
J. Aust. Math. Soc. 100 (2016), 145–162
doi:10.1017/S1446788715000403

SECOND-ORDER NONCOMMUTATIVE DIFFERENTIAL
AND LIPSCHITZ STRUCTURES DEFINED BY A

CLOSED SYMMETRIC OPERATOR

S. J. BHATT� and MEETAL M. SHAH

(Received 15 January 2015; accepted 6 April 2015; first published online 25 November 2015)

Communicated by G. Willis

Abstract

The Banach ∗-operator algebras, exhibiting the second-order noncommutative differential structure and
the noncommutative Lipschitz structure, that are determined by the unbounded derivation and induced by
a closed symmetric operator in a Hilbert space, are explored.
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The aim of the present paper is to understand the noncommutative second-order
differential structure and the noncommutative Lipschitz structure defined by a closed
symmetric operator in a Hilbert space. Let S be a closed symmetric operator with
dense domain D(S ) in a Hilbert space H . Let B(H) and K(H) be the C∗-algebras
consisting of all bounded operators and all compact operators onH , respectively. Let
A1

S consist of all operators A in B(H) such that AD(S ) ⊂ D(S ), A∗D(S ) ⊂ D(S ) and
S A − AS extends by closure to a bounded operator on H. Let AS := (S A − AS )−,
where the bar above denotes the closure of the respective operator. Then A1

S is
a Banach ∗-algebra with norm ‖A‖1 := ‖A‖ + ‖AS ‖, with ‖ · ‖ denoting the operator
norm. Let US be the C∗-algebra obtained by completing A1

S in ‖ · ‖. Let δS be
the ∗-derivation defined by S as δS (A) = iAS with domain D(δS ) = A1

S in US . Let
K1

S :=A1
S ∩ K(H), J1

S := {A ∈ K1
S : AS ∈ K(H)} and F 1

S be the closure in the norm
‖ · ‖1 of all finite rank operators inA1

S . The algebraA1
S is a Banach (D∗1)-algebra [KS2]

in the sense that it is a Banach ∗-algebra that is a dense ∗-subalgebra of a C∗-algebra
satisfying ‖TR‖1 ≤ ‖T‖1‖R‖ + ‖T‖ ‖R‖1 for all T,R in A1

S . The algebras K1
S ,J

1
S ,F

1
S
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are closed subalgebras of (A1
S , ‖ · ‖1) and F 1

S ⊂ J
1
S ⊂ K

1
S ⊂ A

1
S . In [KS2, KS3, KS4],

Kissin and Shulman have investigated the structure of these algebras, regarding them
as noncommutative differential algebras defined by the derivation δS .

The classical Banach function algebra C1[a, b] (consisting of functions f ∈ C[a, b]
such that the derivative f ′ exists on [a, b] and f ′ ∈ C[a, b]) as well as the Lipschitz
algebra Lip[a, b] (consisting of functions f ∈ C[a, b] such that the derivative f ′

exists almost everywhere on [a, b] and f ′ ∈ L∞[a, b]) suggest that the algebras
A1

S ,K
1
S ,J

1
S and F 1

S represent the noncommutative Lipschitz structure defined by S
(more precisely, defined by S relative to B(H)). The noncommutative C1-structure
defined by S may be described more accurately by the following modified versions of
these algebras. Let

A
(1)
S := {A ∈ US : AD(S ) ⊂ D(S ), A∗D(S ) ⊂ D(S ), (S A − AS )− ∈ US },

K
(1)
S := K(H) ∩A(1)

S , J (1)
S := {A ∈ K (1)

S : AS ∈ K(H)} and F (1)
S be the ‖ · ‖1-closure of

finite rank operators inA(1)
S . These Banach algebras, together with the Banach algebras

considered in the previous paragraph, exhibit the first-order differential structure
defined by S and described in terms of the derivation δS . We consider the second-
order differential structure defined by S , which is exhibited by the algebras and is
defined as follows.

Let A2
S := {A ∈ A1

S : δS (A) ∈ A1
S }, which is a Banach ∗-algebra with norm ‖A‖2 =

‖A‖ + ‖δS (A)‖ + (1/2)‖δ2
S (A)‖,K2

S =A2
S ∩K(H) andJ2

S = {A ∈ K1
S : δS (A) ∈ J1

S }, and
let F 2

S be the closure in ‖ · ‖2 of finite rank operators in A2
S . Notice that, for A in A2

S ,
δ2

S (A) ∈ B(H), and thus the algebra A2
S corresponds to the algebra of C1-functions

whose derivatives are Lipschitzian. The analogues of the algebra of C2-functions are
given as follows. LetA(2)

S = {A ∈ A(1)
S : δS (A) ∈ A(1)

S }, which is a closed subalgebra of
A2

S , K (2)
S =A

(2)
S ∩ K(H), J (2)

S = {A ∈ K (1)
S : δS (A) ∈ J (1)

S }, and let F (2)
S be the closure

in ‖ · ‖2 of finite rank operators in A(2)
S . Thus the noncommutative second-order

differential structure defined by S is manifested as the following complex of Banach
algebras which are dense smooth subalgebras of C∗-algebras.

A
(2)
S ⊂ A2

S ⊂ A
(1)
S ⊂ A1

S ⊂ US

∪ ∪ ∪ ∪

K
(2)
S ⊂ K2

S ⊂ K
(1)
S ⊂ K1

S

∪ ∪ ∪ ∪

J
(2)
S ⊂ J2

S ⊂ J
(1)
S ⊂ J1

S

∪ ∪ ∪ ∪

F
(2)

S ⊂ F 2
S ⊂ F

(1)
S ⊂ F 1

S

An algebra of the form B2
S (and, analogously, B(2)

S ) should not be confused with
(BS )2 which is the linear span in BS of the set {XY : X ∈ BS , Y ∈ BS}. Notice that,
when S is a bounded operator, all the three norms ‖ · ‖2, ‖ · ‖1 and ‖ · ‖ are equivalent,
A

(2)
S =A2

S =A
(1)
S =A1

S =US = B(H), and the remaining Banach algebras coincide
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with the C∗-algebra K(H). A comparison with the classical C1-algebra and the
Lipschitz algebra in real analysis suggests that the noncommutative C1-structure is
likely to be more rigid than the noncommutative Lipschitz structure. The purpose of
the present paper is to contribute to the understanding of the noncommutative second-
order differential and Lipschitz structures defined by S using the method adopted
in Kissin and Shulman [KS2] and in Weaver [W1, W2] for the investigation of the
first-order structures. Throughout the paper, we assume that the closed symmetric
operator S is such that the operator S 2 with domain D(S 2) := {x ∈ D(S ) : S x ∈ D(S )}
is a densely defined operator. This would ensure that S 2 is closable.

The paper is organized as follows. In Section 1, we develop basic properties of
the Banach ∗-algebra A2

S , and compute the finite rank operators therein. The densely
defined second-order derivation δ2

S : A1
S → B(H), with domain D(δ2

S ) = A2
S , turns

out to be a closed operator in the C1-norm ‖ · ‖1 on A1
S and the operator norm on

B(H). We also discuss the regularity properties, such as spectral invariance and
closure, under functional calculi. In Section 2, it is noticed that the derivations δS

and δ2
S are W∗-derivations in the sense of Weaver [W1, W2] with the result that A1

S
andA2

S are W∗-domain algebras [W1] which are duals of Banach spaces. This enables
us to discuss Lipschitz functional calculus in these Banach algebras. In Section 3,
we discuss approximation properties in A2

S ; the approximation being by a ‖ · ‖1-
convergence of a ‖ · ‖2-bounded sequence. In Section 4, closed essential left ideals
in the algebra F 2

S are determined. As a whole, the paper seeks analogues for second-
order derivation δ2

S of results pertaining to first-order operator δS in [KS2], and adds
a new perspective to a noncommutative Lipschitz structure defined by S . The paper
discusses only some basic properties. Many important issues such as duality [KS3],
isomorphisms [KS3], second-order analogues of differential Schatten algebras [KS4],
analogues of Calkin algebra, as well as higher-order differential structures defined by
S remain to be investigated.

1. Noncommutative differential structure

Proposition 1.1.

(1) The class A2
S is a Banach ∗-algebra with norm ‖A‖2 = ‖A‖ + ‖δS (A)‖ +

(1/2)‖δ2
S (A)‖. Also, for any A in A2

S , AD(S ∗2) ⊂ D(S ∗2), and δ2
S (A)|D(S ∗2) =

−[S ∗2A − 2S ∗AS ∗ + AS ∗2].
(2) For each i = 1, 2, the algebraA(i)

S is a closed ∗-subalgebra ofAi
S .

(3) If δS is a generator and, in particular, if S is self-adjoint, the algebra A2
S is

dense inUS . Also, the algebraA(2)
S is dense inUS .

Proof. (1) First, we note that, for A ∈ A2
S , AD(S 2) ⊂ D(S 2) and A∗D(S 2) ⊂ D(S 2).

Indeed let A ∈ A2
S . Then A ∈ A1

S and, as A∗ ∈ A1
S , A∗D(S ) ⊂ D(S ). Let y ∈ D(S 2).
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Then S A∗y is defined. Let x ∈ D(S ∗). Then

i(S A∗y, S ∗x) = i(S A∗y, S ∗x) − i(A∗S y, S ∗x) + i(A∗S y, S ∗x)

= (δS (A∗)y, S ∗x) + i(A∗S y, S ∗x)

= (δS (A)∗y, S ∗x) + i(A∗S y, S ∗x)

= (S δS (A)∗y, x) + i(A∗S y, S ∗x)

because A ∈ A2
S , with the result δS (A)∗D(S ) ⊂ D(S ). Also, since y ∈ D(S 2), A∗S y ∈

D(S ) and S A∗S y is defined. Hence, in the above expression, i(S A∗y, S ∗x) =

(S δS (A)∗y, x) + i(S A∗S y, x). It follows, from the definition of the domain of the
adjoint of an unbounded operator, that S A∗y ∈ D(S ∗∗) = D(S ), with S being closed.
Thus A∗y ∈ D(S 2). This proves A∗D(S 2) ⊂ D(S 2). Similarly, it follows that AD(S 2) ⊂
D(S 2).

Clearly,A2
S is a complex vector space. We assume A ∈ A2

S , B ∈ A
2
S and verify that

AB ∈ A2
S . As A1

S is an algebra and A, B ∈ A1
S , we have AB ∈ A1

S . As δS (AB) =

δS (A)B + AδS (B) and δS (A), δS (B) ∈ A1
S , we have δS (AB) ∈ A1

S . Thus AB ∈ A2
S .

To show that A2
S is a ∗-algebra, we show that A∗ ∈ A2

S for A ∈ A2
S . We have A ∈

A1
S , δS (A) ∈ A1

S . Since A1
S is a ∗-algebra and δS is a ∗-derivation, A∗ ∈ A1

S , δS (A∗) =

δS (A)∗ ∈ A1
S . Thus A∗ ∈ A2

S .
We show that (A2

S , ‖ · ‖2) is complete. Let (An) be a Cauchy sequence inA2
S . Then

(An) is ‖ · ‖1-Cauchy in the Banach algebra (A1
S , ‖ · ‖1). Hence there exists A in A1

S
such that in the operator norm, both ‖An − A‖ → 0 and ‖δS (An) − δS (A)‖ → 0. Also,
since An ∈ A

2
S , δS (An) ∈ A1

S and since (An) is ‖ · ‖2-Cauchy, (δS (An)) is ‖ · ‖1-Cauchy.
Hence, for some T ∈ A1

S , ‖δS (An) − T‖ → 0, ‖δ2
S (An) − δS (T )‖ → 0. It follows that

T = δS (A). Thus A ∈ A2
S and ‖An − A‖2 → 0, showing that (A2

S , ‖ · ‖2) is complete.
The norm inequality ‖AB‖2 ≤ ‖A‖2‖B‖2 (A, B inA2

S ) follows easily from the derivation
property of δS . Thus (A2

S , ‖ · ‖2) is a Banach ∗-algebra.
Let A ∈ A2

S . We show that AD(S ∗2) ⊂ D(S ∗2) and δ2
S (A)|D(S ∗2) = −[S ∗2A −

2S ∗AS ∗ + AS ∗2]. By [R, Theorem 13.2, page 330], S ∗2 ⊂ (S 2)∗. Now let y ∈
D(S 2), x ∈ D(S ∗2). Since A ∈ A1

S , AD(S ∗) ⊂ D(S ∗), by [KS2, Lemma 3.1, page 16],
and δS (A)|D(S ∗) = i(S ∗A − AS ∗). Also, δS (A) ∈ A1

S . Hence δS (A)D(S ∗) ⊂ D(S ∗). Now
x ∈ D(S ∗2), S ∗x ∈ D(S ∗), AS ∗x ∈ D(S ∗) and

−(δ2
S (A)x, y) − (AS ∗2x, y) + 2(S ∗AS ∗x, y)

= −(x, δ2
S (A∗)y) − (x, S 2A∗y) + 2(x, S A∗S y)

= (x, A∗S 2y) = (Ax, S 2y).

Hence y→ (S 2y, Ax) is a bounded linear functional on D(S 2) and so Ax ∈ D(S 2∗).
As x ∈ D(S ∗2), x ∈ D(S ∗). Since AD(S ∗) ⊂ D(S ∗), Ax ∈ D(S ∗) and y→ (S ∗Ax, S y) =

(Ax, S 2y) is ‖ · ‖ bounded. Thus S ∗Ax ∈ D(S ∗) and so Ax ∈ D(S ∗2). This gives
AD(S ∗2) ⊂ D(S ∗2) and δ2

S |D(S ∗2) = −[S ∗2A − 2S ∗AS ∗ + AS ∗2]. This completes the
proof of (1).
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(2) Is obvious.
(3) If δS is a generator, then the set C∞(δS ) of smooth vectors (in B(H)) of δS is

dense in US [S1]. Since C∞(δS ) ⊂ A(2)
S ⊂ A

2
S , it follows that each of A(2)

S and A2
S is

dense inUS . �

Given norms | · | and ‖ · ‖ on a vector space X, | · | is called closable with respect to
‖ · ‖ if, for any sequence (xn) in X, the assumptions (xn) is | · |-Cauchy and ‖xn‖ → 0
imply that |xn| → 0. The following lemma captures, in the present framework, an
important property of the C2-norm on the commutative Banach algebra C2[a, b] of
C2-functions.

Lemma 1.2. On the Banach algebra A2
S , each of the norms ‖ · ‖2 and ‖ · ‖1 is closable

with respect to the operator norm ‖ · ‖, and ‖ · ‖2 is closable with respect to ‖ · ‖1.

Proof. First, we show that ‖ · ‖1 is closable with respect to ‖ · ‖ on A1
S (and hence

also on A2
S ). As S is closed, δS is a closed operator. If An → 0 in ‖ · ‖ and if An is a

Cauchy sequence in ‖ · ‖1, then δS (An) is Cauchy in ‖ · ‖. As δS is a closed operator,
‖δS (An)→ 0. Hence ‖An‖1 → 0. If An is Cauchy in ‖ · ‖2, then δS (An) and δ2

S (An) are
Cauchy in ‖ · ‖. As above, ‖δS (An)‖ → 0. Applying this again, ‖δ2

S (An)→ 0. Hence
‖An‖2 → 0. Since ‖ · ‖ ≤ ‖ · ‖1 ≤ ‖ · ‖2, ‖ · ‖2 is closable with respect to ‖ · ‖1. �

The following follows immediately as in the previous lemma.

Proposition 1.3. The operator δ2
S with domain D(δ2

S ) =A2
S is a closed operator from

(A1
S , ‖ · ‖1) to (B(H), ‖ · ‖).

For x, y in H , let x ⊗ y be the rank one operator defined as z→ (z, x)y. For a
densely defined operator T , if y ∈ D(T ), x ∈ D(T ∗), then ‖x⊗ y‖ = ‖x‖ ‖y‖, (x⊗ y)∗ =

y⊗ x, (x⊗ y)(u⊗ v) = (v, x)(u⊗ y),T (x⊗ y) = x⊗Ty, and (x⊗ y)T extends to (T ∗x)⊗ y.
It is shown in [KS2, Lemma 3.1] that x⊗ y ∈ A1

S if and only if x, y ∈ D(S ), and that
any finite rank operator F ∈ A1

S is of the form F =
∑

xi ⊗ yi, a finite sum, where
xi, yi ∈ D(S ). We use this to prove the following analogue in the present framework.

Proposition 1.4. Given x, y in H , the rank one operator x ⊗ y ∈ A2
S if and only if

both x and y are in D(S 2). Further, any finite rank operator F in A2
S is of the

form F =
∑

xi ⊗ yi, a finite sum, with all xi ∈ D(S 2), yi ∈ D(S 2).

Proof. Let x ∈ D(S 2), y ∈ D(S 2). Then for all z ∈ H , (x⊗ y)z = (z, x)y ∈ D(S ). Also,
δS (x⊗ y) = i{S (x⊗ y) − (x⊗ y)S } = i{x⊗ S y − S ∗x⊗ y}. Further,

δS (δS (x⊗ y)) = i{δS (x⊗ S y) − δS (S ∗x⊗ y)}
= −{S (x⊗ S y) − (x⊗ S y)S − S (S ∗x⊗ y) + (S ∗x⊗ y)S}
= −{x⊗ S 2y − S ∗x⊗ S y − S ∗x⊗ S y + S ∗2x⊗ y}.

In fact, S ⊂ S ∗ and S x ∈ D(S ), S y ∈ D(S ). Hence δ2
S (x ⊗ y) = −(x ⊗ S 2y −

2S x⊗S y + S 2x⊗ y). As y ∈ D(S ), (x⊗ y)D(S ) ⊂ D(S ), and as x ∈ D(S ), (x⊗ y)∗D(S ) =

(y ⊗ x)D(S ) ⊂ D(S ). Also, δS (x ⊗ y) = i{x ⊗ S y − S ∗x ⊗ y} = i{x ⊗ S y − S x ⊗ y} ∈
B(H). Thus x ⊗ y ∈ A1

S . Moreover, δS (x ⊗ y)D(S ) ⊂ D(S ), {δS (x ⊗ y)}∗D(S ) =
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δS (y ⊗ x)D(S ) ⊂ D(S ), and δS (δS (x ⊗ y)) = −{x ⊗ S 2y − 2S x ⊗ S y + S 2x ⊗ y} is a
bounded linear operator onH . Hence x⊗ y ∈ A2

S .
Conversely, let x, y inH be such that x⊗ y ∈ A2

S .We show that x ∈ D(S 2), y ∈ D(S 2).
Note that x⊗ y ∈ A1

S and δS (x⊗ y) ∈ A1
S . By [KS2, Lemma 3.1(ii)], x ∈ D(S ) and

y ∈ D(S ). Also δS (x ⊗ y)D(S ) ⊂ D(S ) and {δS (x ⊗ y)}∗D(S ) ⊂ D(S ). Now, for any
z ∈ H ,

δS (x⊗ y)z = i{x⊗ S y − S ∗x⊗ y}z = i{(z, x)S y − (z, S ∗x)y}.

Since δS (x⊗ y)D(S ) ⊂ D(S ) and (S ∗x⊗ y)D(S ) ⊂ D(S ) as y ∈ D(S ), it follows that
(x⊗ S y)D(S ) ⊂ D(S ), so that, for all z ∈ D(S ), we have (x⊗ S y)z = (z, x)S y ∈ D(S ).
Choosing z such that (z, x) is nonzero, we get S y ∈ D(S ), so that y ∈ D(S 2). Now
x⊗ S y ∈ A1

S . Since δS (x⊗ y) ∈ A1
S , we get S ∗x⊗ y ∈ A1

S . Then, by above result stated
in [KS2], S x = S ∗x ∈ D(S ). Thus x ∈ D(S 2).

Now let F ∈ A2
S be a finite rank operator, say F =

∑
xi ⊗ yi, a finite sum. We can

assume all xi to be linearly independent, and also all yi to be linearly independent.
For any z ∈ H , Fz =

∑
(xi ⊗ yi)z =

∑
(z, xi)yi. Since F ∈ A2

S , we have F ∈ A1
S and

δS (F) ∈ A1
S . By [KS2, Lemma 3.1], all xi ∈ D(S ) and all yi ∈ D(S ). Also,

δS (F) =
∑

δS (xi ⊗ yi) = i
∑
{S (xi ⊗ yi) − (xi ⊗ yi)S}

= i
∑
{xi ⊗ S yi − S ∗xi ⊗ yi} = i

∑
{xi ⊗ S yi − S xi ⊗ yi}.

As δS (F) ∈ A1
S , again [KS2, Lemma 3.1(ii)] implies that all S yi ∈ D(S ) and all

S xi ∈ D(S ). Thus all xi ∈ D(S 2), and all yi ∈ D(S 2). This completes the proof. �

By [KS2, Lemma 3.1(iii)], K1
S and J1

S are closed ∗-ideals of (A1
S , ‖ · ‖1) and

(K1
S )2 ⊂ J1

S . The following contains an analogue of this in the present case.

Proposition 1.5. K2
S and J2

S are closed ∗-ideals of (A2
S , ‖ · ‖2), and (K2

S ∩ J
1
S )2 ⊂ J2

S .

Proof. Clearly, K2
S is a closed ∗-ideal of A2

S . Let A ∈ J2
S . Then A ∈ K2

S , δS (A) ∈
K(H), δ2

S (A) ∈ K(H). Let B ∈ A2
S . Then δS (B) ∈ A1

S , δ
2
S (B) ∈ B(H). Then δS (AB) =

δS (A)B + AδS (B) ∈ K(H) and δ2
S (AB) = Aδ2

S (B) + 2δS (A)δS (B) + δ2
S (A)B ∈ K(H).

Similarly, BA ∈ J2
S , A∗ ∈ J2

S showing that J2
S is a ∗-ideal of A2

S . Clearly, J2
S is

closed in (A2
S , ‖ · ‖2). Now let A, B ∈ K2

S ∩ J
1
S . Since B ∈ K2

S , we have B ∈ A2
S and

so δS (B) ∈ A1
S . Since B ∈ J1

S , B is compact and δS (B) ∈ K(H). Thus δS (B) ∈ K1
S .

Also, A ∈ J1
S ⊂ K

1
S . Therefore AδS (B) ∈ J1

S . Similarly, δS (A)B ∈ J1
S . Thus δS (AB) =

AδS (B) + δS (A)B ∈ J1
S . We already have AB ∈ K1

S . It follows that AB ∈ J2
S . �

Proposition 1.6. The Banach algebras (A2
S ), ‖ · ‖2), (K2

S , ‖ · ‖2), (J2
S , ‖ · ‖2) and (F 2

S , ‖ ·
‖2) are semisimple, F 2

S has no closed two sided ideals, and F 2
S ⊂ I for any closed ∗-

ideal I of (A2
S , ‖ · ‖2).

Proof. Let I be a closed ∗-ideal of F 2
S . Let A ∈ I. Let x ∈ D(S ) such that A∗x is

nonzero. Now A∗x⊗ y = (x⊗ y)A ∈ I for all x, y ∈ D(S 2). Then, for all z in D(S 2),

(A∗x⊗ y)A∗(z⊗ x) = (A∗x⊗ y)(z⊗ A∗x) = ‖A∗x‖2(z⊗ y).
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Hence z⊗ y ∈ I. Since I contains all finite rank operators in A2
S , we get F 2

S ⊂ I

and, since I ⊂ F 2
S , F 2

S = I. If I is a closed ∗-ideal of A2
S , this argument implies that

F 2
S ⊂ I. The Banach algebra A2

S is an A∗-algebra (that is, a Banach ∗-algebra with a
C∗-norm). Hence it is ∗-semisimple, and so is semisimple. �

We consider the regularity properties of these Banach algebras. Following [KS1,
KS2], a Banach (D∗1)-subalgebra of a C∗-algebra (U, ‖ · ‖) is a dense ∗-subalgebra
A of U such that A is a Banach ∗-algebra with some norm ‖ · ‖1 satisfying ‖xy‖1 ≤
‖x‖ ‖y‖1 + ‖x‖1‖y‖, for all x, y ∈ A. This models a noncommutative differential
structure of order one, and the algebra A1

S is a Banach (D1)∗-subalgebra of the C∗-
algebra US . A Banach (D∗2)-subalgebra ofU [KS1] is a dense ∗-subalgebra A with
seminorms ‖ · ‖1, ‖ · ‖2 such that:

(1) for each i = 1, 2 and for each x, y ∈ A, there exist Di > 0 satisfying ‖x‖i =

‖x∗‖i, ‖xy‖i ≤ ‖x‖i‖y‖i, ‖xy‖i ≤ Di(‖x‖i‖y‖i−1 + ‖x‖i−1‖y‖i); and
(2) ‖ · ‖2 is a norm and (A, ‖ · ‖2) is a Banach ∗-algebra.

This is a noncommutative analogue of the Banach algebra of C2-functions. The
following theorem, which exhibits regularity properties of noncommutative C2-
structures defined by S , contains analogues in the present set-up of several well-
known results on the Banach algebra of C2-functions. For terminology, we refer
to [BC, BIO, KS1]. A Q-normed algebra is a normed algebra in which the set of
quasiregular elements is an open set.

Theorem 1.7. For B = A2
S ,K

2
S ,J

2
S ,F

2
S , let A stand for their respective C∗-algebra

completions. The following hold.

(1) B is a differential Banach algebra of order two and total order less than or
equal to two, B is a Banach (D∗2)-algebra and B is a smooth subalgebra of a
C∗-algebra.

(2) B is a Q-normed algebra in the C∗-norm onA, and the algebras B andA have
the same K-theory.

(3) B is closed under the holomorphic functional calculus of A, and is also closed
under the C3-functional calculus of self-adjoint elements ofA.

(4) The algebra B is hermitian and spectrally invariant inA.
(5) The map I → I ∩ B is a one-to-one correspondence between the closed ideals

of A and the C∗-norm closed ideals of B. The inverse of this correspondence is
given by I → I−, the closure of the ideal I of B in the C∗-norm ‖ · ‖ onA. Not
every ideal in B closed in ‖ · ‖2 is of this form.

(6) Let π : B→B(K) be a ∗-representation ofB into bounded operators on a Hilbert
space K . Then π is continuous in the C∗-norm on B, and it extends uniquely to
a representation ofA into B(K).

(7) Let US be unital. Every completely positive map φ : A2
S → B(K) extends

uniquely as a completely positive map φ :US →B(K).
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Proof. (1) Consider A2
S . Let T = (T0, T1, T2) on A2

S be T0(A) = ‖A‖, T1(A) =

‖δS (A)‖, T2(A) = (1/2)‖δ2
S (A)‖. Clearly, T is a differential norm of order two.

Further, T1(AB) ≤ T0(A)T1(B) + T1(A)T0(B) and T2(AB) ≤ ‖A‖T2(B) + T1(A)T1(B) +

T2(A)‖B‖ showing that T is of logarithmic order p = log2 1 + 1 = 1 [BC]. By [BC,
Proposition 3.10], T is of total order less than or equal to two. Also, the total norm of
T is Ttot := T0 + T1 + T2 = ‖ · ‖2. The same arguments apply to other algebras. Thus B
is a differential Banach algebra of order two and total order less than or equal to two.
By [BC],A2

S is a smooth subalgebra of its C∗-completion in operator norm.
(2) That B is a Q-normed algebra with the C∗-norm from A follows from

[BC, Proposition 3.12] or [KS1, Theorem 5], and hence closure under holomorphic
functional calculus and K-theory isomorphism follows by [C].

(3) The closure under C3-functional calculus follows from [BC, Proposition 6.4] or
[KS1, Theorem 12].

(4) The fact that B is a Q-subalgebra ofA gives hermiticity and spectral invariance
(see also [KS1, Theorem 5]). Notice that the C∗-norm fromA is the greatest C∗-norm
on B.

(5) As B is a Banach D∗2-subalgebra of U, the assertion follows from [KS1,
Theorem 13]. Let I be a closed ideal of the C∗-algebra US . Then the set I2

S :=
{A ∈ A2

S ∩ I : δS (A) ∈ I, δ2
S (A) ∈ I} is a ‖ · ‖2-closed ideal ofA(2)

S .
(6) This follows from the fact that every ∗-representation of a Q-normed algebra

into a C∗-algebra is norm continuous.
(7) The completely positive map φ on the unital Banach ∗-algebraA2

S is Stinespring
representable [B1] in the sense that it is of form φ(T ) = V∗π(T )V where π : A2

S →

B(K) (K a Hilbert space) is a ∗-homomorphism and V : K →H is a projection. Now
π, and hence φ, extends to the C∗-completion ofA2

S , and Arveson’s famous completely
positive extension theorem applies. �

2. Noncommutative Lipschitz structure
We consider the Lipschitz structure defined by S following the ideas in [W1, W2].

LetM ⊂ N be von Neumann algebras with same unit. A W∗-derivation δ :M→N
is an unbounded linear map whose domain dom(δ) is a unital ∗-subalgebra ofM such
that (i) dom(δ) is ultra weakly dense inM (ii) the graph of δ is ultra weakly closed in
M⊕N and (iii) δ is a ∗-derivation. Then dom(δ) is called a W∗-domain algebra.
It is a Banach ∗-algebra with norm ‖x‖1 := ‖x‖ + ‖δ(x)‖. A W∗-domain algebra is
envisaged as a noncommutative Lipschitz algebra; equivalently, as a noncommutative
metric space. The following brings out an essential difference between the Banach
∗-algebras A(1)

S and A1
S , illuminating the difference between a noncommutative C1-

structure and a noncommutative Lipschitz structure. Let MS := W∗(US ) be the von
Neumann algebra generated by the C∗-algebra US . Notice that MS = W∗(A1

S ) and
US = C∗(A1

S ).

Proposition 2.1. Let S be as above.

(1) The derivation δS :MS →B(H) with domain dom(δS ) =A1
S is a W∗-derivation.
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(2) The Banach ∗-algebraA1
S is dual of a Banach space, and the weak∗-topology σ1

on A1
S is described as Aα → A in σ1 if and only if Aα → A ultra weakly inMS

and δS (Aα)→ δS (A) ultra weakly in B(H).

Proof. (1) Let M∗ be the predual of MS , consisting of all ultra weakly continuous
linear functionals on MS , so that the ultra weak topology on MS is the weak ∗-
topology σ(MS ,M∗). Clearly, A1

S is ultra weakly dense in MS . The graph of
δS is G(δS ) = {(A, δS (A)) : A ∈ A1

S )}, a subspace of MS ⊕ B(H). We prove that
G(δS ) is closed in the ultra weak topology on the direct sum von Neumann algebra
MS ⊕ B(H). Let (A, B) be in the closure of the graph G(δS ) in the ultra weak topology
on MS ⊕ B(H). Let (Aα) be a net in A1

S such that Aα → A ultra weakly in MS and
δS (Aα)→ B ultra weakly in B(H). We show that AD(S ) ⊂ D(S ), A∗D(S ) ⊂ D(S ),
δS (A) is bounded and B = δS (A).

Notice that, since Aα ∈ A
1
S , AαD(S ) ⊂ D(S ), A∗αD(S ) ⊂ D(S ) and δS (Aα) are

bounded operators. Now, since MS is ultra weakly closed, the operator A ∈ MS is
bounded; similarly B is bounded, and for all ψ, η inH , ((Aα − A)ψ, η)→ 0, ((δS (Aα) −
B)ψ, η) → 0. Now let ψ ∈ D(S ), η ∈ D(S ∗). Then (Bψ, η) = limα(δS (Aα)ψ, η) =

i limα((S Aα − AαS )ψ, η) = i limα(Aαψ, S ∗η) − i(ASψ, η) = i(Aψ, S ∗η) − i(ASψ, η). As
S ∗∗ = S since S is closed, we have Aψ ∈ D(S ∗∗) = D(S ) and Bψ = i(S A − AS )ψ.
Thus AD(S ) ⊂ D(S ) and (S A − AS ) extends to a bounded operator. Next we
show that A∗D(S ) ⊂ D(S ). Let ψ and η be as above. Then (η, (Aα − A)∗ψ) →
0, (η, (δS (Aα) − B)∗) → 0. Now (η, B∗ψ) = limα(η, δS (Aα)∗ψ) = limα(η, δS (A∗α)ψ) =

limα i(η, (S A∗α − A∗αS )ψ) = limα i(η, S A∗αψ) − limα i(η, A∗αSψ) = limα i(η, S A∗αψ) −
i(η, A∗Sψ). Thus (η, S A∗αψ) converges and limα(η, S A∗αψ) = −i(η, B∗ψ) + (η, A∗Sψ).
Also, limα(η, S A∗αψ) = limα(S ∗η, A∗αψ) = (S ∗η, A∗ψ). Thus (A∗ψ, S ∗η) = i(B∗ψ, η) +

(A∗Sψ, η). Hence A∗ψ ∈ D(S ∗∗) = D(S ). Thus A∗D(S ) ⊂ D(S ). It follows that G(δS )
is ultra weakly closed inMS ⊕ B(H).

(2) This follows from (1) above as in [W1, Proposition 2]. Indeed, the Banach
space A1

S is isometrically isomorphic to the graph of δS by the map A→ {A, δS (A)},
and the graph of δS is an ultra weakly closed (and hence norm closed) subspace of
MS ⊕B(H). NowM⊕B(K) is the dual of the direct sum Banach spaceM∗ ⊕ C1(H),
whereM∗ is the predual ofMS and C1(H) is the Banach space of trace class operators
on H whose dual is B(H). Hence it follows that A1

S is a dual space. In fact, it is the
dual of (M∗ ⊕ C1(H))/L, where L is the annihilator of graph of δS inM∗ ⊕ C1(H). �

The following continues from the above in view of [W1, Corollaries 4 and 5].
For a metric space (X, d), the Lipschitz algebra Lip(X) consists of all bounded
complex valued Lipschitz functions f on X, where the Lipshitz number L( f ) of f
is L( f ) = sup{| f (x) − f (y)|/d(x, y) : x, y ∈ X, x , y} <∞. It is a Banach ∗-algebra with
norm ‖ f ‖∞ + L( f ), and is a subalgebra of the abelian von Neumann algebra L∞(X)
of essentially bounded Borel measurable functions on X. For an operator T , Sp(T )
denotes the spectrum of T .

Corollary 2.2. Let S be as above.

(1) Let X = X∗ ∈ A1
S . Let f ∈ Lip(Sp(X)). Let δS (X) commute with X. Then

f (X) ∈ A1
S and ‖δS ( f (X))‖ ≤ L( f )‖δS (X)‖.
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(2) Let J be a σ1-closed ∗-ideal of A1
S . Then J is the σ1-closure of (J)2, where

(J)2 is the linear span of {AB : A ∈ J , B ∈ J}.
(3) Let J be a ∗-ideal of A1

S . Then δS (J) is contained in the ultra weak closure of
JB(H) + B(H)J .

(4) Let I and J be ∗-ideals of A1
S . Then I ∩ J is contained in the σ1-closure of

IJ and, if I and J are σ1-closed, then I ∩ J is the σ1-closure of IJ .

We consider the second-order Lipschitz structure. Let Lip2[a, b] := { f ∈ Lip[a, b] :
f ′ ∈ Lip[a, b]} = { f ∈ C1[a, b] : f ′ ∈ Lip[a, b]} a Banach ∗-algebra with norm ‖ f ‖Lip2 =

‖ f ‖∞ + ‖ f ′‖∞ + (1/2) max{‖ f ′′‖∞, L( f ′)}. Let φ be the linear operator φ :A2
S →MS ⊕

MS ⊕ B(H), φ(A) = (A, δS (A), δ2
S (A)). The operator δ2

S : A1
S → B(H) is δ2

S (A) =

δS (δS (A)) with domain dom(δ2
S ) = A2

S . The following theorem gives the Lip2-
functional calculus inA2

S .

Theorem 2.3.

(1) The graph of the operator δ2
S : A1

S → B(H), domδ2
S = A2

S , given by G(δ2
S ) =

{(A, δ2
S (A)) : A ∈ A2

S } is closed inA1
S ⊕B(H), whereA1

S carries the σ1-topology
and B(H) carries the ultra weak topology. The range of the map φ is an
ultra weakly closed subspace ofMS ⊕MS ⊕ B(H) with the product ultra weak
topology.

(2) The algebra A2
S is dual of a Banach space. The weak ∗-topology on A2

S ,
denoted by σ2, is given as Aα → A in σ2 if and only if Aα → A ultra weakly,
δS (Aα)→ δS (A) ultra weakly and δ2

S (Aα)→ δ2
S (A) ultra weakly.

(3) Let X = X∗ ∈ A2
S . Let f ∈ Lip2(sp(X)). Let X commute with δS (X). Then

f (X) ∈ A2
S and

‖δ2
S f ((X))‖ ≤ L( f )‖δ2

S (X)‖ + L( f ′)‖(δS (X))2‖.

Proof. (1) Follows by application of Proposition 2.1(1) from which (2) follows as in
Proposition 2.1(2). Indeed, A2

S is isometrically isomorphic to a closed subspace of
A1

S ⊕ B(H), and the latter is a dual space.
(3) The proof is a second-order analogue of that of [W1, Theorem 1]. The function

f can be extended as a Lipschitz function without changing the Lipschitz constant
L( f ) to the interval [−‖X‖, ‖X‖]. Now let f be a polynomial f (t) =

∑
antn. Then

f (X) ∈ dom(δ2
S ) and, since X and δS (X) commute, we get δS ( f (X)) =

∑
nanXn−1δS (X)

as well as

δ2
S ( f (X)) =

∑
nanδS (Xn−1δS (X))

=
∑

nan{Xn−1δ2
S (X) + δS (Xn−1)δS (X)}

=
∑

nan{Xn−1δ2
S (X) + (n − 1)Xn−2(δS (X))2}

=
∑

nanXn−1δ2
S (X) +

∑
n(n − 1)anXn−2(δS (X))2

= f ′(X)δ2
S (X) + f ′′(X)(δS (X))2.
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Hence
‖δ2

S ( f (X))‖ ≤ L( f )‖δ2
S (X)‖ + L( f ′)‖(δS (X))2‖.

Now let I = [−‖X‖, ‖X‖]. Let f ∈ Lip2(I). Then f ′′ ∈ L∞(I). Choose a sequence
of polynomials gn such that gn → f ′′ in L1(I) and ‖gn|I‖∞ ≤ ‖ f ′′‖∞ = L( f ′). Let
fn(t) = f ′(0) +

∫ t
0 gn(t) dt. Then fn are polynomials and ‖ fn − f ′‖∞→ 0. Hence the L1-

norm ‖ fn − f ′‖1 → 0 and ‖ f ′n |I‖∞ ≤ L( f ′). Let hn(t) = f (0) +
∫ t

0 fn(t) dt. Again hn are
polynomials, ‖hn|I − f ‖∞ → 0, ‖h′n|I‖∞ ≤ ‖ f

′‖∞ = L( f ). Then, by the above estimates,

‖δ2
S (hn(X))‖ ≤ ‖h′n‖∞‖δ

2
S (X)‖ + ‖h′′n ‖∞‖(δS (X))2‖

≤ L( f )‖δ2
S (X)‖ + L( f ′)‖(δS (X))2‖.

Therefore there is a subnet (hα) of the sequence (hn) such that δ2
S (hα(X))→ Y for

some Y in the ultra weak topology. Now hn(X)→ f (X) uniformly, h′n(X)→ f ′(X)
uniformly and δS (hn(X))→ δS ( f (X)) uniformly. Since the graph of δ2

S is σ2-closed,
f (X) ∈ dom(δ2

S ) and ‖δ2
S ( f (X))‖ ≤ L( f ) ‖δ2

S (X)‖ + L( f ′)‖ (δS (X))2‖. �

3. (∼)-convergence

Let X be a linear subspace of a normed linear space (Y, ‖ · ‖). Let ‖ · ‖1 be a norm
on X such that ‖x‖ ≤ ‖x‖1 for all x ∈ X. Following [KS2], we say that a sequence
(xn) in X (∼)-converges to y ∈ Y if sup ‖xn‖1 < ∞ and ‖xn − y‖ → 0 as n→∞. For a
subset M of X, its (∼)-closure in Y (respectively, in X) is the set of all elements in Y
(respectively, in X) which are (∼)-limits of elements from M. Then M is (∼)-closed in
Y (respectively, in X) if it coincides with its (∼)-closure in Y (respectively, in X). This
auxiliary mode of convergence has been found useful in understanding the first-order
structure in [KS2]. By [KS2, Theorem 3.3], the Banach algebra A1

S is (∼)-closed in
B(H), and every closed subspace of (J1

S , ‖ · ‖1) is (∼)-closed in J1
S . The following

gives an analogue of this in the present set-up. We say that a sequence (An) in A2
S

(∼)-converges to A ∈ B(H) if ‖An‖2 < ∞, ‖An − A‖ → 0 in operator norm. Thus (∼)-
convergence inA2

S is an analogue of a sequence of C2-functions bounded in C2-norm
and converges uniformly to a continuous function. In the following, we shall use a
technical result [KS2, Corollary 2.7, page 7] that states that if φ is a closed linear map
from a Banach space (X, ‖ · ‖X) to a Banach space (Z, ‖ · ‖Z) with domain domφ such
that the set Wφ consisting of bounded linear functionals f on Z (with f oφ extendable
as bounded linear functionals on X) is norm dense in the dual Z∗ of Z, then any closed
subspace of the Banach space (domφ, ‖ · ‖1), ‖x‖1 := ‖x‖X + ‖φ(x)‖Z , is (∼)-closed inX.

Theorem 3.1.

(1) The Banach algebraA2
S is (∼)-closed in B(H).

(2) Every closed subspace of (J2
S , ‖ · ‖2) is (∼)-closed in (J2

S ). In particular, the
ideal F 2

S is (∼)-closed in (J2
S ).
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Proof. (1) Let An ∈ A
2
S , A ∈ B(H) be such that ‖An − A‖ → 0, sup ‖An‖2 < ∞. Then

sup ‖δ2
S (An)‖ = r <∞. Now the ball Br of radius r in B(H) is weak ∗-compact. Hence

there exists R ∈ Br such that each neighbourhood of R contains an infinite number of
elements from {δ2

S (An)}. Let x ∈ D(S 2), y ∈ D(S ∗2). Then there exists a sequence (Ank )
from {An} such that (δ2

S (Ank )x, y)→ (Rx, y). Then

(Rx, y) = lim(δ2
S (Ank )x, y)

= − lim({S 2Ank − 2S Ank S + AS 2}x, y)

= −{lim(S 2Ank x, y) − 2(S AS x, y) + (AS 2x, y)}.

Notice that the (∼)-convergence with ‖ · ‖2-implies (∼)-convergence with norm
‖ · ‖1. SinceA1

S is (∼)-closed by [KS1], A ∈ A1
S and AD(S ) ⊂ D(S ). Thus

(Rx, y) = − lim(Ank x, S 2∗y) + 2(S AS x, y) − (AS 2x, y)

= −(Ax, S 2∗y) + 2(S AS x, y) − (AS 2x, y).

Thus Ax ∈ D(S 2∗∗) = D(S 2) and (Ax, S 2∗y) = (S 2−Ax, y). Then

(Rx, y) = −{(S 2−Ax, y) + 2(S AS x, y) − (AS 2x, y)}

for all y in a dense subspace of H . Thus Rx = −(S 2−Ax + 2S AS x − AS 2x) = δ2
S Ax,

A ∈ A2
S andA2

S is (∼)-closed in B(H).
(2) We shall apply [KS2, Corollary 2.4, page 7] stated above. Let φ := δ2

S |J2
S

:
D(φ) = J2

S ⊂ A
1
S → K(H). By Proposition 1.3, it is a closed linear map in the

‖ · ‖1 − ‖ · ‖ topologies. For x, y in H , let Fx,y(A) = (Ax, y), which is a bounded linear
functional on K(H). Now take x ∈ D(S 2), y ∈ D(S 2). Then, for any A in J2

S ,

Fx,y(φ(A)) = (δ2
S (A)x, y) = −({S 2−A − 2S AS + AS 2}x, y)

= −{(S 2−Ax, y) − 2(S AS x, y) + (AS 2x, y)}

= −{Fx,S 2y(A) − 2FS x,S y(A) + FS 2 x,y(A)}.

Thus Fx,yoφ extends as a bounded linear functional onK(H). Since D(S 2) is dense in
H , the set span {Fx,y : x ∈ D(S 2), y ∈ D(S 2)} is dense in the dual of K(H), identified
with trace class operators. By [KS2, Corollary 2.4], any closed subspace of (J2

S , ‖ · ‖2)
is ∼-closed in J2

S . In particular, F 2
S is (∼)-closed in J2

S . �

An estimate for the first-order functional calculus in A1
S is given in[KS2,

Lemma 2.6]. The following gives an estimate for the second-order functional calculus
inA2

S . Our proof is different: it uses differential algebras as discussed in [BC, BIO].

Proposition 3.2. Let X = X∗ ∈ A2
S . Let d = ‖X‖ the operator norm. Let h be a C3-

function on [−d, d]. Let ‖h‖(3) := ‖h‖∞ + ‖h′‖∞ + ‖h′′‖∞ + ‖h′′′‖∞. Then ‖h(X)‖2 ≤
C‖h‖(3).
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Proof. Notice that h(X) ∈ A2
S by Theorem 1.7(3). The Banach algebra norm ‖ · ‖2 is

the total norm of the differential norm T considered in the proof of Theorem 1.7(1)
above. The differential norm T is of total order less than or equal to two. Thus, by
the definition of the derived norm [BC], ‖ · ‖2 is a derived norm of order less than or
equal to two. By [BC, Proposition 6.4, page 270], ‖h(X)‖2 ≤ C‖h‖(3), with the constant
C depending only on X. �

It is shown in [KS2, Theorem 2.8] that, given X = X∗ inA1
S , there exists a sequence

φn of functions in C∞(R), each vanishing on a neighbourhood of zero, such that
‖X2 − φn(X)‖1 → 0 as n→∞. The following theorem gives a partial analogue of this.
The proof follows that given in [KS2] as much as possible.

Theorem 3.3. Let X consists of all smooth functions f on the real line R, vanishing on
a neighbourhood of zero. Let X = X∗ ∈ A2

S .

(1) There exists a sequence φn in X such that ‖X4 − φn(X)‖2 → 0 as n→∞.
(2) X4 lies in the ‖ · ‖2-closed ideal of the ‖ · ‖2-closed subalgebra A2

S (X) of A2
S

generated by X.

Proof. The following constructions are as in [KS2, proof of Theorem 2.8]. Let n ≥ 3.
Let un = un(t) be the segment of the straight line u = nt/(n − 2) − 2d/(n − 2) on the
plane joining the points (2d/n, 0) and (d, d). Let Tn be the circle that touches the t-
axis at (d/n, 0) and also touches the graph of un(t) at point Pn = P(tn, un). Let vn(t) be
the arc of Tn between the points (d/n, 0) and Pn. Now define the following functions
α(·), β(·), γ(·) and δ(·) to be even as αn(t) = 0 if 0 ≤ t ≤ d/n, αn(t) = vn(t) if d/n ≤ t ≤ tn
and αn(t) = un(t) if tn ≤ t ≤ d.

βn(t) = 2
∫ t

0
αn(s) ds if 0 ≤ t ≤ d, βn(−t) = βn(t),

γn(t) = 3
∫ t

0
βn(s) ds if 0 ≤ t ≤ d, γn(−t) = γn(t),

δn(t) = 4
∫ t

0
γn(s) ds if 0 ≤ t ≤ d, δn(−t) = δn(t).

Then αn(t) = βn(t) = γn(t) = δn(t) = 0 in [−d/n, d/n]. Also, αn ∈ C1[−d, d], βn ∈

C2[−d, d], γn ∈ C3[−d, d], δn ∈ C4[−d, d]. These functions satisfy the following
conditions.

(i) ‖t − αn(t)‖ ≤ 2d/n, ‖α
′

n‖ = ‖u
′

n‖ = n/(n − 2) ≤ 3.
(ii) limn→∞ ‖t2 − β(t)‖ = 0, sup{‖βn‖, ‖β

′

n‖, ‖β
′′

n‖} <∞.
(iii) limn→∞ ‖t3 − γ(t)‖ = 0, sup{‖γn‖, ‖γ

′

n‖, ‖γ
′′

n‖, ‖γ
′′′

n ‖} <∞.
(iv) limn→∞ ‖t4 − δn(t)‖ = 0.

Let d = ‖X‖. By the functional calculus [KS1, Theorem 12], βn(X) ∈ A2
S , γn(X) ∈

A2
S and δn(X) ∈ A2

S . It follows from above (i)–(iv) that ‖t4 − δn(t)‖(3) → 0 as n→∞.
Hence, by Proposition 3.2, ‖X4 − δn(X)‖2 → 0. Choose functions φn ∈ X such that
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‖δn − φn‖(3) → 0 in C3[−d, d]. Then, by Proposition 3.2, ‖δn(X) − φn(X)‖2 → 0, and so
‖X4 − φn(X)‖2 → 0. Let A2

S (X) be the closed subalgebra of A2
S generated by X. Let

I0 = {φ(X) : φ ∈ X},I = ‖ · ‖2-closure of I0 in A2
S . As XI0 ⊂ I0, I is a ‖ · ‖2-closed

ideal ofA2
S (X) and, by the above, X4 ∈ I. �

In the above, we do not know whether X3 ∈ I. Let (A, ‖ · ‖2) be a dense Banach
∗-subalgebra of a C∗-algebra (U, ‖ · ‖). Let A+ be the set of all self-adjoint elements
h = h∗ of A such that its spectrum Sp(h) is nonnegative. Let Asquare

+ = {x2 : x ∈ A+}.
It is shown in [KS2, Theorem 2.5] that if A is a Banach (D∗1)-subalgebra of U, then
A+ = (∼)-closure of Asquare

+ . The following gives a D2-analogue of this. It applies to
the Banach algebraA2

S . Notice that, in view of [KS1],A2
S is spectrally invariant in its

C∗-completion in the operator norm, and hence inUS .

Theorem 3.4. Let A be a unital Banach (D∗2)-subalgebra of a C∗-algebra U. Then
A+ = (∼)-closure ofAsquare

+ .

Proof. We have Asquare
+ ⊂ A+. Also A+ is (∼)-closed. Hence (∼)-closure (Asquare

+ ) ⊂
A+. To prove the reverse inclusion, let a ∈ A+. Then 0 ≤ a ≤ ‖a‖1, and sp(a) ⊂ [0, ‖a‖].
For any ε > 0, the function kε(t) = (t + ε)1/2 is analytic on sp(a). For sufficiently small
ε, kε(t) ∈ C∞[0, ‖a‖ + 1]. By the functional calculus in the C∗-algebraU, bε := kε(a) =

(a + ε1)1/2 ∈ U, and by the C∞-functional calculus in D2-algebra (Theorem 1.7),
bε ∈ A. Then b2

ε = a + ε1 and ‖a − b2
ε ‖ = ε → 0. Also, ‖b2

ε ‖2 ≤ ‖a‖2 + 1 showing that
b2
ε (∼)-converges to a. �

4. One sided ideals in (F 2
S
, ‖ · ‖2)

Since S is closed, its domain D(S ) is a Hilbert space with inner product < x, y >1=

(x, y) + (S x, S y). Also, S 2 is a densely defined closable operator, and its domain
D(S 2) is an inner product space with the inner product 〈x, y〉2 := (x, y) + (S x, S y) +

(S 2x, S 2y). We show that D(S 2) is a Hilbert space. Let |x|2 := ‖x‖ + ‖S x‖ + ‖S 2x‖ be
the norm on D(S 2) defined by the inner product 〈 , 〉2. First, notice that | · |2 is closable
with respect to the Hilbert space norm ‖ · ‖ onH . Indeed, let (xn) be a Cauchy sequence
in | · |2 and ‖xn‖ → 0. Then ‖S xn − S xm‖ → 0. Since S is closed, ‖S xn‖ → 0. Similarly,
since S 2 is closable, ‖S 2xn‖ → 0. Thus |xn|2 → 0, showing that | · |2 is closable. This
implies that the completion L of D(S 2) in | · |2 is contained in H . Now let x ∈ L.
Choose a sequence xn in D(S 2) such that |xn − x|2 → 0. Then ‖xn − x‖ → 0 and S xn is
‖ · ‖-Cauchy. By the closure of the operator S , x ∈ D(S ) and S xn→ S x in ‖ · ‖. Further,
since S xn ∈ D(S ) and S 2xn is ‖ · ‖-Cauchy, again, by the closure of S , it follows that
S x ∈ D(S ) and S 2xn → S 2x in ‖ · ‖. Thus x ∈ D(S 2). It follows that L = D(S 2) and
thus D(S 2), | · |2) is a Hilbert space.

For any K ⊂ D(S 2), let Il(K) be the closure, in the norm ‖ · ‖2 of the Banach ∗-
algebra A2

S , of the linear span of {x⊗ y : x ∈ K, y ∈ D(S 2)}, and Ir(K) be the closure
in ‖ · ‖2 of the linear span of {x ⊗ y : x ∈ D(S 2), y ∈ K}. Since, for any operator T ,
T (x⊗ y) = x⊗Ty, (x⊗ y)T = T ∗x⊗ y, and since (x⊗ y)∗ = y⊗ x, it follows that Il(K) is
a closed left ideal of F 2

S , Ir(K) is a closed right ideal of F 2
S and Il(K) = Ir(K)∗. Further,
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let I be a nontrivial left ideal of F 2
S . Let L(I) = {x ∈ D(S 2) : x⊗ y ∈ I for all y ∈ D(S 2)}.

Since D(S 2) is dense in H , for any nonzero A in I, there exists x ∈ D(S 2) such that
A∗x is nonzero. Now A∗x ∈ D(S 2) and, for all y ∈ D(S 2), (A∗x)⊗ y = (x ⊗ y)A ∈ I.
Hence A∗x ∈ L(I) and L(I) is nonzero. Similarly, if I is a right ideal of F 2

S , then
R(I) = {x ∈ D(S 2) : y⊗ x ∈ I for all y ∈ D(S 2)} is nonzero. Recall that a closed ideal
I in (F 2

S , ‖ · ‖2) is essential if I = (F 2
S I)−‖·‖2 , which is the ‖ · ‖2-closure of the linear

span of the set F 2
S I = {T1T2 : T1 ∈ F

2
S ,T2 ∈ I}. The following provides a second-order

analogue of [KS2, Theorem 4.1, page 24] that determines the essential left ideals of
the algebra F 1

S .

Theorem 4.1.

(i) Let K be a linear subspace of D(S 2). The following hold:

(1) Il(K) is an essential left ideal of (F 2
S , ‖ · ‖2); and

(2) K ⊂ L(Il(K)); L(Il(K)) equals the closure of K in (D(S 2), | · |2), and
L(Il(K)) = R(Ir(K)).

(ii) Let I be a closed nontrivial left ideal of (F 2
S , ‖ · ‖2). The following hold:

(1) L(I) is a nontrivial closed subspace of (D(S 2), | · |2); and
(2) Il(L(I)) is the ‖ · ‖2-closure of span F 2

S I, it is the largest essential ideal
contained in I, and it contains all finite rank operators in I.

Proof. (i)(1) The ‖ · ‖2-closure (F 2
S Il(K))−‖·‖2 is in Il(K), as Il(K) is a closed left

ideal of F 2
S . For any x ∈ K, y ∈ D(S 2), (y⊗ y)(x⊗ x) = ‖y‖2(x⊗ y) ∈ F 2

S Il(K). Hence
x⊗ y ∈ F 2

S Il(K) and, by the definition of Il(K), Il(K) ⊂ (F 2
S Il(K))−‖·‖2 . Thus Il(K) =

(F 2
S Il(K))−‖·‖2 and Il(K) is essential.
(2) Notice that, for x, y ∈ D(S 2),

|x|2 = {‖x‖2 + ‖S x‖2 + ‖S 2x‖2}1/2

≤ ‖x‖ + ‖S x‖ + ‖S 2x‖.

Therefore

|x|22 ≤ {‖x‖ + ‖S x‖ + ‖S 2x‖}2

≤ {‖x‖2 + ‖S x‖2 + ‖S 2x‖2 + 2‖x‖ ‖S x‖ + 2‖S x‖ ‖S 2x‖ + 2‖S 2x‖ ‖x‖}

≤ 3{‖x‖2 + ‖S x‖2 + ‖S 2x‖2}

= 3|x|22,
|x|2‖y‖ ≤ (‖x‖ + ‖S x‖ + ‖S 2x‖)‖y‖

= ‖x⊗ y‖ + ‖S x⊗ y‖ + ‖S 2x⊗ y‖

≤ ‖x⊗ y‖ + ‖S x⊗ y − x⊗ S y‖ + ‖x⊗ S y‖

+ ‖S 2x⊗ y − 2S x⊗ S y + x⊗ S 2y‖ + 2‖S x⊗ S y‖ + ‖x⊗ S 2y‖

≤ ‖x⊗ y‖2 + ‖x‖ ‖S y‖ + 2‖S x‖ ‖S y‖ + ‖x‖ ‖S 2y‖.
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Also

‖x⊗ y‖2 ≤ ‖x⊗ y‖ + ‖δS (x⊗ y)‖ + ‖δ2
S (x⊗ y)‖

= ‖x⊗ y‖ + ‖x⊗ S y − S x⊗ y‖ + ‖δS (x⊗ S y − S x⊗ y)‖
= ‖x⊗ y‖ + ‖x⊗ S y − S x⊗ y‖ + ‖x⊗ S 2y − 2S x⊗ S y + S 2x⊗ y‖
≤ ‖x‖ ‖y‖ + ‖x‖ ‖S y‖ + ‖S x‖ ‖y‖ + ‖x‖ ‖S 2y‖ + 2‖S x‖ ‖S y‖ + ‖S 2x‖ ‖y‖
≤ ‖x‖(‖y‖ + ‖S y‖ + ‖S 2y‖) + ‖y‖(‖x‖ + ‖S x‖ + ‖S 2x‖) + 2‖S x‖ ‖S y‖
≤ 31/2(‖x‖ |y|2 + |x|2‖y‖) + 2‖S x‖ ‖S y‖.

Clearly, K ⊂ L(Il(K)). We show that L(Il(K)) ⊂ K−|·|2 . Let y ∈ D(S 2), ‖y‖ = 1, and let
z ∈ L(Il(K)), z < K. Then z⊗ y ∈ Il(K), and there exists a sequence An =

∑mn
i=1 xi

n ⊗ yi
n ∈

Il(K), xi
n ∈ K, yi

n ∈ D(S 2) such that ‖z⊗ y − An‖2 → 0. Then

‖(y⊗ y)(z⊗ y) − (y⊗ y)An‖2 = ‖z⊗ y − A∗ny⊗ y‖2 = ‖(z − zn)⊗ y‖2 → 0,

where zn := A∗ny. Thus ‖(z − zn)⊗ y‖ → 0 and ‖(z − zn)⊗ y‖1 → 0. Hence ‖z − zn‖ → 0.
This also implies that ‖S (z − zn)‖ → 0. Indeed,

‖(z − zn)⊗ y‖1 = ‖(z − zn)⊗ y‖ + ‖S {(z − zn)⊗ y} − {(z − zn)⊗ y}S ‖
= ‖(z − zn)⊗ y‖ + ‖(z − zn)⊗ S y − {S (z − zn)} ⊗ y‖
≥ ‖z − zn‖ ‖y‖ + |‖(z − zn)⊗ S y‖ − ‖{S (z − zn)} ⊗ y‖|
= ‖z − zn‖ + |‖z − zn‖ − ‖S (z − zn)‖|.

Thus ‖S (z − zn)‖ → 0. Then, by the above norm relations,

|z − zn|2 = |z − zn|2‖y‖
≤ ‖(z − zn)⊗ y‖2 + ‖z − zn‖ ‖S y‖ + ‖z − zn‖ ‖S 2y‖ + 2‖S (z − zn)‖ ‖S y‖
→ 0

as n→∞. Therefore z ∈ K−|·|2 and L(Il(K)) ⊂ K−|·|2 . On the other hand, let z ∈ K−|·|2 .
Then there exists a sequence (zn) ⊂ K such that |z − zn|2 → 0, so that ‖S (z − zn)‖ → 0.
Then, again by the norm relations discussed above,

‖z⊗ y − zn ⊗ y‖2 ≤ 31/2(‖z − zn‖|y|2 + |z − zn|2‖y‖) + 2‖S (z − zn)‖ ‖S y‖ → 0.

Hence z⊗ y ∈ Il(K) and z ∈ L(Il(K)). Thus L(Il(K)) = K−|·|2 . Similarly, we can prove
that R(Ir(K)) = K−|·|2 .

(ii) (1) Let I be a closed nontrivial left ideal of (F 2
S , ‖ · ‖2). Then L(I) is nonzero,

where L(I) = {x ∈ D(S 2) : x ⊗ y ∈ I for all y ∈ D(S 2)}. If L(I) = D(S 2) then,
by Proposition 1.4, I = F 2

S , which contradicts the nontriviality of I. Thus L(I) is a
nontrivial subspace of D(S 2). We show that L(I) is closed. Let x ∈ D(S 2), and let (xn)
in L(I) be such that |xn − x|2 → 0. Then xn → x inH . By the norm relations discussed
above,

‖x⊗ y − xn ⊗ y‖2 ≤ 31/2(‖xn − x‖|y|2 + |xn − x|2‖x‖) + 2‖S (xn − x)‖ ‖S y‖ → 0

as n→∞ for all y ∈ D(S 2). Since I is closed and xn ⊗ y ∈ I, we get x⊗ y ∈ I. Then
x ∈ L(I) and L(I) is closed.
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(2) We show that Il(L(I)) contains all finite rank operators from I. Let F ∈ I be a
finite rank operator. By Proposition 1.4, F =

∑
xi ⊗ yi, which is a finite sum, where

xi ∈ D(S 2) and yi ∈ D(S 2) with (yi) assumed to be linearly independent. For u, v in
D(S 2), (u⊗ v)F = F∗u⊗ v ∈ I. Therefore F∗u =

∑n
i=1(yi, u)xi ∈ L(I) for all u ∈ D(S 2).

For a fixed i, choose (ui)n
i=1 in D(S 2) such that (yi, ui) = 1, (yi, u j) = 0 for all j , i. It

follows that all xi ∈ L(I) and F ∈ Il(L(I)).
We show that (F 2

S I)−‖·‖2 ⊂ Il(L(I)). Let A ∈ F 2
S and B ∈ I. Then there exist finite

rank operators An in F 2
S such that ‖A − An‖2→ 0. Now all AnB are finite rank operators

in I and, by above arguments, AnB ∈ Il(L(I)). As ‖AB − AnB‖ → 0 and as Il(L(I)) is
closed in ‖ · ‖2, we get AB ∈ Il(L(I)). Hence (F 2

S I)−‖·‖2 ⊂ Il(L(I)).
Next, we show that Il(L(I)) ⊂ (F 2

S I)−‖·‖2 . Let x ∈ L(I) and y ∈ D(S 2). Then x⊗ y ∈
Il(L(I)) and x⊗ y ∈ I. Now (y⊗ y)(x⊗ y) = ‖y‖2(x⊗ y) ∈ F 2

S I. Thus x⊗ y ∈ F 2
S I. Since

Il(L(I)) is the closed linear span of all x⊗ y, x ∈ L(I), y ∈ D(S 2), Il(L(I)) ⊂ (F 2
S I)−‖·‖2 .

It follows that Il(L(I)) = (F 2
S I)−‖·‖2 .

Further, Il(L(I)) is essential and, by construction, Il(L(I)) ⊂ I. Let J be an essential
left ideal in I. Then L(J) ⊂ L(I) and Il(L(J)) ⊂ Il(L(I)). As J is essential, J =

(F 2
S J)−‖·‖2 = Il(L(J)) ⊂ Il(L(I)), showing that Il(L(I)) is the largest essential ideal

in I. �

Theorem 4.2. The map ψ defined as ψ(I) = L(I) gives a one-to-one correspondence
between the set of nontrivial closed essential left ideals of (F 2

S , ‖ · ‖2) and the set of
nontrivial closed subspaces of (D(S 2), | · |2).

Proof. Given a closed nontrivial essential left ideal I of F 2
S , L(I) is a nontrivial closed

subspace of D(S 2), and then Il(L(I)) = (F 2
S I)−‖·‖2 = I. Thus ψ is one-to-one. If I ⊂ J,

then L(I) ⊂ L(J), and, by the injectivity of ψ, L(I) , Ł(J) if I , J. Let K ⊂ D(S 2) be a
nontrivial | · |2-closed subspace. Then Il(K) is essential and ψ(Il(K)) = L(Il(K)). Hence
Il(K) , F 2

S and ψ is surjective. Also, if K ⊂ K1, then Il(K) ⊂ Il(K1). If Il(K) = Il(K1),
then L(Il(K)) = K− = K = L(Il(K1)) = K−1 = K1. Since K , K1, Il(K) , Il(K1). Thus ψ
is a one-to-one partial order-preserving map and ψ(I) ⊂ ψ(J) if and only if I ⊂ J. �

Thus a closed left ideal I of (F 2
S , ‖ · ‖2) is essential if and only if I = Il(K) for a

K ⊂ D(S 2). In this case, I = Il(L(I)). Further, it is maximal essential if and only if the
closure of K in (D(S 2), | · |2) is of codimension one in D(S 2). The following can be
proved exactly, as in [KS2, Theorems 4.2(iv) and 4.3]. An operator A is essential for
F 2

S if A ∈ (F 2
S A)−‖·‖2 , the closure in (F 2

S , ‖ · ‖2).

Theorem 4.3.

(i) Let I be a closed left ideal of (F 2
S , ‖ · ‖2) and let J be the intersection of all

maximal essential left ideals containing I. Then Il(L(I)) = Il(L(J)). If I is
essential, then I = Il(L(J)). If all closed left ideals of (F 2

S , ‖ · ‖2) are essential,
then every closed left ideal is the intersection of all maximal closed left ideals
containing I.

(ii) All left ideals (F 2
S A, ‖ · ‖2) are essential.

(iii) All finite rank operators in F 2
S are essential.
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