that a closed ideal I in $(\mathcal{F}_S^2, \|\cdot\|_2)$ is *essential* if $I = (\mathcal{F}_S^2I)^{-\|\cdot\|_2}$, which is the $\|\cdot\|_2$ -closure of the linear span of the set $\mathcal{F}_S^2I = \{T_1T_2 : T_1 \in \mathcal{F}_S^2, T_2 \in I\}$. The following provides a second-order analogue of [KS2, Theorem 4.1, page 24] that determines the essential left ideals of the algebra \mathcal{F}_S^1 .

THEOREM 4.1.

- (i) Let K be a linear subspace of $D(S^2)$. The following hold:
 - (1) $I_l(K)$ is an essential left ideal of $(\mathcal{F}_S^2, \|\cdot\|_2)$; and
 - (2) $K \subset L(I_l(K))$; $L(I_l(K))$ equals the closure of K in $(D(S^2), |\cdot|_2)$, and $L(I_l(K)) = R(I_r(K))$.
- (ii) Let I be a closed nontrivial left ideal of $(\mathcal{F}_{S}^{2}, \|\cdot\|_{2})$. The following hold:
 - (1) L(I) is a nontrivial closed subspace of $(D(S^2), |\cdot|_2)$; and
 - (2) $I_l(L(I))$ is the $\|\cdot\|_2$ -closure of span \mathcal{F}_S^2I , it is the largest essential ideal contained in I, and it contains all finite rank operators in I.

PROOF. (i)(1) The $\|\cdot\|_2$ -closure $(\mathcal{F}_S^2I_l(K))^{-\|\cdot\|_2}$ is in $I_l(K)$, as $I_l(K)$ is a closed left ideal of \mathcal{F}_S^2 . For any $x\in K, y\in D(S^2)$, $(y\otimes y)(x\otimes x)=\|y\|^2(x\otimes y)\in \mathcal{F}_S^2I_l(K)$. Hence $x\otimes y\in \mathcal{F}_S^2I_l(K)$ and, by the definition of $I_l(K)$, $I_l(K)\subset (\mathcal{F}_S^2I_l(K))^{-\|\cdot\|_2}$. Thus $I_l(K)=(\mathcal{F}_S^2I_l(K))^{-\|\cdot\|_2}$ and $I_l(K)$ is essential.

(2) Notice that, for $x, y \in D(S^2)$,

$$|x|_2 = \{||x||^2 + ||Sx||^2 + ||S^2x||^2\}^{1/2}$$

$$\leq ||x|| + ||Sx|| + ||S^2x||.$$

Therefore

$$\begin{split} |x|_2^2 &\leq \{||x|| + ||S\,x|| + ||S^{\,2}x||\}^2 \\ &\leq \{||x||^2 + ||S\,x||^2 + ||S^{\,2}x||^2 + 2||x|| \, ||S\,x|| + 2||S\,x|| \, ||S^{\,2}x|| + 2||S^{\,2}x|| \, ||x||\} \\ &\leq 3\{||x||^2 + ||S\,x||^2 + ||S^{\,2}x||^2\} \\ &= 3|x|_2^2, \\ |x|_2||y|| &\leq (||x|| + ||S\,x|| + ||S^{\,2}x||)||y|| \\ &= ||x\otimes y|| + ||S\,x\otimes y|| + ||S^{\,2}x\otimes y|| \\ &\leq ||x\otimes y|| + ||S\,x\otimes y - x\otimes S\,y|| + ||x\otimes S\,y|| \\ &+ ||S^{\,2}x\otimes y - 2S\,x\otimes S\,y + x\otimes S^{\,2}y|| + 2||S\,x\otimes S\,y|| + ||x\otimes S^{\,2}y|| \\ &\leq ||x\otimes y||_2 + ||x|| \, ||S\,y|| + 2||S\,x|| \, ||S\,y|| + ||x|| \, ||S^{\,2}y||. \end{split}$$

Also

$$\begin{split} \|x \otimes y\|_2 & \leq \|x \otimes y\| + \|\delta_S(x \otimes y)\| + \|\delta_S^2(x \otimes y)\| \\ & = \|x \otimes y\| + \|x \otimes Sy - Sx \otimes y\| + \|\delta_S(x \otimes Sy - Sx \otimes y)\| \\ & = \|x \otimes y\| + \|x \otimes Sy - Sx \otimes y\| + \|x \otimes S^2y - 2Sx \otimes Sy + S^2x \otimes y\| \\ & \leq \|x\| \|y\| + \|x\| \|Sy\| + \|Sx\| \|y\| + \|x\| \|S^2y\| + 2\|Sx\| \|Sy\| + \|S^2x\| \|y\| \\ & \leq \|x\| (\|y\| + \|Sy\| + \|S^2y\|) + \|y\| (\|x\| + \|Sx\| + \|S^2x\|) + 2\|Sx\| \|Sy\| \\ & \leq 3^{1/2} (\|x\| \|y\|_2 + \|x\|_2 \|y\|) + 2\|Sx\| \|Sy\|. \end{split}$$

Clearly, $K \subset L(I_l(K))$. We show that $L(I_l(K)) \subset K^{-|\cdot|_2}$. Let $y \in D(S^2)$, ||y|| = 1, and let $z \in L(I_l(K))$, $z \notin K$. Then $z \otimes y \in I_l(K)$, and there exists a sequence $A_n = \sum_{i=1}^{m_n} x_n^i \otimes y_n^i \in I_l(K)$, $x_n^i \in K$, $y_n^i \in D(S^2)$ such that $||z \otimes y - A_n||_2 \to 0$. Then

$$||(y \otimes y)(z \otimes y) - (y \otimes y)A_n||_2 = ||z \otimes y - A_n^* y \otimes y||_2 = ||(z - z_n) \otimes y||_2 \to 0,$$

where $z_n := A_n^* y$. Thus $||(z - z_n) \otimes y|| \to 0$ and $||(z - z_n) \otimes y||_1 \to 0$. Hence $||z - z_n|| \to 0$. This also implies that $||S(z - z_n)|| \to 0$. Indeed,

$$\begin{aligned} ||(z-z_n) \otimes y||_1 &= ||(z-z_n) \otimes y|| + ||S\{(z-z_n) \otimes y\} - \{(z-z_n) \otimes y\}S\|| \\ &= ||(z-z_n) \otimes y|| + ||(z-z_n) \otimes Sy - \{S(z-z_n)\} \otimes y|| \\ &\geq ||z-z_n|| \, ||y|| + |||(z-z_n) \otimes Sy|| - ||\{S(z-z_n)\} \otimes y||| \\ &= ||z-z_n|| + |||z-z_n|| - ||S(z-z_n)|||. \end{aligned}$$

Thus $||S(z-z_n)|| \to 0$. Then, by the above norm relations,

$$|z - z_n|_2 = |z - z_n|_2 ||y||$$

$$\leq ||(z - z_n) \otimes y||_2 + ||z - z_n|| ||Sy|| + ||z - z_n|| ||S^2y|| + 2||S(z - z_n)|| ||Sy||$$

$$\to 0$$

as $n \to \infty$. Therefore $z \in K^{-|\cdot|_2}$ and $L(I_l(K)) \subset K^{-|\cdot|_2}$. On the other hand, let $z \in K^{-|\cdot|_2}$. Then there exists a sequence $(z_n) \subset K$ such that $|z - z_n|_2 \to 0$, so that $||S(z - z_n)|| \to 0$. Then, again by the norm relations discussed above,

$$||z \otimes y - z_n \otimes y||_2 \le 3^{1/2} (||z - z_n|||y|_2 + |z - z_n|_2 ||y||) + 2||S(z - z_n)|| ||Sy|| \to 0.$$

Hence $z \otimes y \in I_l(K)$ and $z \in L(I_l(K))$. Thus $L(I_l(K)) = K^{-|\cdot|_2}$. Similarly, we can prove that $R(I_r(K)) = K^{-|\cdot|_2}$.

(ii) (1) Let I be a closed nontrivial left ideal of $(\mathcal{F}_S^2, \|\cdot\|_2)$. Then L(I) is nonzero, where $L(I) = \{x \in D(S^2) : x \otimes y \in I \text{ for all } y \in D(S^2)\}$. If $L(I) = D(S^2)$ then, by Proposition 1.4, $I = \mathcal{F}_S^2$, which contradicts the nontriviality of I. Thus L(I) is a nontrivial subspace of $D(S^2)$. We show that L(I) is closed. Let $x \in D(S^2)$, and let (x_n) in L(I) be such that $|x_n - x|_2 \to 0$. Then $x_n \to x$ in \mathcal{H} . By the norm relations discussed above,

$$||x \otimes y - x_n \otimes y||_2 \leq 3^{1/2} (||x_n - x|||y|_2 + |x_n - x|_2 ||x||) + 2||S(x_n - x)|| \, ||Sy|| \to 0$$

as $n \to \infty$ for all $y \in D(S^2)$. Since *I* is closed and $x_n \otimes y \in I$, we get $x \otimes y \in I$. Then $x \in L(I)$ and L(I) is closed.

(2) We show that $I_l(L(I))$ contains all finite rank operators from I. Let $F \in I$ be a finite rank operator. By Proposition 1.4, $F = \sum x_i \otimes y_i$, which is a finite sum, where $x_i \in D(S^2)$ and $y_i \in D(S^2)$ with (y_i) assumed to be linearly independent. For u, v in $D(S^2)$, $(u \otimes v)F = F^*u \otimes v \in I$. Therefore $F^*u = \sum_{i=1}^n (y_i, u)x_i \in L(I)$ for all $u \in D(S^2)$. For a fixed i, choose $(u_i)_{i=1}^n$ in $D(S^2)$ such that $(y_i, u_i) = 1$, $(y_i, u_j) = 0$ for all $j \neq i$. It follows that all $x_i \in L(I)$ and $F \in I_l(L(I))$.

We show that $(\mathcal{F}_S^2 I)^{-\|\cdot\|_2} \subset I_l(L(I))$. Let $A \in \mathcal{F}_S^2$ and $B \in I$. Then there exist finite rank operators A_n in \mathcal{F}_S^2 such that $\|A - A_n\|_2 \to 0$. Now all $A_n B$ are finite rank operators in I and, by above arguments, $A_n B \in I_l(L(I))$. As $\|AB - A_n B\| \to 0$ and as $I_l(L(I))$ is closed in $\|\cdot\|_2$, we get $AB \in I_l(L(I))$. Hence $(\mathcal{F}_S^2 I)^{-\|\cdot\|_2} \subset I_l(L(I))$.

Next, we show that $I_l(L(I)) \subset (\mathcal{F}_S^2 I)^{-\|\cdot\|_2}$. Let $x \in L(I)$ and $y \in D(S^2)$. Then $x \otimes y \in I_l(L(I))$ and $x \otimes y \in I$. Now $(y \otimes y)(x \otimes y) = \|y\|^2(x \otimes y) \in \mathcal{F}_S^2 I$. Thus $x \otimes y \in \mathcal{F}_S^2 I$. Since $I_l(L(I))$ is the closed linear span of all $x \otimes y$, $x \in L(I)$, $y \in D(S^2)$, $I_l(L(I)) \subset (\mathcal{F}_S^2 I)^{-\|\cdot\|_2}$. It follows that $I_l(L(I)) = (\mathcal{F}_S^2 I)^{-\|\cdot\|_2}$.

Further, $I_l(L(I))$ is essential and, by construction, $I_l(L(I)) \subset I$. Let J be an essential left ideal in I. Then $L(J) \subset L(I)$ and $I_l(L(J)) \subset I_l(L(I))$. As J is essential, $J = (\mathcal{F}_S^2 J)^{-\|\cdot\|_2} = I_l(L(J)) \subset I_l(L(I))$, showing that $I_l(L(I))$ is the largest essential ideal in I.

Theorem 4.2. The map ψ defined as $\psi(I) = L(I)$ gives a one-to-one correspondence between the set of nontrivial closed essential left ideals of $(\mathcal{F}_S^2, \|\cdot\|_2)$ and the set of nontrivial closed subspaces of $(D(S^2), |\cdot|_2)$.

PROOF. Given a closed nontrivial essential left ideal I of \mathcal{F}_S^2 , L(I) is a nontrivial closed subspace of $D(S^2)$, and then $I_l(L(I)) = (\mathcal{F}_S^2 I)^{-\|\cdot\|_2} = I$. Thus ψ is one-to-one. If $I \subset J$, then $L(I) \subset L(J)$, and, by the injectivity of ψ , $L(I) \neq \pounds(J)$ if $I \neq J$. Let $K \subset D(S^2)$ be a nontrivial $|\cdot|_2$ -closed subspace. Then $I_l(K)$ is essential and $\psi(I_l(K)) = L(I_l(K))$. Hence $I_l(K) \neq \mathcal{F}_S^2$ and ψ is surjective. Also, if $K \subset K_1$, then $I_l(K) \subset I_l(K_1)$. If $I_l(K) = I_l(K_1)$, then $L(I_l(K)) = K^- = K = L(I_l(K_1)) = K_1^- = K_1$. Since $K \neq K_1$, $I_l(K) \neq I_l(K_1)$. Thus ψ is a one-to-one partial order-preserving map and $\psi(I) \subset \psi(J)$ if and only if $I \subset J$. \square

Thus a closed left ideal I of $(\mathcal{F}_S^2, \|\cdot\|_2)$ is essential if and only if $I = I_l(K)$ for a $K \subset D(S^2)$. In this case, $I = I_l(L(I))$. Further, it is maximal essential if and only if the closure of K in $(D(S^2), |\cdot|_2)$ is of codimension one in $D(S^2)$. The following can be proved exactly, as in [KS2, Theorems 4.2(iv) and 4.3]. An operator A is *essential* for \mathcal{F}_S^2 if $A \in (\mathcal{F}_S^2 A)^{-||\cdot||_2}$, the closure in $(\mathcal{F}_S^2, \|\cdot\|_2)$.

THEOREM 4.3.

- (i) Let I be a closed left ideal of $(\mathcal{F}_S^2, \|\cdot\|_2)$ and let J be the intersection of all maximal essential left ideals containing I. Then $I_l(L(I)) = I_l(L(J))$. If I is essential, then $I = I_l(L(J))$. If all closed left ideals of $(\mathcal{F}_S^2, \|\cdot\|_2)$ are essential, then every closed left ideal is the intersection of all maximal closed left ideals containing I.
- (ii) All left ideals $(\mathcal{F}_S^2 A, \|\cdot\|_2)$ are essential.
- (iii) All finite rank operators in \mathcal{F}_S^2 are essential.

162

Acknowledgement

The authors sincerely thank the referee for a very careful reading of the manuscript and for several corrections leading to removal of certain errors and a thorough revision of the paper. Thank you very much.

References

- [B1] S. J. Bhatt, 'Stinespring representability and Kadison Schwarz inequality in non unital Banach *-algebras and applications', Proc. Math. Sci. Indian Acad. Sci. 108 (1998), 283–303.
- [BIO] S. J. Bhatt, A. Inoue and H. Ogi, 'Differential structure in C*-algebras', J. Operator Theory 66(2) (2011), 301–334.
- [BKS] S. J. Bhatt, D. J. Karia and M. M. Shah, 'On a class of smooth Frechet sub algebras of C*-algebras', Proc. Math. Sci. Indian Acad. Sci. 123(3) (2013), 393–414.
 - [BC] B. A. Blackadar and J. Cuntz, 'Differential Banach algebras norms and smooth sub algebras of C*-algebras', J. Operator Theory 26 (1991), 255–282.
 - [C] A. Connes, Non Commutative Geometry (Academic Press, London and San Diego, 1994).
- [KS1] E. Kissin and V. Shulman, 'Differential properties of some dense subalgebras of C*-algebras', Proc. Edinb. Math. Soc. (2) 37(3) (1994), 399–422.
- [KS2] E. Kissin and V. Shulman, 'Differential Banach *-algebras of compact operators associated with symmetric operators', J. Funct. Anal. 156 (1998), 1–29.
- [KS3] E. Kissin and V. Shulman, 'Dual spaces and isomorphisms of some differential Banach algebras of operators', *Pacific J. Math.* 90 (1999), 329–359.
- [KS4] E. Kissin and V. Shulman, 'Differential Schatten *-algebras, approximation properties and approximate identities', J. Operator Theory 45 (2001), 303–334.
 - [R] W. Rudin, Functional Analysis (McGraw-Hill Inc., New York, 1973).
 - [S1] S. Sakai, Operator Algebras in Dynamical Systems (Cambridge University Press, Cambridge– New York–Melbourne, 1991).
- [W1] N. Weaver, 'Lipschitz algebras and derivations of von Neumann algebras', J. Funct. Anal. 139 (1996), 261–300.
- [W2] N. Weaver, 'Lipschitz algebras and derivations II. Exterior differentiation', J. Funct. Anal. 178 (2000), 64–112.

S. J. BHATT, Department of Mathematics, Sardar Patel University,

Vallabh Vidyanagar, Gujarat 388120, India

e-mail: subhashbhaib@gmail.com

MEETAL M. SHAH, Department of Mathematics, Sardar Patel University,

Vallabh Vidyanagar, Gujarat 388120, India

e-mail: meetal.shah@gmail.com